Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = chloride-associated transporters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 751 KiB  
Review
The Role of Chloride in Cardiorenal Syndrome: A Practical Review
by Georgios Aletras, Maria Bachlitzanaki, Maria Stratinaki, Ioannis Petrakis, Theodora Georgopoulou, Yannis Pantazis, Emmanuel Foukarakis, Michael Hamilos and Kostas Stylianou
J. Clin. Med. 2025, 14(15), 5230; https://doi.org/10.3390/jcm14155230 - 24 Jul 2025
Viewed by 538
Abstract
Chloride, long considered a passive extracellular anion, has emerged as a key determinant in the pathophysiology and management of heart failure (HF) and cardiorenal syndrome. In contrast to sodium, which primarily reflects water balance and vasopressin activity, chloride exerts broader effects on neurohormonal [...] Read more.
Chloride, long considered a passive extracellular anion, has emerged as a key determinant in the pathophysiology and management of heart failure (HF) and cardiorenal syndrome. In contrast to sodium, which primarily reflects water balance and vasopressin activity, chloride exerts broader effects on neurohormonal activation, acid–base regulation, renal tubular function, and diuretic responsiveness. Its interaction with With-no-Lysine (WNK) kinases and chloride-sensitive transporters underscores its pivotal role in electrolyte and volume homeostasis. Hypochloremia, frequently observed in HF patients treated with loop diuretics, is independently associated with adverse outcomes, diuretic resistance, and arrhythmic risk. Conversely, hyperchloremia—often iatrogenic—may contribute to renal vasoconstriction and hyperchloremic metabolic acidosis. Experimental data also implicate chloride dysregulation in myocardial electrical disturbances and an increased risk of sudden cardiac death. Despite mounting evidence of its clinical importance, serum chloride remains underappreciated in contemporary risk assessment models and treatment algorithms. This review synthesizes emerging evidence on chloride’s role in HF, explores its diagnostic and therapeutic implications, and advocates for its integration into individualized care strategies. Future studies should aim to prospectively validate these associations, evaluate chloride-guided therapeutic interventions, and assess whether incorporating chloride into prognostic models can improve risk stratification and outcomes in patients with heart failure and cardiorenal syndrome. Full article
(This article belongs to the Special Issue New Insights into Cardiorenal Metabolic Syndrome)
Show Figures

Graphical abstract

23 pages, 2433 KiB  
Review
Massive Activation of GABAA Receptors: Rundown, Ionic and Neurodegenerative Consequences
by Sergey A. Menzikov, Danila M. Zaichenko, Aleksey A. Moskovtsev, Sergey G. Morozov and Aslan A. Kubatiev
Biomolecules 2025, 15(7), 1003; https://doi.org/10.3390/biom15071003 - 13 Jul 2025
Viewed by 460
Abstract
The GABAA receptors, through a short-term interaction with a mediator, induce hyperpolarization of the membrane potential (Vm) via the passive influx of chloride ions (Cl) into neurons. The massive (or intense) activation of the GABAARs [...] Read more.
The GABAA receptors, through a short-term interaction with a mediator, induce hyperpolarization of the membrane potential (Vm) via the passive influx of chloride ions (Cl) into neurons. The massive (or intense) activation of the GABAARs by the agonist could potentially lead to depolarization/excitation of the Vm. Although the ionic mechanisms of GABAA-mediated depolarization remain incompletely understood, a combination of the outward chloride current and the inward bicarbonate current and the resulting pH shift are the main reasons for this event. The GABAA responses are determined by the ionic gradients—neuronal pH/bicarbonate homeostasis is maintained by carbonic anhydrase and electroneutral/electrogenic bicarbonate transporters and the chloride level is maintained by secondary active cation–chloride cotransporters. Massive activation can also induce the rundown effect of the receptor function. This rundown effect partly involves phosphorylation, Ca2+ and the processes of receptor desensitization. In addition, by various methods (including fluorescence and optical genetic methods), it has been shown that massive activation of GABAARs during pathophysiological activity is also associated with an increase in [Cl]i and a decline in the pH and ATP levels in neurons. Although the relationship between the neuronal changes induced by massive activation of GABAergic signaling and the risk of developing neurodegenerative disease has been extensively studied, the molecular determinants of this process remain somewhat mysterious. The aim of this review is to summarize the data on the relationship between the massive activation of inhibitory signaling and the ionic changes in neurons. The potential role of receptor dysfunction during massive activation and the resulting ionic and metabolic disruption in neurons during the manifestation of network/seizure activity will be considered. Full article
Show Figures

