Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = chloranilic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3296 KiB  
Article
Spectrophotometric Study of Charge-Transfer Complexes of Ruxolitinib with Chloranilic Acid and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone: An Application to the Development of a Green and High-Throughput Microwell Method for Quantification of Ruxolitinib in Its Pharmaceutical Formulations
by Khalid A. Aljaber, Ibrahim A. Darwish and Abdullah M. Al-Hossaini
Molecules 2023, 28(23), 7877; https://doi.org/10.3390/molecules28237877 - 30 Nov 2023
Cited by 4 | Viewed by 1742
Abstract
Ruxolitinib (RUX) is a potent drug that has been approved by the Food and Drug Administration for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. This study describes the formation of colored charge-transfer complexes (CTCs) of RUX, an electron donor, with chloranilic [...] Read more.
Ruxolitinib (RUX) is a potent drug that has been approved by the Food and Drug Administration for the treatment of myelofibrosis, polycythemia vera, and graft-versus-host disease. This study describes the formation of colored charge-transfer complexes (CTCs) of RUX, an electron donor, with chloranilic acid (CLA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the π-electron acceptors. The CTCs were characterized using UV-visible spectrophotometry. The formation of CTCs in methanol was confirmed via formation of new absorption bands with maximum absorption at 530 and 470 nm for CTCs with CLA and DDQ, respectively. The molar absorptivity and other physicochemical and electronic properties of CTCs were determined. The molar ratio was found to be 1:1 for both CTCs with CLA and CTCs with DDQ. The site of interaction on RUX molecules was assigned and the mechanisms of the reactions were postulated. The reactions were employed as basis for the development of a novel green and one-step microwell spectrophotometric method (MW-SPM) for high-throughput quantitation of RUX. Reactions of RUX with CLA and DDQ were carried out in 96-well transparent plates, and the absorbances of the colored CTCs were measured by an absorbance microplate reader. The MW-SPM was validated according to the ICH guidelines. The limits of quantitation were 7.5 and 12.6 µg/mL for the methods involving reactions with CLA and DDQ, respectively. The method was applied with great reliability to the quantitation of RUX content in Jakavi® tablets and Opzelura® cream. The greenness of the MW-SPM was assessed by three different metric tools, and the results proved that the method fulfills the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes using the proposed method enables the high-throughput analysis. In conclusion, this study describes the first MW-SPM, a valuable analytical tool for the quality control of pharmaceutical formulations of RUX. Full article
Show Figures

Figure 1

17 pages, 2673 KiB  
Article
Development of Visible Spectrophotometric Methods for the Determination of Tricyclic Antidepressants Based on Formation of Molecular Complexes with p-Benzoquinones
by Maria D. Ciuca and Radu C. Racovita
Int. J. Mol. Sci. 2023, 24(23), 16744; https://doi.org/10.3390/ijms242316744 - 25 Nov 2023
Cited by 1 | Viewed by 1680
Abstract
Tricyclic antidepressants are commonly employed in the management of major depressive disorders. The present work describes two visible (VIS) spectrophotometric techniques that utilize the formation of charge transfer complexes between four antidepressant compounds, namely, amitriptyline hydrochloride (AMI), imipramine hydrochloride (IMI), clomipramine hydrochloride (CLO), [...] Read more.
Tricyclic antidepressants are commonly employed in the management of major depressive disorders. The present work describes two visible (VIS) spectrophotometric techniques that utilize the formation of charge transfer complexes between four antidepressant compounds, namely, amitriptyline hydrochloride (AMI), imipramine hydrochloride (IMI), clomipramine hydrochloride (CLO), and trimipramine maleate (TRI) acting as electron donors and two p-benzoquinones, namely, p-chloranilic acid (pCA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), serving as electron acceptors. The stoichiometry of the compounds produced exhibited a consistent 1:1 ratio in all instances, as established by Job’s method. Molar absorptivities, equilibrium association constants, and several other spectroscopic properties were determined for all complexes. The developed spectrophotometric techniques were validated intra-laboratory and successfully applied for quantitative assessment of the four antidepressant active ingredients in several commercial pharmaceutical formulations. The methods are relatively simple, fast, and use readily available laboratory instrumentation, making them easily applicable by most quality control laboratories worldwide. Full article
Show Figures

