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Abstract: Three new 3D metal–organic frameworks of lanthanum based on mixed anionic lig-
ands, [(La2(pQ)2(BDC)4)·4DMF]n, [(La2(pQ)2(DHBDC)4)·4DMF]n, [(La2(CA)2(BDC)4)·4DMF]n (pQ—
dianion of 2,5-dihydroxy-3,6-di-tert-butyl-para-quinone, CA—dianion of chloranilic acid, BDC-1,4-
benzenedicarboxylate, DHBDC-2,5-dihydroxy-1,4-benzenedicarboxylate and DMF-N,N′- dimethyl-
formamide), were synthesized using solvothermal methodology. Coordination polymers demon-
strate the rare xah or 4,6T187 topology of a 3D framework. The homoleptic 2D-coordination polymer
[(La2(pQ)3)·4DMF]n was obtained as a by-product in the course of synthetic procedure optimization.
The thermal stability, spectral characteristics and porosity of coordination polymers were investigated.

Keywords: metal-organic framework; lanthanum; anilate; carboxylate; crystal structure; thermal stability

1. Introduction

Metal−organic frameworks (MOFs) and coordination polymers (CPs) are an emerging
class of microporous solids, which have been intensively studied during the last two
decades due to their structural and functional diversity. They have potential applications as
gas adsorbents [1–3]; luminescent [4–7]; electrochemical or photophysical sensors [8,9]; and
catalytic [10–12], optical [13], electrically conductive [14], and magnetic materials [15–18].
The physical and chemical properties, crystalline structure and topologies of coordination
polymers depend on the properties of the organic ligands and/or the metal ions.

The most used types of ligands for MOFs’ construction are various di-, tri-, and
tetracarboxylic acids [13]. Their use allows a variety of structures of different dimensions to
be obtained, from linear to 3D frames. Among the unique modern trends is the combination
of various anionic bridges to obtain heteroleptic polymeric systems. The combination of
two or more types of ligands in one link leads to the manifestation of the unusual properties
of MOFs and CPs [1,2,4,7]. For example, Fedin and coworkers [1,2] have shown that zinc
complexes’ design based on dicarboxylic acids and diatomic alcohols allows the synthesis
of functional coordination polymers with outstanding characteristics, excellent adsorption
selectivity of benzene over cyclohexane, for example.

Another promising and rapidly developing ligand system in the construction of MOFs
is a variety of anilates - derivatives of 2,5-dihydroxy-1,4-benzoquinone [18]. A unique fea-
ture of these ligands is their redox activity. Double-deprotonated anilates can exist in five re-
dox states in complexes with metals. The introduction of different substituents in the 3 and
6 positions of the quinoid ring allows for a wide range of variations in their electronic and
steric properties. Most commonly, researchers use chlorine [16,19,20], bromine [17,21,22],
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fluorine [23,24], nitro [25,26] and cyano-substituted [22,27,28] anilate ligands. The first
paper on the use of 3,6-di-tert-butyl-2,5-dihydroxy-para-benzoquinone in the construction
of 2D layered lanthanum MOFs was published [29]. Lanthanide MOFs/CPs are of great
interest for their outstanding optical and magnetic properties [4,6,22,28,30–33]. They may
appear as multifunctional materials for electro-optical, data storage, and sensing appli-
cations [5,27,34–36]. The first examples of heteroleptic NIR-Emitting YbIII/anilate-based
coordination polymer nanosheets were prepared recently using terephthalic dicarboxylate
coligands [7]. These 2D nanosheets are ideal objects for performing advanced photo-
physical studies by an innovative multiprobe approach. The research of perturbations of
photoluminescence induced by different solvents, both aromatic and aliphatic, bearing
electron-withdrawing and electro-donating groups, has demonstrated high-sensitivity to
nitrobenzene [7].