Figure 1

18 pages, 5735 KiB  
Article
Fractional Calculus as a Tool for Modeling Electrical Relaxation Phenomena in Polymers
by Flor Y. Rentería-Baltiérrez, Jesús G. Puente-Córdova, Nasser Mohamed-Noriega and Juan Luna-Martínez
Polymers 2025, 17(13), 1726; https://doi.org/10.3390/polym17131726 - 20 Jun 2025
Viewed by 463
Abstract
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus ( [...] Read more.
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus (M*=M+iM) formalism to simultaneously describe two key relaxation phenomena: α-relaxation and interfacial polarization (Maxwell–Wagner–Sillars effect). The model incorporates fractional elements (cap-resistors) into a modified Debye equivalent circuit to capture polymer dynamics and energy dissipation. Fractional differential equations are derived, with fractional orders taking values between 0 and 1; the frequency and temperature responses are analyzed using Fourier transform. Two temperature-dependent behaviors are considered: the Matsuoka model, applied to α-relaxation near the glass transition, and an Arrhenius-type equation, used to describe interfacial polarization associated with thermally activated charge transport. The proposed model is validated using literature data for amorphous polymers, polyetherimide (PEI), polyvinyl chloride (PVC), and polyvinyl butyral (PVB), successfully fitting dielectric spectra and extracting meaningful physical parameters. The results demonstrate that the EFM is a robust and versatile tool for modeling complex dielectric relaxation in polymeric systems, offering improved interpretability over classical integer-order models. This approach enhances understanding of coupled relaxation mechanisms and may support the design of advanced polymer-based materials with tailored dielectric properties. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

19 pages, 3430 KiB  
Article
2,4-Epibrassinolide Mitigates Cd Stress by Enhancing Chloroplast Structural Remodeling and Chlorophyll Metabolism in Vigna angularis Leaves
by Suyu Chen, Zihan Tang, Jialin Hou, Jie Gao, Xin Li, Yuxian Zhang and Qiang Zhao
Biology 2025, 14(6), 674; https://doi.org/10.3390/biology14060674 - 10 Jun 2025
Viewed by 1276
Abstract
Cadmium (Cd) is a highly hazardous heavy metal that has an extensive impact throughout the world. 2,4-Epibrassinolide (BR) is an endogenous hormone that can enhance plant tolerance to various abiotic stresses. Herein, Vigna angularis cultivar “Zhen Zhuhong” was grown hydroponically and treated with [...] Read more.
Cadmium (Cd) is a highly hazardous heavy metal that has an extensive impact throughout the world. 2,4-Epibrassinolide (BR) is an endogenous hormone that can enhance plant tolerance to various abiotic stresses. Herein, Vigna angularis cultivar “Zhen Zhuhong” was grown hydroponically and treated with 0, 1, and 2 mg·L−1 cadmium chloride (CdCl2) at the V1 stage, and foliar sprayed with or without 1 μM BR solution to analyze the effects of BR treatment on the physiology of Vigna angularis seedling leaves under Cd stress. BR treatment significantly alleviated the growth inhibition induced by Cd stress, which was associated with an increase in the plant height (11.15–17.83%), leaf area (35.59–56.72%), leaf dry weight (45.57–50.65%), and above-ground dry weight (50.86–55.17%). In addition, BR treatment induced significant reductions in Cd accumulation across different tissues of V. angularis, with decreases of 20.38–35.93% in leaves, 21.24–32.74% in stems, and 15.38–16.00% in petioles. Compared with the Cd treatment, BR treatment significantly enhanced the activities of peroxidase (5.02–13.22%), ascorbate peroxidase (27.13–70.28%), catalase (20.46–32.30%), and superoxide dismutase (16.54–21.81%), and increased the ascorbic acid content (27.55–45.52%), which contributed to a reduction in the accumulation of reactive oxygen species, cellular membrane damage, and cytoplasmic exosmosis. RNA-seq and real-time quantitative reverse transcription PCR analyses revealed that the BR treatment under Cd stress significantly upregulated the expression of genes involved in chlorophyll biosynthesis, transformation, and degradation, thereby enhancing the chlorophyll cycle. Furthermore, the BR treatment significantly increased the number of grana lamellae in the mesophyll cells, which enhanced the biosynthesis of chloroplasts. The increase in the chlorophyll content improved the capture of light energy, electron transport in photosynthesis, and the biosynthesis and metabolism of carbohydrates in the leaves of V. angularis under Cd stress. Full article
Show Figures