Figure 1

17 pages, 1896 KiB  
Article
Charge Transfer Complex of Lorlatinib with Chloranilic Acid: Characterization and Application to the Development of a Novel 96-Microwell Spectrophotometric Assay with High Throughput
by Hany W. Darwish, Ibrahim A. Darwish, Awadh M. Ali and Halah S. Almutairi
Molecules 2023, 28(9), 3852; https://doi.org/10.3390/molecules28093852 - 1 May 2023
Cited by 2 | Viewed by 2548
Abstract
Lorlatinib (LRL) is the first drug of the third generation of anaplastic lymphoma kinase (ALK) inhibitors used a first-line treatment of non-small cell lung cancer (NSCLC). This study describes, for the first time, the investigations for the formation of a charge transfer complex [...] Read more.
Lorlatinib (LRL) is the first drug of the third generation of anaplastic lymphoma kinase (ALK) inhibitors used a first-line treatment of non-small cell lung cancer (NSCLC). This study describes, for the first time, the investigations for the formation of a charge transfer complex (CTC) between LRL, as electron donor, with chloranilic acid (CLA), as a π-electron acceptor. The CTC was characterized by ultraviolet (UV)-visible spectrophotometry and computational calculations. The UV-visible spectrophotometry ascertained the formation of the CTC in methanol via formation of a new broad absorption band with maximum absorption peak (λmax) at 530 nm. The molar absorptivity (ε) of the complex was 0.55 × 103 L mol−1 cm−1 and its band gap energy was 2.3465 eV. The stoichiometric ratio of LRL/CLA was found to be 1:2. The association constant of the complex was 0.40 × 103 L mol−1, and its standard free energy was −0.15 × 102 J mole−1. The computational calculation for the atomic charges of an energy minimized LRL molecule was conducted, the sites of interaction on the LRL molecule were assigned, and the mechanism of the reaction was postulated. The reaction was adopted as a basis for developing a novel 96-microwell spectrophotometric method (MW-SPA) for LRL. The assay limits of detection and quantitation were 2.1 and 6.5 µg/well, respectively. The assay was validated, and all validation parameters were acceptable. The assay was implemented successfully with great precision and accuracy to the determination of LRL in its bulk form and pharmaceutical formulation (tablets). This assay is simple, economic, and more importantly has a high-throughput property. Therefore, the assay can be valuable for routine in quality control laboratories for analysis of LRL’s bulk form and pharmaceutical tablets. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

19 pages, 5732 KiB  
Article
Procainamide Charge Transfer Complexes with Chloranilic Acid and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone: Experimental and Theoretical Study
by A. F. M. Motiur Rahman, Ahmed H. Bakheit, Shofiur Rahman, Gamal A. E. Mostafa and Haitham Alrabiah
Processes 2023, 11(3), 711; https://doi.org/10.3390/pr11030711 - 27 Feb 2023
Cited by 3 | Viewed by 2060
Abstract
The formation of charge transfer (CT) complexes between bioactive molecules and/or organic molecules is an important aspect in order to understand ‘molecule-receptor’ interactions. Here, we have synthesized two new CT complexes, procainamide-chloranilic acid (PA-ChA) and procainamide-2,3-dichloro-5,6-dicyano-1,4-benzoquinone (PA-DDQ), from electron donor procainamide (PA), electron [...] Read more.
The formation of charge transfer (CT) complexes between bioactive molecules and/or organic molecules is an important aspect in order to understand ‘molecule-receptor’ interactions. Here, we have synthesized two new CT complexes, procainamide-chloranilic acid (PA-ChA) and procainamide-2,3-dichloro-5,6-dicyano-1,4-benzoquinone (PA-DDQ), from electron donor procainamide (PA), electron acceptor chloranilic acid (ChA), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The structures of these two CT complexes were elucidated/characterized using FTIR, NMR, and many other spectroscopic methods. A stability study of each complex was conducted for the first time using various spectroscopic parameters (e.g., formation constant, molar extinction coefficient, ionization potential oscillator strength, dipole moment, and standard free energy). The formation of CT complexes in solution was confirmed by spectrophotometric determination. The molecular composition of each complex was determined using the spectrophotometric titration method and gave a 1:1 (donor:acceptor) ratio. In addition, the formation constant was determined using the Benesi–Hildebrand equation. To understand the noncovalent interactions of the complexes, density functional theory (DFT) calculations were performed using the ωB97XD/6-311++G(2d,p) level of theory. The DFT-computed interaction energies (ΔIEs) and the Gibbs free energies (ΔGs) were in the same order as observed experimentally. The DFT-calculated results strongly support our experimental results. Full article
Show Figures