In the present work, we report the synthesis and characterization of the first 3D-
heteroleptic anilate/carboxylate/La(III) metal organic frameworks. These compound
are formulated as [(La2(pQ)2(BDC)4)·4DMF]n (1), [(La2(pQ)2(DHBDC)4)·4DMF]n (2) and
[(La2(CA)2(BDC)4)·4DMF]n (3) (pQ—dianionic form of 2,5-dihydroxy-3,6-di-tert-butyl-
para-quinone, CA—dianionic form of chloranilic acid, BDC—1,4-benzenedicarboxylate,
DHBDC—2,5-dihydroxy-1,4-benzenedicarboxylate, DMF—N,N′-dimethylformamide).

2. Results and Discussion

Compounds 1–3 were synthesized by a solvothermal technique in DMF (Scheme 1).
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Scheme 1. Synthetic scheme for the preparation of coordination polymers 1–3.

The synthetic procedure involves consecutive two-stage heating of the reaction mix-
ture at 80 and 130 ◦C. This ensures a high yield of violet crystals of heteroleptic reaction
products. The reaction under conditions of single-stage heating of the components in a
DMF solution is accompanied by the formation of crystalline colorless lanthanum carboxy-
lates and red homoleptic anilate derivatives as by-products. Additionally, an increase in the
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carboxylate ligand’s content in the initial reaction mixture contributes to an increase in the
yield of the target product. Therefore, for polymers 1 and 2, the optimal ratio is H2pQ:H2bdc
(H2dhbdc) = 1:4. For the chloranilic acid derivative 3, the ratio is H2CA:H2bdc = 1:3. It
should be noted that the optimal ratio of reagents differs from the stoichiometric one.
This is obviously due to the different rates of formation and crystallization of homoleptic
polymers. Additionally, the anilate ligands have a stronger affinity toward the La(III)
ion than the carboxylate one. This assertion was forecasted by the authors of [7]. The
interaction Yb(III)/anilate/dicarboxylate with stoichiometric (2:1:1) ratio in the reaction
produces coordination polymers with the 2:2.5:0.5 or 2:2:1 formula ratios [7]. A significant
increase in the content of dicarboxylic acid in the reaction mixture makes it possible to
obtain a polymer with a component ratio of La(III)/anilate/dicarboxylate—2:2:4, which
dramatically affects the resulting CPs’ structures. In contrast to [7], it is possible to obtain
three-dimensional structures instead of layered ones.

The La(III) CP (4) bearing pQ2− and DMF ligands only was prepared by the test
synthesis excluding the dicarboxylate component (Scheme 2).
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The SC XRD studies of 1–3 compounds were performed, revealing a series of new
MOFs with similar structural compositions. MOFs 1 and 2 crystallize in the triclinic P-1
space group, while 3 crystallizes in the monoclinic P21/n. MOFs 1 and 2 display a rarely
xah [37] topology of the 3D framework. The topology of the underlying network of 3 is
4,6T187 in the standard representation of the valence-bonded MOFs.