Figure 1

22 pages, 5189 KiB  
Article
Inversion of Hydrogeological Parameters of Polluted Sites Based on Coupled Hydrothermal Salt-Tracer Tests
by Junwei Yang, Changsheng Chen, Guojiao Huang, Jintao Huang and Zhou Chen
Water 2025, 17(11), 1607; https://doi.org/10.3390/w17111607 - 26 May 2025
Viewed by 410
Abstract
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for [...] Read more.
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for the acquisition of pollutant transport and transformation data, which incorporated three-dimensional multifield coupling, alongside a numerical model that also accounted for multiphysical field interactions. The numerical simulations employed Darcy’s law, the heat conduction equation, and convective–dispersive equations to analyze the seepage field, heat transfer, and solute transport processes, respectively. The findings from both physical and numerical tests indicate that variations in groundwater temperature and solute concentration significantly influence solute transport dynamics. Specifically, an increase in groundwater temperature correlates with an accelerated migration rate of sodium chloride (NaCl) solute, resulting in a reduced time for the solute to achieve equivalent concentrations in observation wells. Conversely, when the concentration of NaCl in groundwater rises, the temperature of the groundwater also increases when the solute reaches the same concentration in the observation wells. This phenomenon can be attributed to the decrease in the specific heat capacity of groundwater with higher solute concentrations. Moreover, as the concentration of sodium chloride in groundwater increases, the rate of temperature elevation in the groundwater accelerates due to a decrease in specific heat capacity associated with higher solute concentrations, thereby requiring less thermal energy for the groundwater to attain the same temperature. The results further reveal that the hydraulic conductivity of the target aquifer, specifically the pulverized clay layer, ranges from 6.72 to 8.52 × 10−6 m/s, with an effective thermal conductivity of 2.2 W/(m·K), a longitudinal dispersion of 0.554 m, and a transverse dispersion of 0.05 m. Full article
Show Figures