Figure 1

10 pages, 3808 KiB  
Article
A New Boron–Rhodamine-Containing Carboxylic Acid as a Sugar Chemosensor
by Yuta Komori, Shun Sugimoto, Toranosuke Sato, Honoka Okawara, Ryo Watanabe, Yuki Takano, Satoshi Kitaoka and Yuya Egawa
Sensors 2023, 23(3), 1528; https://doi.org/10.3390/s23031528 - 30 Jan 2023
Cited by 2 | Viewed by 2660
Abstract
We propose a boron–rhodamine-containing carboxylic acid (BRhoC) substance as a new sugar chemosensor. BRhoC was obtained by the Friedel–Crafts reaction of 4-formylbenzoic acid and N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at pH 7.4, BRhoC exhibited an absorption [...] Read more.
We propose a boron–rhodamine-containing carboxylic acid (BRhoC) substance as a new sugar chemosensor. BRhoC was obtained by the Friedel–Crafts reaction of 4-formylbenzoic acid and N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at pH 7.4, BRhoC exhibited an absorption maximum (Absmax) at 621 nm. Its molar absorption coefficient at Absmax was calculated to be 1.4 × 105 M−1 cm−1, and it exhibited an emission maximum (Emmax) at 644 nm for the excitation at 621 nm. The quantum yield of BRhoC in CH3OH was calculated to be 0.16. The borinate group of BRhoC reacted with a diol moiety of sugar to form a cyclic ester, which induced a change in the absorbance and fluorescence spectra. An increase in the D-fructose (Fru) concentration resulted in the red shift of the Absmax (621 nm without sugar and 637 nm with 100 mM Fru) and Emmax (644 nm without sugar and 658 nm with 100 mM Fru) peaks. From the curve fitting of the plots of the fluorescence intensity ratio at 644 nm and 658 nm, the binding constants (K) were determined to be 2.3 × 102 M−1 and 3.1 M−1 for Fru and D-glucose, respectively. The sugar-binding ability and presence of a carboxyl group render BRhoC a suitable building block for the fabrication of highly advanced chemosensors. Full article
(This article belongs to the Special Issue Chemical Sensors in Analytical Chemistry)
Show Figures

Figure 1

12 pages, 2014 KiB  
Article
Supporting Electrolyte Manipulation for Simple Improvement of the Sensitivity of Trace Vanadium(V) Determination at a Lead-Coated Glassy Carbon Electrode
by Katarzyna Tyszczuk-Rotko, Damian Gorylewski and Jędrzej Kozak
Sensors 2022, 22(21), 8209; https://doi.org/10.3390/s22218209 - 26 Oct 2022
Cited by 4 | Viewed by 2452
Abstract
The paper presents a very simple way to extremely improve the sensitivity of trace V(V) determination. The application of a new supporting electrolyte composition (CH3COONH4, CH3COOH, and NH4Cl) instead of the commonly used acetate buffer [...] Read more.
The paper presents a very simple way to extremely improve the sensitivity of trace V(V) determination. The application of a new supporting electrolyte composition (CH3COONH4, CH3COOH, and NH4Cl) instead of the commonly used acetate buffer (CH3COONa and CH3COOH) significantly enhanced the adsorptive stripping voltammetric signal of vanadium(V) at the lead-coated glassy carbon electrode (GCE/PbF). A higher enhancement was attained in the presence of cupferron as a complexing agent (approximately 10 times V(V) signal amplification) than in the case of chloranilic acid and bromate ions (approximately 0.5 times V(V) signal amplification). Therefore, the adsorptive stripping voltammetric system with the accumulation of V(V)–cupferron complexes at −1.1 V for 15 s in the buffer solution (CH3COONH4, CH3COOH, and NH4Cl) of pH = 5.6 ± 0.1 was selected for the development of a simple and extremely sensitive V(V) analysis procedure. Under optimized conditions, the sensitivity of the procedure was 6.30 µA/nmol L−1. The cathodic peak current of V(V) was directly proportional to its concentration in the ranges of 1.0 × 10−11 to 2.0 × 10−10 mol L−1 and 2.0 × 10−10 to 1.0 × 10−8 mol L−1. Among the electrochemical procedures, the lowest detection limit (2.8 × 10−12 mol L−1) of V(V) was obtained for the shortest accumulation time (15 s). The high accuracy of the procedure was confirmed on the basis of the analysis of certified reference material (estuarine water) and river water samples. Full article
(This article belongs to the Special Issue State-of-the-Art Electrochemical Biosensors)
Show Figures