The simplest unit of 1–3 comprises two La(III) centers (Figures 1 and 2). They are
bridged by four carboxylate ligands forming the Chinese-lantern structure. Each La(III)
center coordinates five oxygen atoms from four BDC2− (1, 3) or DHBDC2− (2) anions, two
oxygen atoms from pQ2− (1, 2) or CA2− (3) anions, and two oxygen atoms of two DMF
coordination molecules (Figure 3). Thus, the formal coordination number of La3+ in 1–3 is
nine. The La . . . La distances in these dimeric units are 4.1978(4) Å in 1, 4.2239(2) Å in 2
and 4.1725(5) Å in 3.
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Systematic analysis of the coordination geometries around the La(III) centers using
SHAPE 2.1 software [38,39] reveals that the nine coordinated [40] lanthanide centers of
complexes 1–3 adopt different geometries. The coordination polyhedron of lanthanum
ion in compound 1 is best described as a spherical capped square antiprism (CSAPR-9,
minimum CShM value is 1.383) (Figure 4a). The bottom and top edges are formed by O(2B),
O(4A), O(5A), O(6) and O(1), O(3), O(5), O(7) atoms, respectively. The oxygen O(8) of one
of the coordinated DMF molecules occupies the capped vertex. Coordination polyhedra in
CPs 2 (Figure 4b) and 3 (Figure 4c) are quite close to the muffin (MFF-9, minimum CShM
values are 0.926 and 0.868 for 2 and 3, respectively). The bottom base of these muffins
include O(2B), O(4A), O(10) and O(2D), O(5C), O(7) atoms for 2 and 3, respectively. Apical
vertexes depicted by oxygens O(3) (compound 2) and O(6B) (compound 3). Pentagonal
planes consist of O(1), O(6A), O(7A), O(6), O(9) and O(1), O(3), O(4A), O(6E), O(8) atoms
for 2 and 3, respectively.
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A large excess of dicarboxylic acid contributes to the formation of layers constructed
from carboxylate lanterns (Figures 5–7). The latter form two-dimensional grids with four-
membered cells. The structures of polymers 1 and 2 are close to each other. The carboxylate
layers in them are almost flat. In derivative 3, a zigzag formation of the layers is observed,
which leads to its thickening. The layers in 1–3 are cross-linked into a three-dimensional
structure through anilate ligands. This mechanism of a three-dimensional framework
formation explains the difference between the here presented results and those obtained
in the preparation of heteroleptic ytterbium complexes [7]. In the case of an excess of the
anilic acid, a typical for such complexes (6,3)-2D topology of six-membered rings with
hexagonal cavities is formed on the first stage, and dicarboxylate ligands replace some
anilate ligands in this lattice. Thus, the predominance of anilic over dicarboxylate ligands
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in the reaction mixture forms a two-dimensional coordination polymer structure. At the
same time, the inverse ratio of the reagents leads to a 3D framework.
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The dianionic form of anilate ligands can bind to metals either as a bridging (bis)bidentate
ligand, which has a dianion-like structure (Scheme 3, type I and II), or as a terminal
bidentate ligand with an ortho-quinoid structure (type III) [41,42]. The dianions of 2,5-
dihydroxy-3,6-di-tert-butyl-para-quinone in 1–2 and chloranilic acid in 3 consist of two
delocalized π-electron systems connected by single C-C bonds (1.552(3) Å). Other C-C
distances of six-membered cycle and C-O bonds lies in the narrow ranges 1.404(3)–1.409(3)
Å and 1.267(2)–1.271(2) Å, respectively. Such delocalization of electron density in the
quinoid ring is characteristic of the bridging mode of anilate derivatives.
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Table 1. Selected bond lengths (Å) in 1–4.

Bond 1 Bond 2·2DMF

La(1)-O(1) 2.477(2) La(1)-O(1) 2.460(2)
La(1)-O(2B) 2.516(2) La(1)-O(2B) 2.505(2)
La(1)-O(3) 2.513(2) La(1)-O(3) 2.495(2)

La(1)-O(4A) 2.510(2) La(1)-O(4A) 2.48(2)
La(1)-O(5) 2.582(2) La(1)-O(6) 2.514(2)

La(1)-O(5A) 2.731(2) La(1)-O(6A) 2.849(2)
La(1)-O(6A) 2.608(2) La(1)-O(7A) 2.518(5)
La(1)-O(7) 2.568(2) La(1)-O(9) 2.569(2)
La(1)-O(8) 2.580(5) La(1)-O(10) 2.496(6)
O(1)-C(1) 1.271(2) O(1)-C(1) 1.267(2)
O(2)-C(3) 1.267(2) O(2)-C(3) 1.259(2)
C(1)-C(2) 1.409(3) C(1)-C(2) 1.402(3)

C(1)-C(3B) 1.552(3) C(1)-C(3B) 1.540(3)
C(2)-C(3) 1.404(3) C(2)-C(3) 1.411(3)
O(3)-C(8) 1.262(2) O(3)-C(8) 1.263(4)
O(4)-C(8) 1.263(2) O(4)-C(8) 1.319(5)
C(8)-C(9) 1.511(2) C(8)-C(9) 1.499(4)
C(9)-C(10) 1.388(3) C(9)-C(10) 1.390(4)

C(9)-C(11C) 1.390(3) C(9)-C(11C) 1.35(2)
C(10)-C(11) 1.389(3) C(10)-C(11) 1.393(5)
O(5)-C(12) 1.245(2) O(6)-C(12) 1.275(3)
O(6)-C(12) 1.255(2) O(7)-C(12) 1.261(4)
C(12)-C(13) 1.501(3) C(12)-C(13) 1.486(4)