Figure 1

17 pages, 3066 KiB  
Article
Polymer Inclusion Membranes Based on Sulfonic Acid Derivatives as Ion Carriers for Selective Separation of Pb(II) Ions
by Cezary Kozlowski and Iwona Zawierucha
Membranes 2025, 15(5), 146; https://doi.org/10.3390/membranes15050146 - 12 May 2025
Viewed by 774
Abstract
In this paper, polymer inclusion membranes (PIMs) were created using poly(vinyl chloride)-based alkyl sulfonic acid derivatives as ion carriers and dioctyl terephthalate as a plasticizer for the selective separation of Pb(II), Cu(II), and Cd(II) ions from aqueous nitrate solutions. The ion carriers were [...] Read more.
In this paper, polymer inclusion membranes (PIMs) were created using poly(vinyl chloride)-based alkyl sulfonic acid derivatives as ion carriers and dioctyl terephthalate as a plasticizer for the selective separation of Pb(II), Cu(II), and Cd(II) ions from aqueous nitrate solutions. The ion carriers were dinonylnaphthalenesulfonic acid (DNNSA) and nonylbenzenesulfonic acid (NBSA). The influence of the carrier and the plasticizer concentration in the membrane on the transport efficiency was investigated. For the PIM system, 15% wt. of carrier (DNNSA, NBSA), 20% wt. of plasticizer, and 65% wt. of polymer poly(vinyl chloride) PVC were the optimal proportions, with which the process was the most effective. Research on the transport kinetics has shown that the transport of Pb(II) ions through PIMs containing acidic carriers adheres to a first-order kinetics equation, which is characteristic of a facilitated transport mechanism. The activation parameter for these processes suggests that the high performance of these ion carriers is associated with the immobilization of the carrier within the membrane. It was found that PIMs based on DNNSA facilitate the selective separation of Pb(II)/Cu(II) and Pb(II)/Cd(II) mixtures, achieving high separation factors. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Inclusion Membranes)
Show Figures

Figure 1

18 pages, 2726 KiB  
Article
TMEM16A Maintains Acrosomal Integrity Through ERK1/2, RhoA, and Actin Cytoskeleton During Capacitation
by Ana L. Roa-Espitia, Tania Reyes-Miguel, Monica L. Salgado-Lucio, Joaquín Cordero-Martínez, Dennis Tafoya-Domínguez and Enrique O. Hernández-González
Int. J. Mol. Sci. 2025, 26(8), 3750; https://doi.org/10.3390/ijms26083750 - 16 Apr 2025
Viewed by 573
Abstract
Mammalian spermatozoa undergo a series of physiological and biochemical changes in the oviduct that lead them to acquire the ability to fertilize eggs. During their transit in the oviduct, spermatozoa face a series of environmental changes that can affect sperm viability. A series [...] Read more.
Mammalian spermatozoa undergo a series of physiological and biochemical changes in the oviduct that lead them to acquire the ability to fertilize eggs. During their transit in the oviduct, spermatozoa face a series of environmental changes that can affect sperm viability. A series of ion channels and transporters, as well as the sperm cytoskeleton, allow spermatozoa to remain viable and functional. Cl channels such as TMEM16A (calcium-activated chloride channel), CFTR (cystic fibrosis transmembrane conductance regulator), and ClC3 (chloride voltage-gated channel 3) are some of the ion transporters involved in maintaining cellular homeostasis. They are expressed in mammalian spermatozoa and are associated with capacitation, acrosomal reaction, and motility. However, little is known about their role in maintaining sperm volume. Therefore, this study aimed to determine the mechanism through which TMEM16A maintains sperm volume during capacitation. The effects of TMEM16A were compared to those of CFTR and ClC3. Spermatozoa were capacitated in the presence of specific TMEM16A, CFTR, and ClC3 inhibitors, and the results showed that only TMEM16A inhibition increased acrosomal volume, leading to changes within the acrosome. Similarly, only TMEM16A inhibition prevented actin polymerization during capacitation. Further analysis showed that TMEM16A inhibition also prevented ERK1/2 and RhoA activation. On the other hand, TMEM16A and CFTR inhibition affected both capacitation and spontaneous acrosomal reaction, whereas ClC3 inhibition only affected the spontaneous acrosomal reaction. In conclusion, during capacitation, TMEM16A activity regulates acrosomal structure through actin polymerization and by regulating ERK1/2 and RhoA activities. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 8723 KiB  
Article
Protein Structural Modeling and Transport Thermodynamics Reveal That Plant Cation–Chloride Cotransporters Mediate Potassium–Chloride Symport
by Sam W. Henderson, Saeed Nourmohammadi and Maria Hrmova
Int. J. Mol. Sci. 2024, 25(23), 12955; https://doi.org/10.3390/ijms252312955 - 2 Dec 2024
Cited by 1 | Viewed by 1450
Abstract
Plant cation–chloride cotransporters (CCCs) are proposed to be Na+-K+-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K+-Cl cotransporters (KCCs). Here, we investigated grapevine (Vitis vinifera L.) VvCCC using 3D protein modeling, [...] Read more.
Plant cation–chloride cotransporters (CCCs) are proposed to be Na+-K+-2Cl transporting membrane proteins, although evolutionarily, they associate more closely with K+-Cl cotransporters (KCCs). Here, we investigated grapevine (Vitis vinifera L.) VvCCC using 3D protein modeling, bioinformatics, and electrophysiology with a heterologously expressed protein. The 3D protein modeling revealed that the signatures of ion binding sites in plant CCCs resembled those of animal KCCs, which was supported by phylogenomic analyses and ancestral sequence reconstruction. The conserved features of plant CCCs and animal KCCs included predicted K+ and Cl-binding sites and the absence of a Na+-binding site. Measurements with VvCCC-injected Xenopus laevis oocytes with VvCCC localizing to plasma membranes indicated that the oocytes had depleted intracellular Cl and net 86Rb fluxes, which agreed with thermodynamic predictions for KCC cotransport. The 86Rb uptake by VvCCC-injected oocytes was Cl-dependent, did not require external Na+, and was partially inhibited by the non-specific CCC-blocker bumetanide, implying that these properties are typical of KCC transporters. A loop diuretic-insensitive Na+ conductance in VvCCC-injected oocytes may account for earlier observations of Na+ uptake by plant CCC proteins expressed in oocytes. Our data suggest plant CCC membrane proteins are likely to function as K+-Cl cotransporters, which opens the avenues to define their biophysical properties and roles in plant physiology. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Graphical abstract