Graphical abstract

16 pages, 6118 KiB  
Article
Spectroscopic and Molecular Docking Analysis of π-Acceptor Complexes with the Drug Barbital
by Abdulhakeem S. Alamri, Majid Alhomrani, Walaa F. Alsanie, Hussain Alyami, Sonam Shakya, Hamza Habeeballah, Osama Abdulaziz, Abdulwahab Alamri, Heba A. Alkhatabi, Raed I. Felimban, Abdulhameed Abdullah Alhabeeb, Moamen S. Refat and Ahmed Gaber
Appl. Sci. 2022, 12(19), 10130; https://doi.org/10.3390/app121910130 - 9 Oct 2022
Cited by 12 | Viewed by 2352
Abstract
The drug barbital (Bar) has a strong sedative–hypnotic effect. The intermolecular charge transfer compounds associated with the chemical reactions between Bar and some π acceptors, such as 2,6-dibromoquinone-4-chloroimide (DBQ), tetracyanoquinodimethane (TCNQ), chloranil (CHL), and chloranilic acid (CLA), have been synthesized and isolated in [...] Read more.
The drug barbital (Bar) has a strong sedative–hypnotic effect. The intermolecular charge transfer compounds associated with the chemical reactions between Bar and some π acceptors, such as 2,6-dibromoquinone-4-chloroimide (DBQ), tetracyanoquinodimethane (TCNQ), chloranil (CHL), and chloranilic acid (CLA), have been synthesized and isolated in solid state. The synthesized products have the molecular formulas (Bar–DBQ), (Bar–TCNQ), (Bar–CHL), and (Bar–CLA) with 1:1 stoichiometry based on Raman, IR, TG, 1H NMR, XRD, SEM, and UV-visible analysis techniques. Additionally, the comparative analysis of molecular docking between the donor reactant moiety, Bar, and its four CT complexes was conducted using two neurotransmitter receptors (dopamine and serotonin). The docking results obtained from AutoDockVina software were investigated by a molecular dynamics simulation technique with 100ns run. The molecular mechanisms behind receptor–ligand interactions were also looked into. The DFT computations were conducted using theory at the B3LYP/6-311G++ level. In addition, the HOMO LUMO electronic energy gap and the CT complex’s optimal geometry and molecule electrostatic potential were examined. Full article
Show Figures