C(13)-C(15D) 1.396(3) C(13)-C(14) 1.407(4)
C(13)-C(14) 1.398(3) C(15)-C(13) 1.391(4)
C(14)-C(15) 1.390(3) C(15)-C(14D) 1.654(6)

Bond 3·0.6DMF Bond 4
La(1)-O(1) 2.58(2) La(1)-O(1) 2.463(7)

La(1)-O(2D) 2.572(7) La(1)-O(2A) 2.458(7)
La(1)-O(3) 2.474(3) La(1)-O(3) 2.488(6)

La(1)-O(4A) 2.466(3) La(1)-O(4C) 2.503(6)
La(1)-O(5C) 2.567(3) La(1)-O(5) 2.488(6)
La(1)-O(6B) 2.501(3) La(1)-O(6B) 2.495(6)
La(1)-O(6E) 2.729(3) La(1)-O(7) 2.52(2)
La(1)-O(7) 2.511(6) La(1)-O(8) 2.53(2)
La(1)-O(8) 2.494(7) O(1)-C(1) 1.29(2)
O(1)-C(1) 1.253(6) O(2)-C(3) 1.28(2)
O(2)-C(3) 1.251(6) C(1)-C(2) 1.378(7)
C(1)-C(2) 1.398(7) C(1)-C(3A) 1.54(2)

C(1)-C(3D) 1.58(2) C(2)-C(3) 1.377(7)
C(2)-C(3) 1.414(7) O(3)-C(8) 1.288(9)
O(3)-C(4) 1.256(6) O(4)-C(10) 1.28(2)
O(4)-C(4) 1.260(6) C(8)-C(9) 1.365(7)

O(5)-C(11) 1.252(6) C(8)-C(10C) 1.550(5)
O(6)-C(11) 1.261(5) C(9)-C(10) 1.378(7)
C(4)-C(5) 1.508(6) O(5)-C(15) 1.32(2)
C(5)-C(6) 1.386(7) O(6)-C(17) 1.28(2)
C(5)-C(10) 1.391(7) C(15)-C(16) 1.393(7)
C(6)-C(7) 1.393(7) C(15)-C(17B) 1.551(5)
C(7)-C(8) 1.392(6) C(16)-C(17) 1.376(7)
C(8)-C(9) 1.391(7)
C(9)-C(10) 1.389(7)
C(8)-C(11) 1.497(6)

Symmetry transformations used to generate equivalent atoms:

1: (A) −x + 1, −y + 1, −z + 1; (B) −x + 1, −y + 1, −z; (C) −x, −y + 2, −z + 1; (D) −x + 2,
−y + 1, −z + 1
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2: (A) −x + 1, −y + 1, −z + 1; (B) −x + 1, −y + 1, −z; (C) −x + 1, −y, −z + 1; (D) −x, −y
+ 1, −z + 1

3: (A) −x + 3, −y, −z + 2; (B) −x + 5/2, y + 1/2, −z + 3/2; (C) x + 1/2, −y−1/2, z + 1/2;
(D) −x + 2, −y, −z + 2; (E) x + 1/2, −y −1/2, z + 1/2

4: (A) −x + 1, −y + 2, −z + 2; (B) −x + 1, −y + 1, −z + 2; (C) −x, −y + 1, −z + 1.

According to X-ray structural analysis, compounds 2 and 3 contain free accessible
voids filled with solvent molecules. The volume of these voids for compound 2 was
estimated at 13.8% of unit cell volume (Figure 7a). The voids volume in 3 is about 15.6%
(Figure 7b) [45]. Visually, compounds 2 and 3 lost crystallinity within a day, which is
associated with the removal of guest DMF molecules from the pores of compounds. The
data of elemental and thermogravimetric analyses confirm the absence of guest DMF
molecules in the dried samples of 2 and 3.