21 pages, 3273 KiB  
Article
Proteins Associated with Salinity Adaptation of the Dinoflagellates: Diversity and Potential Involvement in Species Evolution
by Nataliia V. Annenkova
Diversity 2024, 16(12), 739; https://doi.org/10.3390/d16120739 - 29 Nov 2024
Viewed by 798
Abstract
Protists inhabit marine, brackish and fresh waters. The salt barrier plays an important role in the origin of their diversity. Salinity tolerance differs among species and sometimes even among different strains of the same species, indicating local adaptation. Dinoflagellates from the Apocalathium genus [...] Read more.
Protists inhabit marine, brackish and fresh waters. The salt barrier plays an important role in the origin of their diversity. Salinity tolerance differs among species and sometimes even among different strains of the same species, indicating local adaptation. Dinoflagellates from the Apocalathium genus are represented by at least four species, which originated via rapid and recent radiation. Water salinity was suggested as one of the key factors for this radiation. A previous study found RNA transcripts, which belong exclusively to saline strains of Apocalathium, and were absent in its freshwater strains. In the present paper, the diversity of these transcripts and their orthologs from marine and freshwater protists were analysed using bioinformatic approaches. First, it was found that these specific transcripts translated to the proteins, which are important for osmoregulation (e.g., transport of various compounds including glycine betaine, regulation of microtubule organisation, post transcriptional modifications). This supports the idea that speciation within Apocalathium resulted in the loss of osmoregulatory genes by freshwater species. Second, protein distribution was not highly species specific, because their orthologs were found in different dinoflagellates and were relatively common in other phototrophic protists, though the sequences were highly variable. Proteins from 13 orthogroups were absent or very rare in studied freshwater genomes and transcriptomes. They could play a specific role in protists salinity tolerance. Third, detailed phylogenetic analyses of betaine-like transporter and chloride transmembrane transporters, which probably are one of the key proteins associated with salinity tolerance, revealed high levels of multiple and variable copies that were not eliminated from the genome during the evolution. The expression of their genes could be important in the adaptation of dinoflagellates to salinity changes, as it was already shown for some other protists. Full article
(This article belongs to the Special Issue Emerging Pollution: Effects on Aquatic Environments and Biodiversity)
Show Figures