Figure 1

25 pages, 5241 KiB  
Article
Synthesis, Single Crystal X-ray Structure, Spectroscopy and Substitution Behavior of Niobium(V) Complexes Activated by Chloranilate as Bidentate Ligand
by Alebel Nibret Belay, Johan Andries Venter, Orbett Teboho Alexander and Andreas Roodt
Inorganics 2022, 10(10), 166; https://doi.org/10.3390/inorganics10100166 - 3 Oct 2022
Cited by 1 | Viewed by 2422
Abstract
Chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone, caH2) as a bidentate ligand for Nb(V) as a metal center is presented. The different coordination behavior of caH2 is well illustrated by a monomeric (Et4N)cis-[NbO(ca)2(H2O)OPPh3]·3H2 [...] Read more.
Chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone, caH2) as a bidentate ligand for Nb(V) as a metal center is presented. The different coordination behavior of caH2 is well illustrated by a monomeric (Et4N)cis-[NbO(ca)2(H2O)OPPh3]·3H2O.THF (5) and a novel tetranuclear compound (Et4N)4[Nb4O4(ca)2(μ2-O)2Cl8]·2CH3CN (6) via self-assembly, respectively. These were obtained in >80% yields and characterized by IR, UV/Vis and NMR (1H, 13C{1H}, 31P{1H}) spectroscopy and single crystal X-ray diffraction, and they included a systematic assessment of the solid-state behavior. The anionic metal complexes showed different coordination modes at the Nb(V): [Nb4O4(ca)2(μ2-O)2Cl8]4− (6a; distorted octahedral) and cis-[NbO(ca)2(H2O)(OPPh3)] (5a; D5h distorted pentagonal bipyramidal), respectively. The tetranuclear complex 6a is substitution inert, while cis-[NbO(ca)2(H2O)OPPh3] (5a) allowed a systematic ligation kinetic evaluation. The substitution of the coordinated triphenylphosphine oxide by a range of pyridine-type entering nucleophiles, 4-N,N-dimethyl-aminopyridine (DMAP), pyridine (py), 4-methylpyridine (4Mepy), 3-chloropyridine (3Clpy) and 3-bromopyridine (3Brpy) in acetonitrile at 31.2 °C was carefully evaluated. The subtle interplay between the main group ligand systems and the hard, early transition metal Nb(V) complex (5a) was well illustrated. The entering monodentate ligands showed a 15-fold reactivity range increase in the order 3Brpy < 3Clpy < 4Mepy < py < DMAP in broad agreement with the Brønsted-donating ability of the nucleophiles. The activation parameters determined for the reaction of 5a with DMAP as the entering ligand yielded ΔHkf = 52 ± 1 kJ mol−1 and ΔSkf = −108 ± 3 J K−1 mol−1 for the enthalpy and entropy of activation, respectively, indicating an associative substitution mechanism. The study presents an important contribution to the structure/reactivity relationships in Nb(V) complexes stabilized by chloranilic acid as a bidentate ligand. Full article
(This article belongs to the Special Issue Synergy between Main Group and Transition Metal Chemistry)
Show Figures

Figure 1

19 pages, 5383 KiB  
Article
Thermodynamic and Computational (DFT) Study of Non-Covalent Interaction Mechanisms of Charge Transfer Complex of Linagliptin with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and Chloranilic acid (CHA)
by Ahmed H. Bakheit, Rashad Al-Salahi and Abdulrahman A. Al-Majed
Molecules 2022, 27(19), 6320; https://doi.org/10.3390/molecules27196320 - 25 Sep 2022
Cited by 22 | Viewed by 3196
Abstract
This study describes the non-covalent interactions of the charge transfer complex (CT), which was responsible for the synthesis of Linagliptin (LNG) with 2,3-Dichloro-5,6-Dicyano-1,4-benzoquinone (DDQ), or with Chloranilic acid (CHA) complexes in acetonitrile (MeCN) at temperatures of (25 ± 2 °C). Then, a UV–Vis [...] Read more.
This study describes the non-covalent interactions of the charge transfer complex (CT), which was responsible for the synthesis of Linagliptin (LNG) with 2,3-Dichloro-5,6-Dicyano-1,4-benzoquinone (DDQ), or with Chloranilic acid (CHA) complexes in acetonitrile (MeCN) at temperatures of (25 ± 2 °C). Then, a UV–Vis spectrophotometer was utilized to identify Linagliptin (LNG) from these complexes. For the quantitative measurement of Linagliptin in bulk form, UV–Vis techniques have been developed and validated in accordance with ICH criteria for several aspects, including selectivity, linearity, accuracy, precision, LOD, LOQ, and robustness. The optimization of the complex synthesis was based on solvent polarization; the ratio of molecules in complexes; the association constant; and Gibbs energy (ΔG°). The experimental work is supported by the computational investigation of the complexes utilizing density functional theory as well as (QTAIM); (NCI) index; and (RDG). According to the optimized conditions, Beer’s law was observed between 2.5–100 and 5–100 µM with correlation coefficients of 1.9997 and 1.9998 for LGN-DDQ and LGN-CHA complexes, respectively. For LGN-DDQ and LGN-CHA complexes, the LOD and LOQ were (1.0844 and 1.4406 μM) and (3.2861 and 4.3655 μM), respectively. The approach was successfully used to measure LGN in its bulk form with high precision and accuracy. Full article
Show Figures