Metal–organic coordination polymer 4 crystallizes in the triclinic P-1 space group. The
topology of the underlying net of 4 is hcb and typical for this type of compound [7,21,22,33].
The simplest unit of [(La2(pQ)3)·4DMF]n comprises two La(III) cations, three pQ2− dianions
and four coordinated N,N′-dimethylformamide ligands (Figure 8). The atom La(III) is
8-coordinated with a distorted triangular dodecahedron geometry (TDD-8, minimum
CShM value is 1.148) (Figure 8). The metal–organic coordination polymer 4 has a similar
structure to the recently published derivatives [Ln2(pQ)3·4DMAA]n (Ln = La, Pr, Nd,
DMAA = N,N′-dimethylacetamide) [29]. The main difference is the type of anilate ligands
binding to lanthanide ions (Scheme 3). For complexes with dimethylacetamide, two of the
three ligands are characterized by type I coordination, and the third one has p-quinoid
type II coordination mode. In contrast, all three dianions of 2,5-dihydroxy-3,6-di-tert-
butyl-para-quinone in 4 are coordinated by type I and characterized by two delocalized
π-electron systems (C-O 1.28(2)-1.32(2) Å) connected by single C–C bonds (1.54(2)-1.551(5)
Å). Selected bond lengths in coordination polymer 4 are presented in Table 1.
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Thermal stability of obtained compounds 1–3 was examined by TGA and DTA
(Figure 9). Compounds 1–3 started to decompose above 150 ◦C and showed a slight
mass decrease upon heating to 260 ◦C due to a continuous loss of DMF molecules. The
observed mass loss was 10%, 10%, and 8% for 1, 2, and 3, respectively, which corresponds
to 1.5 DMF molecules. Up to 150 ◦C, no weight loss was observed on the TGA curve,
which indicates the absence of occluded solvent and guest DMF molecules in the samples.
According to DTA data, heating above 270 ◦C leads to several different processes, which



Molecules 2021, 26, 2486 10 of 16

lead to the decomposition of the framework of compounds 1–3. Compound 4 demonstrates
thermal stability up to 170 ◦C. The sample starts to decompose above 170 ◦C and shows a
steady mass decrease upon heating to 250 ◦C due to a continuous loss of coordination sol-
vent molecules. The observed mass loss equal to 11% corresponds to two DMF molecules
in counting on the simplest unit of [(La2(pQ)3)·4DMF]. Decomposition of the framework
occurred at 298 ◦C. TG curves for 4 are presented in Figure S2 (ESI).
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Figure 9. TG curves for 1 (blue line), 2 (green line) and 3 (red line). DTA curves are shown with
dash lines.

The porous structure of compounds 1–3 was investigated using the example of com-
pound 1, because this compound retains its crystallinity over a prolonged time period. An
analysis of the porous structure was performed by a carbon dioxide adsorption technique
at 195 K. Initially, the compound 1 was activated in a dynamic vacuum using the standard
“outgas” option of the equipment at 453 K for 2 or 6 h. Measured adsorption isotherms of
1 are represented in Figure 10. Compound 1 has low porosity, pore volume and specific
surface area. Longer activation leads to a decrease in the adsorption capacity, as evidenced
by a drop in the adsorbed volume of CO2. Evidently, this is due to the destruction of
the 3D structure when the molecules of the coordinated DMF are eliminated. This is also
indicated by a significant deterioration of the powder diffractogram after the completion
of the sorption–desorption cycle. Calculated parameters of the porous structure are shown
in Table 2. Pore size distributions were calculated using the DFT approach, which shows
good agreement between the measured and calculated isotherms and is presented in ESI.
Isotherms are typical for microporous materials with slit pores, which was also proven by
DFT PSD calculations.
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Table 2. The parameters of porous structure of compound 1.

Activation
Specific Surface Area/m2·g−1 Vpore/cm3·g−1 Vads(CO2)

a/cm3(STP)·g−1Langmuir BET DFT Total a DFT

2 h 237.3 111.2 61.6 0.0859 0.0604 78.9
6 h 145.3 91.3 86.1 0.0727 0.0440 34.3

a at P/P0 = 0.95.

