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Abstract: We propose a boron–rhodamine-containing carboxylic acid (BRhoC) substance as a new
sugar chemosensor. BRhoC was obtained by the Friedel–Crafts reaction of 4-formylbenzoic acid and
N,N-dimethylphenylboronic acid, followed by chloranil oxidation. In an aqueous buffer solution at
pH 7.4, BRhoC exhibited an absorption maximum (Absmax) at 621 nm. Its molar absorption coefficient
at Absmax was calculated to be 1.4 × 105 M−1 cm−1, and it exhibited an emission maximum (Emmax)
at 644 nm for the excitation at 621 nm. The quantum yield of BRhoC in CH3OH was calculated
to be 0.16. The borinate group of BRhoC reacted with a diol moiety of sugar to form a cyclic ester,
which induced a change in the absorbance and fluorescence spectra. An increase in the D-fructose (Fru)
concentration resulted in the red shift of the Absmax (621 nm without sugar and 637 nm with 100 mM Fru)
and Emmax (644 nm without sugar and 658 nm with 100 mM Fru) peaks. From the curve fitting of
the plots of the fluorescence intensity ratio at 644 nm and 658 nm, the binding constants (K) were
determined to be 2.3 × 102 M−1 and 3.1 M−1 for Fru and D-glucose, respectively. The sugar-binding
ability and presence of a carboxyl group render BRhoC a suitable building block for the fabrication of
highly advanced chemosensors.
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1. Introduction

Boronic acid and borinic acid are organic derivatives of boric acid (B(OH)3), which
contain three hydroxyl groups. The substitution of one of the three hydroxyl groups of
B(OH)3 with an alkyl or aryl group yields a boronic acid, represented as RB(OH)2, and
the substitution of two hydroxyl groups of B(OH)3 yields a borinic acid, represented
as RR’BOH.

Many researchers have used boronic acids as a sugar-recognition moiety in chemosen-
sors [1–3]. Indeed, boronic acids react with the diol moieties of sugars to form cyclic
esters. This cyclic esterification reaction causes a change in the optical properties of the
chemosensors. Many boronic acid-based sugar chemosensors have been developed using
sophisticated designs [4,5], with two of them being approved for clinical use [6,7].

An interesting property of boronic acid-based sugar chemosensors is their ability to
bind to sugar in aqueous solutions. Although sugar receptors without boronic acid have
been developed, many of them function in organic solvents because their binding ability
is weakened in polar solvents [8–10]. Furthermore, sugar receptors need to combine with
effective signaling functions for sugar. In contrast, the boronic acid of chemosensors can
function not only as a sugar receptor but also as a trigger for signaling mechanisms. The
change in the structure of the boronic acid component through sugar binding induces
optical and electrochemical changes, which are suitable for signaling in chemosensing ap-
plications [11,12]. Thus, boronic acid is the most widely used motif as a sugar chemosensor
because it functions well in aqueous solutions and generates signals.
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Although less common than boronic acid-based chemosensors, borinic acid-based
chemosensors have also been developed [13–15]. The fact that there are fewer borinic acid-
based chemosensors than boronic acid-based chemosensors can be attributed to the limited
availability of borinic acids as reagents. Moreover, designing chemosensors comprising a
borinic acid moiety that provide an optical response in the presence of target analytes is a
difficult task.

Despite the design challenges, our team synthesized a sugar chemosensor containing
borinic acid and named it JoSai-Red (JS-R) after Josai University, Saitama University, and
the fluorescent color of the chemosensor (Scheme 1) [13]. The structure of JS-R is similar
to that of pyronin Y, which is a xanthene fluorescent dye. Because the borinic acid group
of JS-R is characterized by Lewis acidity, the boron center accepts a hydroxide anion to
form an anionic borinate (see Scheme 1). Given its low pKa value (4.0), JS-R is found in
borinate form in neutral solutions. Notably, the borinate form of JS-R interacts with sugars,
causing changes in the absorbance and fluorescence spectra of the chemosensor. Indeed,
these optical changes result from the presence of the borinate moiety, which directly affects
the characteristics of the fluorophore. Although a few reports have been published on the
interaction between borinate compounds and sugars, no reports exist of the successful
conversion of the interaction of the borinate group with sugars into a fluorescence change,
apart from the studies focusing on dyes characterized by the JS-R skeleton. A borinate
H2O2 chemosensor named Rachael Fluor620, which contains the JS-R skeleton and was
independently synthesized by the Stains group, also exhibits sugar responsiveness [14].
Indeed, JS-R is expected to represent a novel type of sugar chemosensor; however, a few
problems are associated with its synthesis. Although JS-R is synthesized in a single step
using a Friedel–Crafts reaction, the yield of the target compound was 0.86% [13], which
needs to be improved. Furthermore, JS-R lacks the modifiable functional groups required
to develop more sophisticated chemosensors.
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One of the representative fluorescent dyes with a xanthene skeleton is rhodamine,
which has a benzene ring at the ninth position of the xanthene skeleton. The substituted
benzene ring enables various chemical modifications, and many kinds of chemosensors
based on the rhodamine skeleton have been developed [16–19]. Furthermore, recent reports
have demonstrated interesting features of fluorescent dyes in which the oxygen atom of rho-
damine is replaced with heteroatoms [20–24], such as silicon [25–30], phosphorus [31–34],
sulfur [35,36], and boron [14,15]. Only two cases of boron-substituted rhodamine have
been reported and there is still much room for further investigation.