Figure 1

24 pages, 6052 KiB  
Article
Impact of Charge Transfer Complex on the Dielectric Relaxation Processes in Poly(methyl methacrylate) Polymer
by Arwa Alrooqi, Zahra M. Al-Amshany, Laila M. Al-Harbi, Tariq A. Altalhi, Moamen S. Refat, A. M. Hassanien and A. A. Atta
Molecules 2022, 27(6), 1993; https://doi.org/10.3390/molecules27061993 - 19 Mar 2022
Cited by 15 | Viewed by 2518
Abstract
The impact of the charge transfer complex on the dielectric relaxation processes in free poly(methyl methacrylate) (PMMA) polymer sheets was investigated. The frequency dependence of dielectric properties was obtained over the frequency range 0.1 Hz–1 MHz at temperatures ranging between 303 K and [...] Read more.
The impact of the charge transfer complex on the dielectric relaxation processes in free poly(methyl methacrylate) (PMMA) polymer sheets was investigated. The frequency dependence of dielectric properties was obtained over the frequency range 0.1 Hz–1 MHz at temperatures ranging between 303 K and 373 K for perylene dye and acceptors (picric acid (PA) and chloranilic acid (CLA)) in an in situ PMMA polymer. The TG/dTG technique was used to investigate the thermal degradation of the synthesized polymeric sheets. Additionally, the kinetic parameters have been assessed using the Coats–Redfern relation. The dielectric relaxation spectroscopy of the synthesized polymeric sheets was analyzed in terms of complex dielectric constant, dielectric loss, electrical modulus, electrical conductivity, and Cole–Cole impedance spectroscopy. α- and β-relaxation processes were detected and discussed. The σ(ω) dispersion curves of the synthesized polymeric sheets show two distinct regions with increasing frequency. The impedance data of the synthesized polymeric sheets can be represented by the equivalent circuit (parallel RC). Full article
Show Figures

Figure 1

28 pages, 3590 KiB  
Article
Peculiarities of Oxidative Polymerization of Diarylaminodichlorobenzoquinones
by Andrey V. Orlov, Svetlana G. Kiseleva, Galina P. Karpacheva and Dmitriy G. Muratov
Polymers 2021, 13(21), 3657; https://doi.org/10.3390/polym13213657 - 23 Oct 2021
Cited by 2 | Viewed by 2569
Abstract
New oxidative polymerization monomers—diarylaminodichlorobenzoquinones were synthesised by alkylating aniline, m-phenylenediamine and methanilic acid with chloranil. Oxidative polymerization of diarylaminodichlorobenzoquinones was studied for the first time in relation to the concentration of the monomer, acid, and oxidant/monomer ratio. It was found that the synthesized [...] Read more.
New oxidative polymerization monomers—diarylaminodichlorobenzoquinones were synthesised by alkylating aniline, m-phenylenediamine and methanilic acid with chloranil. Oxidative polymerization of diarylaminodichlorobenzoquinones was studied for the first time in relation to the concentration of the monomer, acid, and oxidant/monomer ratio. It was found that the synthesized monomers are highly active in the polymerization reaction, and the oxidation rate grows with the increase in the acid concentration. Only one arylamine group is involved in the polymerization reaction. The optimal oxidant/monomer ratio is stoichiometric for one arylamine group, despite the bifunctionality of the monomers. It was shown that the type of the substituent in the aniline ring (electron donor or electron acceptor) determines the growth of the polymer chain and the structure of the resulting conjugated polymers. A mechanism for the formation of active polymerization centers for diarylaminodichlorobenzoquinones was proposed. FTIR-, NMR-, X-ray photoelectron spectroscopy, and SEM were used to identify the structure of the synthesized monomers and polymers. The obtained polymers have an amorphous structure and a loose globular morphology. The frequency dependence of the electrical conductivity was studied. Full article
(This article belongs to the Special Issue Conductive Polymers: Synthesis and Applications)
Show Figures