3. Materials and Methods
3.1. Reagents and Methods

All reactants were purchased from Sigma Aldrich. 2,5-dihydroxy-3,6-di-tert-butyl-p-
benzoquinone was synthesized according to the previously reported procedure [46]. All
synthetic manipulations were performed under Schlenk line conditions. Solvents were
purified by standard methods [47]. Elemental analyses were performed with an Elementar
Vario El cube instrument. Electronic absorption (UV-vis) spectra in the range 200–900 nm
of nujol mulls were recorded on a Carl Zeiss Jena Specord M400 spectrophotometer. IR-
spectra of the studied compounds were recorded on a FSM1201 Fourier-IR spectrometer in
a nujol using KBr plates in the range 4000–400 cm−1. TGA of compound 1–3 was measured
on a Shimadzu DTG-60H synchronous thermal analyzer instrument from 30 to 600 ◦C using
an Al pan and heated at a rate of 5 ◦C/min under an air atmosphere. TGA of compound 4
was measured on a Mettler Toledo TGA/DSC3+ instrument from 30 to 500 ◦C using an
PCA pan and heated at a rate of 5 ◦C/min under a nitrogen atmosphere.

The X-ray data for 1–4 were collected with Bruker D8 Quest (1–3) and Rigaku OD
Xcalibur (4) diffractometers (MoKα-radiation, ω-scans technique, λ = 0.71073Å, T = 100 K)
using APEX3 [48] and CrysAlisPro [49] software packages. The structures were solved via
an intrinsic phasing algorithm and refined by full-matrix least squares against F2 using
SHELX [50,51]. SADABS [52] and scaling algorithms implemented in CrysAlisPro were
used to perform absorption corrections. All non-hydrogen atoms in 1–4 were found from
Fourier syntheses of electron density and refined anisotropically. All hydrogen atoms
were placed in calculated positions and refined isotropically in the “riding” model with
U(H)iso = 1.2Ueq of their parent atoms (U(H)iso = 1.5Ueq for methyl groups). The crystal
data and structure refinement details for compounds 1–4 are presented in Table 3.

One solvate DMF molecule in the asymmetric unit of 2 was modelled by SQUEEZE/
Platon [53]. Coordination polymer 4 was refined as 2-component non-merohedral twin
with a domain ratio 0.65/0.35.

The crystallographic data and structure refinement details are shown in Table S1.
CCDC 2,074,328 (1), 2,074,329 (2), 2,074,330 (3) and 2,074,331 (4) contain the supplemen-
tary crystallographic data for this paper. These data are provided free of charge by The
Cambridge Crystallographic Data Centre: ccdc.cam.ac.uk/structures.

An analysis of the porous structure was performed by a carbon dioxide adsorption
technique using Quantochrome’s Autosorb iQ at 195 K. Cryostat CryoCooler was used to
adjust temperature with 0.05 K accuracy. Carbon dioxide adsorption−desorption isotherms
were measured within the range of relative pressures from 10 to 3 till 0.995. The specific
surface area was calculated from the data obtained on the basis of the conventional BET,
Langmuir and DFT models. Pore size distributions were calculated using the DFT method.
The database of the National Institute of Standards and Technology available at http:
//webbook.nist.gov/chemistry/fluid/ (accessed on 23 April 2021) was used as a source of
p−V−T relations at experimental pressures and temperatures.

X-ray powder diffraction measurements were performed on a Shimadzu LabX XRD-
6100 X-ray Powder Diffractometer. Storage of crystalline compounds after their separation
from the mother liquors led to a partial loss of solvate DMF molecules, which led to
the destruction of the crystals studied by X-ray diffraction and the formation of a new
crystalline phase. Apparently, the formation of this new phase is reflected in the appearance
of extra peaks in the powder diffractogram.

http://webbook.nist.gov/chemistry/fluid/
http://webbook.nist.gov/chemistry/fluid/
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Table 3. Crystal data and structure refinement details for 1–4.