Figure 1

17 pages, 15430 KiB  
Article
CLIC4 Is a New Biomarker for Glioma Prognosis
by Zhichun Liu, Junhui Liu, Zhibiao Chen, Xiaonan Zhu, Rui Ding, Shulan Huang and Haitao Xu
Biomedicines 2024, 12(11), 2579; https://doi.org/10.3390/biomedicines12112579 - 11 Nov 2024
Cited by 2 | Viewed by 1028
Abstract
Background: Chloride Intracellular Channel 4 (CLIC4) plays a versatile role in cellular functions beyond its role in primary chloride ion transport. Notably, many studies found an association between CLIC4 expression and cancers. However, the correlation between CLIC4 and glioma remains to [...] Read more.
Background: Chloride Intracellular Channel 4 (CLIC4) plays a versatile role in cellular functions beyond its role in primary chloride ion transport. Notably, many studies found an association between CLIC4 expression and cancers. However, the correlation between CLIC4 and glioma remains to be uncovered. Methods: A total of 3162 samples from nine public datasets were analyzed to reveal the relationship between CLIC4 expression and glioma malignancy or prognosis. Immunohistochemistry (IHC) staining was performed to examine the results in an in-house cohort. A nomogram model was constructed to predict the prognosis. Functional enrichment analysis was employed to find CLIC4-associated differentially expressed genes in glioma. Immune infiltration analysis, correlation analysis, and IHC staining were employed, aiming to examine the correlation between CLIC4 expression, immune cell infiltration, and ECM (extracellular matrix)-related genes. Results: The expression level of CLIC4 was correlated with the malignancy of glioma and the prognosis of patients. More aggressive gliomas and mesenchymal GBM are associated with a high expression of CLIC4. Gliomas with IDH mutation or 1p19q codeletion express a low level of CLIC4, and a high expression of CLIC4 correlates with poor prognosis. The nomogram model shows a good predictive performance. The DEGs (differentially expressed genes) in gliomas with high and low CLIC4 expression are enriched in extracellular matrix and immune functions. On the one hand, gliomas with high CLIC4 expression have a greater presence of macrophages, neutrophils, and eosinophils; on the other hand, a high CLIC4 expression in gliomas is positively associated with ECM-related genes. Conclusions: Compared to glioma cells with low CLIC4 expression, gliomas with high CLIC4 expression exhibit greater malignancy and poorer prognosis. Our findings indicate that a high level of CLIC4 correlates with high expression of ECM-related genes and the infiltration of macrophages, neutrophils, and eosinophils within glioma tissues. Full article
(This article belongs to the Special Issue Glioblastoma: Pathogenetic, Diagnostic and Therapeutic Perspectives)
Show Figures