Graphical abstract

25 pages, 29144 KiB  
Article
Structural, Thermal, and Vibrational Properties of N,N-Dimethylglycine–Chloranilic Acid—A New Co-Crystal Based on an Aliphatic Amino Acid
by Joanna Hetmańczyk, Łukasz Hetmańczyk, Joanna Nowicka-Scheibe, Andrzej Pawlukojć, Jan K. Maurin and Wojciech Schilf
Materials 2021, 14(12), 3292; https://doi.org/10.3390/ma14123292 - 14 Jun 2021
Cited by 1 | Viewed by 2573
Abstract
The new complex of N,N-Dimethylglycine (DMG) with chloranilic acid (CLA) was synthesized and examined for thermal, structural, and dynamical properties. The structure of the reaction product between DMG and CLA was investigated in a deuterated dimethyl sulfoxide (DMSO-d6) solution and in the solid [...] Read more.
The new complex of N,N-Dimethylglycine (DMG) with chloranilic acid (CLA) was synthesized and examined for thermal, structural, and dynamical properties. The structure of the reaction product between DMG and CLA was investigated in a deuterated dimethyl sulfoxide (DMSO-d6) solution and in the solid state by Nuclear Magnetic Resonance (NMR) (Cross Polarization Magic Angle Spinning-CPMAS NMR). The formation of the 1:1 complex of CLA and DMG in the DMSO solution was also confirmed by diffusion measurement. X-ray single crystal diffraction results revealed that the N,N-dimethylglycine–chloranilic acid (DMG+–CLA) complex crystallizes in the centrosymmetric triclinic P-1 space group. The X-ray diffraction and NMR spectroscopy show the presence of the protonated form of N,N-dimethylglycine and the deprotonated form of chloranilic acid molecules. The vibrational properties of the co-crystal were investigated by the use of neutron (INS), infrared (IR), and Raman (RS) spectroscopies, as well as the density functional theory (DFT) with periodic boundary conditions. From the band shape analysis of the N–CH3 bending vibration, we can conclude that the CH3 groups perform fast (τR ≈ 10−11 to 10‒13 s) reorientational motions down to a temperature of 140 K, with activation energy at ca. 6.7 kJ mol−1. X-ray diffraction and IR investigations confirm the presence of a strong N+–H···O hydrogen bond in the studied co-crystal. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

11 pages, 3772 KiB  
Article
Facile Charge Transfer between Barbituric Acid and Chloranilic Acid over g-C3N4: Synthesis, Characterization and DFT Study
by Gaber A. M. Mersal, Mohamed M. Ibrahim, Mohammed A. Amin, Amine Mezni, Nasser Y. Mostafa, Sarah Alharthi, Rabah Boukherroub and Hamdy S. El-Sheshtawy
Crystals 2021, 11(6), 636; https://doi.org/10.3390/cryst11060636 - 2 Jun 2021
Cited by 4 | Viewed by 3587
Abstract
The molecular complexes between barbituric acid (BU) and chloranilic acid (ChA) over graphitic nitride (g-C3N4) are investigated. The molecular complexes and the nanocomposite were investigated both in solid state and in methanol. The solid complexes and the corresponding nanocomposite [...] Read more.
The molecular complexes between barbituric acid (BU) and chloranilic acid (ChA) over graphitic nitride (g-C3N4) are investigated. The molecular complexes and the nanocomposite were investigated both in solid state and in methanol. The solid complexes and the corresponding nanocomposite were investigated using FTIR, TGA, and UV-Vis spectroscopy. The structures were explored using DFT calculations using wB97XD/ and def2-TZVP basis set. The DFT calculations revealed the formation of hydrogen-bonded complexes, which initiate the proton transfer from ChA to BU. Immobilization of the BUChA complex over the g-C3N4 sheet was stabilized by weak non-covalent interactions, such as π–π interactions. g-C3N4 facilitated the charge transfer process, which is beneficial for different applications. Full article
(This article belongs to the Special Issue Research about Vital Organic Chelates and Metal Ion Complexes)
Show Figures