Compound 1 2·2DMF 3·0.6DMF 4

Formula C42H54La2N4O16 C48H68La2N6O22
C35.80H40.20Cl2La2N4.60

O16.60
C54H82La2N4O16

Formula weight 1148.71 1358.90 1149.24 1321.06
Crystal system Triclinic Triclinic Monoclinic Triclinic

Space group P-1 P-1 P21/n P-1
a, Å 10.1266(10) 10.6159(4) 12.4139(5) 10.471(2)
b, Å 10.3128(10) 11.4493(4) 12.9185(5) 13.1311(17)
c, Å 12.3495(12) 12.4139(4) 14.7089(6) 13.8254(18)

α, deg 81.021(3) 90.5437(13) 90 112.436(12)
β, deg 75.024(3) 108.8847(13) 103.7170(11) 92.458(16)
γ, deg 68.767(3) 92.3540(13) 90 108.076(16)
V, A3 1158.5(2) 1426.01(9) 2291.57(16) 1642.0(5)

Z 1 1 2 1
dcalc, g/cm3 1.646 1.582 1.666 1.336

θ range, ◦ 2.48–28.74 2.03–35.63 2.46–30.00 2.98–26.60
Crystal size, mm 0.20 × 0.05 × 0.05 0.38 × 0.33 × 0.08 0.20 × 0.10 × 0.06 0.25 × 0.14 × 0.05

µ, mm−1 1.892 1.559 2.027 1.344
Reflnscollected/unique 18,483/5986 28,659/13,079 31,260/6682 34,062/20,437
Unique reflns [I > 2σ(I)] 5683 11,716 5298 10,195

Rint 0.0193 0.0242 0.0538 0.0755
S(F2) 1.057 1.056 1.062 1.048

R1, wR2 [I > 2σ(I)] 0.0198, 0.0464 0.0334, 0.0755 0.0489, 0.1144 0.0731, 0.1726
R1, wR2 (all data) 0.0220, 0.0471 0.0399, 0.0780 0.0696, 0.1213 0.1361, 0.1916

∆ρmax/∆ρmin, e/Å3 1.35/−0.61 1.84/−1.21 2.16/−1.49 1.72/−1.23

3.2. Synthesis
3.2.1. Synthesis of 1

[(La2(pQ)2(BDC)4)·4DMF]n (1). A mixture of LaCl3·7H2O (0.04 mmol), H2BDC
(0.16 mmol) and H2pQ (0.04 mmol) in a mole ratio of 1:4:1 in DMF (2 mL) was heated
sequentially at 80 ◦C for 24 h and 130 ◦C for 48 h in a sealed glass ampule. The obtained pur-
ple crystals were separated by the filtration, washed with DMF (2 × 2 mL) and dried on air.
Yield was 90% based on LaCl3·7H2O. Elemental analysis calculated for C42H54N4O16La2:
C, 43.92; H, 4.74; N, 4.88. Found: C, 43.45; H, 4.62; N 4.81%. IR (Nujol, KBr, cm–1): 1671 w,
1648 w, 1607 w, 1587 w, 1489 w, 1347 w, 1308 w, 1257 m, 1219 m, 1200 m, 1154 m, 1107 w,
1086 s, 1065 m, 1047 s, 1018 m, 972 s, 928 s, 903 m, 887 m, 866 s, 841 w, 810 m, 796 m, 760 w,
750 w, 673 w, 656 m, 511 w, 484 w. Electronic absorption spectrum (Nujol, λ (nm)): 336,
382, 508.

3.2.2. Synthesis of 2

[(La2(pQ)2(DHBDC)4)·4DMF]n (2). A mixture of LaCl3·7H2O (0.04 mmol), H2DHBDC
(0.12 mmol) and H2pQ (0.04 mmol) in a mole ratio of 1: 3: 1 in DMF (2 mL) was heated
sequentially at 80 ◦C for 24 h and 130 ◦C for 48 h in a sealed glass ampule. The obtained
purple crystals were separated by the filtration, washed with DMF (2 × 2 mL), and dried
on air. Yield was 81% based on LaCl3·7H2O. Visually, the compound lost its crystallinity
within 1 day. According to the data of X-ray structural analysis, compound 2 contains
2 DMF molecules per simplest unit. According to elemental analysis, after the loss of
crystallinity, the compound does not contain guest solvent. Elemental analysis calculated
for [C24H34LaN3O11]: C, 41.60; H, 4.49; N, 4.62. Found: C, 41.20; H, 4.32; N 4.57%. IR
(Nujol, KBr, cm–1): 3130 w, 1656 w, 1644 w, 1605 w, 1584 w, 1484 w, 1364 m, 1342 w, 1235 w,
1105 w, 1058 s, 1047 s, 1019 s, 970 s, 925 s, 896 s, 873 m, 862 w, 819 w, 813 w, 794 w, 784 w,
733 w, 673 w, 660 m, 617 s, 607 m, 549 w, 542 w, 509 w, 482 w. Electronic absorption spectrum
(Nujol, λ (nm)): 350, 390, 520–540.