Figure 1

21 pages, 10576 KiB  
Article
Prediction and Management of the Groundwater Environmental Pollution Impact in Anning Refinery in Southern China
by Xiaoqi Fang, Shiyao Tang, Zhenru Niu and Juntao Tong
Water 2024, 16(19), 2713; https://doi.org/10.3390/w16192713 - 24 Sep 2024
Cited by 1 | Viewed by 1405
Abstract
Anning Refinery, a large-scale joint venture in southern China, possesses significant potential in regard to polluting local groundwater environments due to its extensive petroleum raw materials. This study aims to mitigate the substantial risks associated with oil spills and prevent consequential groundwater pollution [...] Read more.
Anning Refinery, a large-scale joint venture in southern China, possesses significant potential in regard to polluting local groundwater environments due to its extensive petroleum raw materials. This study aims to mitigate the substantial risks associated with oil spills and prevent consequential groundwater pollution by developing a robust groundwater flow model using the MODFLOW module in GMS software that aligns closely with natural and pumping test conditions. Furthermore, by integrating the MT3DMS model, a groundwater solute transport model is constructed and calibrated using sodium chloride tracer dispersion data. Notably, the wax hydrocracking unit and aviation coal finished product tank area are identified as key pollution sources warranting attention. By considering local constraints such as karst collapse, ground subsidence, and single-well water output capacity, the study introduces a tailored groundwater pollution management model. The research simulates various scenarios of petroleum pollutant migration in groundwater and proposes multi-objective emergency response optimization plans. In Scenario 1, simulations show that petroleum pollutants migrate within the unconfined aquifer and enter the karst aquifer as low-concentration plumes over an extended period. Detection of these plumes in karst water monitoring wells indicates upstream unconfined aquifer contamination at higher concentrations, necessitating immediate activation of the nearest monitoring or emergency wells in both layers. Conversely, in Scenario 2, pollutants reside briefly in the unconfined aquifer before entering the karst aquifer at relatively higher concentrations. Here, low-efficiency pollutant discharge through unconfined aquifer monitoring wells prompts the activation of nearby karst aquifer monitoring or emergency wells for effective pollution control. This model underscores the necessity for proactive monitoring and validates the efficacy of coupled numerical modeling in understanding pollutant behavior, offering valuable insights into pollution control scenario assessments. In summary, the study emphasizes the importance of targeted monitoring and emergency protocols, demonstrating the benefits of integrated modeling approaches in industrial areas prone to pollution risks, and provides critical theoretical and practical guidance for groundwater protection and pollution management, offering transferable insights for similar industrial settings worldwide. Full article
Show Figures

Figure 1

15 pages, 4892 KiB  
Article
Mine Wastewater Effect on the Aquatic Diversity and the Ecological Status of the Watercourses in Southern Poland
by Krzysztof Mitko, Piotr Dydo, Andrzej K. Milewski, Joanna Bok-Badura, Agata Jakóbik-Kolon, Tomasz Krawczyk, Anna Cieplok, Mariola Krodkiewska, Aneta Spyra, Grzegorz Gzyl, Anna Skalny, Beata Kończak, Maria Bałazińska, Paweł Łabaj, Anna Tetłak, Maria Kyriazi and Stavroula Klempetsani
Water 2024, 16(9), 1292; https://doi.org/10.3390/w16091292 - 1 May 2024
Cited by 2 | Viewed by 2746
Abstract
Coal mining activity contributes to energy security and employment occupation, but is associated with environmental deterioration. Coal combustion leads to GHG emissions, while coal mining results in the generation of saline effluents. These effluents are discharged in inland surface waters, applying significant pressure [...] Read more.
Coal mining activity contributes to energy security and employment occupation, but is associated with environmental deterioration. Coal combustion leads to GHG emissions, while coal mining results in the generation of saline effluents. These effluents are discharged in inland surface waters, applying significant pressure on their quality, with a negative impact on aquatic life and the economy of a region. This study includes water samples that were analyzed in order to investigate the organic compounds, heavy metals, and other physicochemical parameters. Biological monitoring was done according to the Water Framework Directive methodology. The results from an aquatic area in Southern Poland, which indirectly receives coal mine effluents, indicate elevated salinity with excessive chlorides, sulfates, and sodium ions. The water quality of another non-polluted aquatic area was also assessed to examine the impact of indirect coal mine wastewater discharge on this area. The high salinity levels hinder the use of river water for drinking, agricultural, or industrial purposes. The results obtained show high pressure on the ecological status of streams and rivers that receive mine effluents, and on the density and diversity of aquatic invertebrates. This pressure is clearly visible in the structure of benthic communities and in invertebrate diversity. It also contributes to the appearance of invasive species and increasing water salinity. Limiting discharges of mine water transporting large loads of saline substances would reduce the negative impact on the quality of river waters and biological life. Full article
Show Figures