Figure 1

16 pages, 5015 KiB  
Article
Heteroleptic LaIII Anilate/Dicarboxylate Based Neutral 3D-Coordination Polymers
by Olesya Y. Trofimova, Arina V. Maleeva, Irina V. Ershova, Anton V. Cherkasov, Georgy K. Fukin, Rinat R. Aysin, Konstantin A. Kovalenko and Alexandr V. Piskunov
Molecules 2021, 26(9), 2486; https://doi.org/10.3390/molecules26092486 - 24 Apr 2021
Cited by 14 | Viewed by 2602
Abstract
Three new 3D metal–organic frameworks of lanthanum based on mixed anionic ligands, [(La2(pQ)2(BDC)4)·4DMF]n, [(La2(pQ)2(DHBDC)4)·4DMF]n, [(La2(CA)2(BDC)4)·4DMF]n (pQ—dianion of 2,5-dihydroxy-3,6-di-tert-butyl-para-quinone, CA—dianion of [...] Read more.
Three new 3D metal–organic frameworks of lanthanum based on mixed anionic ligands, [(La2(pQ)2(BDC)4)·4DMF]n, [(La2(pQ)2(DHBDC)4)·4DMF]n, [(La2(CA)2(BDC)4)·4DMF]n (pQ—dianion of 2,5-dihydroxy-3,6-di-tert-butyl-para-quinone, CA—dianion of chloranilic acid, BDC-1,4-benzenedicarboxylate, DHBDC-2,5-dihydroxy-1,4-benzenedicarboxylate and DMF-N,N′-dimethylformamide), were synthesized using solvothermal methodology. Coordination polymers demonstrate the rare xah or 4,6T187 topology of a 3D framework. The homoleptic 2D-coordination polymer [(La2(pQ)3)·4DMF]n was obtained as a by-product in the course of synthetic procedure optimization. The thermal stability, spectral characteristics and porosity of coordination polymers were investigated. Full article
Show Figures

Graphical abstract

16 pages, 2889 KiB  
Article
Experimental and Computational Evaluation of Chloranilic Acid as an Universal Chromogenic Reagent for the Development of a Novel 96-Microwell Spectrophotometric Assay for Tyrosine Kinase Inhibitors
by Ibrahim A. Darwish, Hany W. Darwish, Nasr Y. Khalil and Ahmed Y. A. Sayed
Molecules 2021, 26(3), 744; https://doi.org/10.3390/molecules26030744 - 31 Jan 2021
Cited by 8 | Viewed by 3340
Abstract
The tyrosine kinase inhibitors (TKIs) are chemotherapeutic drugs used for the targeted therapy of various types of cancer. This work discusses the experimental and computational evaluation of chloranilic acid (CLA) as a universal chromogenic reagent for developing a novel 96-microwell spectrophotometric assay (MW-SPA) [...] Read more.
The tyrosine kinase inhibitors (TKIs) are chemotherapeutic drugs used for the targeted therapy of various types of cancer. This work discusses the experimental and computational evaluation of chloranilic acid (CLA) as a universal chromogenic reagent for developing a novel 96-microwell spectrophotometric assay (MW-SPA) for TKIs. The reaction resulted in an instantaneous formation of intensely purple colored products with TKIs. Spectrophotometric results confirmed that the reactions proceeded via the formation of charge-transfer complexes (CTCs). The physical parameters were determined for the CTCs of all TKIs. Computational calculations and molecular modelling for the CTCs were conducted, and the site(s) of interaction on each TKI molecule were determined. Under the optimized conditions, Beer’s law correlating the absorbances of the CTCs with the concentrations of TKIs were obeyed in the range of 10–500 µg/well with good correlation coefficients (0.9993–0.9998). The proposed MW-SPA fully validated and successfully applied for the determination of all TKIs in their bulk forms and pharmaceutical formulations (tablets). The proposed MW-SPA is the first assay that can analyze all the TKIs on a single assay system without modifications in the detection wavelength. The advantages of the proposed MW-SPA are simple, economic and, more importantly, have high throughput. Full article
(This article belongs to the Special Issue Derivatization in Analytical Chemistry)
Show Figures

Figure 1

Back to TopTop