Molecules 2021, 26, 2486 13 of 16

3.2.3. Synthesis of 3

[(La2(CA)2(BDC)4)·4DMF]n (3). A mixture of LaCl3·7H2O (0.04 mmol), H2BDC
(0.12 mmol) and H2CA (0.04 mmol) in a mole ratio of 1:3:1 in DMF (2 mL) was heated
sequentially at 80 ◦C for 24 h and 130 ◦C for 48 h in a sealed glass ampule. The obtained
purple crystals were separated by the filtration, washed with DMF (2 × 2 mL) and dried
on air. Yield was 81% based on LaCl3·7H2O. Visually, the compound lost its crystallinity
within 1 day. According to the data of X-ray structural analysis, compound 3 contains
0.6 DMF molecules per simplest unit. According to elemental analysis, after the loss of
crystallinity, the compound does not contain guest solvent. Elemental analysis calculated
for [C34H36Cl4N4O16La2]: C, 36.94; H, 3.28; N, 5.07. Found: C, 37.16; H, 3.22; N 5.39%. IR
(Nujol, KBr, cm–1): 1676 w, 1654 w, 1604 w, 1587 w, 1512 w, 1439 w, 1418 w, 1312 m, 1296 m,
1252 s, 1151 m, 1130 s, 1106 w, 1164 s, 1015 m, 993 s, 890 s, 862 s, 841 w, 826 m, 816 m, 785 s,
754 w, 675 w, 595 m, 576 w, 540 s, 510 w. Electronic absorption spectrum (Nujol, λ (nm)):
350, 520.

3.2.4. Synthesis of 4

[(La2(pQ)3·4DMF]n. A mixture of solid LaCl3·7H2O (0.1 mmol) and H2pQ (0.1 mmol)
was placed in a glass ampoule, and N,N′-dimethylformamide (5 mL) was added. Ampoule
was evacuated, sealed and heated at 130 ◦C for 1 day. The obtained burgundy crystals
were separated by the filtration, washed twice by 5 mL of N,N′-dimethylformamide and
dried on air. Yield was 90% based on H2pQ. C27H41LaN2O8. Calculated C, 49.10; H, 6.26;
N 4.24%. Found C, 49.51; H, 6.20; N 4.34%. IR (Nujol, KBr) cm−1: 1661 w, 1592 m, 1536 w,
1472 w, 1445 w, 1379 w, 1339 w, 1254 m, 1211 m, 1202 m, 1105 w, 1059 m, 1047 w, 1013 s,
964 m, 928 s, 900 w, 865 s, 793 m, 725 s, 673 w, 659 w, 621 m, 480 w. Electronic absorption
spectrum (Nujol, λ (nm)): 352, 540.

4. Conclusions

In summary, we reported the first examples of lanthanide heteroleptic anilate/
dicarboxylate three-dimensional metal–organic frameworks constructed from mixed dian-
ionic ligands. The synthesis was carried out under conditions of an excess of dicarboxylic
acid. This led to the assembly of two-dimensional layers formed by binuclear lanthanum
carboxylate lanterns, spliced into three-dimensional structures by anilate crosslinks. The
synthesized structures have low porosity and are thermally stable up to a temperature of
150 ◦C. We believe that the synthetic approach developed in this work will be particularly
useful and can be used for the purposeful construction of functional MOFs based on the
entire range of lanthanides.

Supplementary Materials: The following are available online, Figure S1: Pore size distribution
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