Figure 1

16 pages, 1365 KiB  
Review
Chloride/Multiple Anion Exchanger SLC26A Family: Systemic Roles of SLC26A4 in Various Organs
by Dongun Lee and Jeong Hee Hong
Int. J. Mol. Sci. 2024, 25(8), 4190; https://doi.org/10.3390/ijms25084190 - 10 Apr 2024
Cited by 3 | Viewed by 2571
Abstract
Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, [...] Read more.
Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs. Full article
Show Figures

Figure 1

16 pages, 10652 KiB  
Article
Conductometric and Thermodynamic Studies of Selected Imidazolium Chloride Ionic Liquids in N,N-Dimethylformamide at Temperatures from 278.15 to 313.15 K
by Zdzisław Kinart
Molecules 2024, 29(6), 1371; https://doi.org/10.3390/molecules29061371 - 19 Mar 2024
Cited by 1 | Viewed by 1381
Abstract
This scientific article presents research on the electrical conductivity of imidazole-derived ionic liquids (1-methylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride and 1-methyl-3-octylimidazolium chloride) in the temperature range of 278.15–313.15 K in N,N-Dimethylformamide. The measurement methods employed relied mainly on conductometric measurements, enabling [...] Read more.
This scientific article presents research on the electrical conductivity of imidazole-derived ionic liquids (1-methylimidazolium chloride, 1-ethyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride and 1-methyl-3-octylimidazolium chloride) in the temperature range of 278.15–313.15 K in N,N-Dimethylformamide. The measurement methods employed relied mainly on conductometric measurements, enabling precise monitoring of the conductivity changes as a function of temperature. Experiments were conducted at various temperature values, which provided a comprehensive picture of the conducting properties of the investigated ionic liquids. The focus of the study was the analysis of the conductometric results, which were used to determine the conductivity function as a function of temperature. Based on the obtained data, a detailed analysis of association constants (KA) and thermodynamic parameters such as enthalpy (∆H0), entropy (∆S0), Gibbs free energy (∆G0), Eyring activation enthalpy for charge transport (ΔHλ) and diffusion processes (D0) was carried out. The conductometric method proved to be an extremely effective tool for accurately determining these parameters, significantly contributing to the understanding of the properties of imidazole-derived ionic liquids in the investigated temperature range. As a result, the obtained results not only provide new insights into the electrical conductivity of the studied ionic liquids but also broaden our knowledge of their thermodynamic behavior under different temperature conditions. These studies may have significant implications for the field of ionic liquid chemistry and may be applied in the design of modern materials with desired conducting properties. Full article
(This article belongs to the Special Issue Electrochemistry in Ionic Liquids)
Show Figures

Graphical abstract

32 pages, 3365 KiB  
Review
Risks Associated with the Presence of Polyvinyl Chloride in the Environment and Methods for Its Disposal and Utilization
by Marcin H. Kudzin, Dominika Piwowarska, Natalia Festinger and Jerzy J. Chruściel
Materials 2024, 17(1), 173; https://doi.org/10.3390/ma17010173 - 28 Dec 2023
Cited by 39 | Viewed by 7808
Abstract
Plastics have recently become an indispensable part of everyone’s daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of [...] Read more.
Plastics have recently become an indispensable part of everyone’s daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil. Thus, the problem of microplastic pollution affects the entire ecosystem. Since microplastics are commonly found in both drinking and bottled water, humans are also exposed to their harmful effects. Because of existing risks associated with the PVC microplastic contamination of the ecosystem, intensive research is underway to develop methods to clean and remove it from the environment. The pollution of the environment with plastic, and especially microplastic, results in the reduction of both water and soil resources used for agricultural and utility purposes. This review provides an overview of PVC’s environmental impact and its disposal options. Full article
(This article belongs to the Special Issue Food Industry Wastes and By-Products in Polymer Technology)
Show Figures

Figure 1

Back to TopTop