In this study, we report the development of a new sugar chemosensor containing a
borinate moiety in a rhodamine-like structure. Using 4-formylbenzoic acid as the starting
material, a new JS-R derivative, boron–rhodamine-containing carboxylic acid (BRhoC in
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Scheme 1), was obtained as the third example of boron–rhodamine compounds [14,15].
Furthermore, BRhoC has the advantage that the carboxyl group on the rhodamine skeleton
can be chemically modified. Herein, we also present evidence of the potential of BRhoC as
a sugar chemosensor.

2. Materials and Methods
2.1. Materials

4-formylbenzoic acid, 3-(N,N-dimethylamino)phenylboronic acid, acetic acid (glacial), boron
trifluoride-diethyl ether complex (BF3·Et2O), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES) were obtained from Sigma-Aldrich Japan (Tokyo, Japan); D-fructose (Fru) and D-
glucose (Glc) were obtained from FUJIFILM Wako Pure Chemical Corp. (Osaka, Japan); chloranil
was obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan); and cresyl violet
(fluorescence reference standard) was obtained from Cosmo Bio Co., Ltd. (Tokyo, Japan).
All chemicals were used without further purification.

2.2. Apparatus

Reactions were monitored with thin-layer chromatography (TLC) silica gel 60 F254
(Merck KGaA, Darmstadt, Germany). Medium-pressure liquid chromatography was
performed with a Smart Flash AI-580S instrument (Yamazen Corp., Osaka, Japan) using a
silica gel cartridge column. NMR spectra were recorded using an AVANCE Neo 400 NMR
spectrometer (Bruker Japan K.K., Kanagawa, Japan). Tetramethylsilane was used as the
internal standard in the 1H and 13C NMR spectrometry experiments. BF3·Et2O in toluene-
d8 was used as the external standard in the 11B NMR spectroscopy experiments. Mass
spectrometry (MS) data were collected using a JMS-700(2) MStation (JEOL Ltd., Tokyo,
Japan); elemental analyses were conducted using an MT-6 CHN analyzer (Yanaco Technical
Science Corp., Tokyo, Japan); ultraviolet–visible (UV–Vis) absorption spectra were recorded
using a V-560 spectrometer (JASCO Corp., Tokyo, Japan); and fluorescence spectra were
recorded using an RF-5300PC instrument (Shimadzu Corp., Kyoto, Japan).

2.3. Synthesis of BRhoC

3-(N,N-dimethylamino)phenylboronic acid (1.00 g, 6.06 mmol) and 4-formylbenzoic
acid (364 mg, 2.42 mmol) were dissolved in 5.0 mL of acetic acid (glacial) in a reaction flask
that was subsequently fitted with a calcium chloride drying tube; the mixture inside it
was then stirred at 85 ◦C for 2 h. The reaction solution was then allowed to cool to room
temperature. Chloranil (1.79 g, 7.28 mmol) and acetic acid (10 mL) were added to the
reaction solution, which was stirred at room temperature for 0.5 h. Acetic acid was then
removed by evaporation and the obtained residue was dried in vacuo. The dried residue
was dissolved in 12 mL of dichloromethane and the resulting solution was filtered using a
paper filter. The filtrate was subjected to medium-pressure liquid chromatography using a
silica gel cartridge column. The composition of the mobile phase was modified stepwise:
CH2Cl2/CH3OH, 100/0 (10 min); 95/5 (10 min); 50/50 (10 min); and 0/100 (30 min). The
target fractions were pooled and the solvent was removed by evaporation. Distilled water
(400 mL) was then added to the residue. The pH of the aqueous solution thus obtained
was adjusted to 7 by adding a small amount of 1 M NaOH (aq.); the solution was then
filtered using filter paper. The pH of the filtrate was adjusted to 2 by adding 1 M HCl
(aq.), prompting the formation of a precipitate, which was collected with a membrane filter,
yielding a black-blue solid (142 mg and 9.4% yield, which was calculated considering the
purity of the borinic acid form of BRhoC (90.1%)). 1H NMR (400 MHz, CD3OD, Figure S1):
δ 8.18 (d, 2H), 7.39 (d, 2H), 7.31(d, 2H), 6.98 (d, 2H), 6.61 (dd, 2H), 3.29(s, 12H). 13C NMR
(100 MHz, CD3OD, Figure S2): δ 169.52, 169.25, 156.41, 145.15, 141.05, 132.00, 130.76,
130.35, 129.95, 118.74, 113.11, 40.61. 11B NMR (128 MHz, CD3OD, Figure S3): δ 1.84. MS
(FAB, positive mode, matrix: glycerol, solvent: CH3OH), Figure S4: 473. The expected
m/z value of [BRhoC (borinate form) + glycerol − 2H2O + H]+ is 473. Elemental analysis
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calculated for C24H24BClN2O3 [BRhoC (borinic acid form)·Cl−] C 66.31%, H 5.56%, and
N 6.44%; found C 63.29%, H 6.14%, and N 5.80%. Melting point: >300 ◦C.

2.4. Spectral Measurement of the pH and Sugar Response of BRhoC

For the pH-titration experiment, BRhoC was dissolved in water containing 10 mM
HEPES. The pH value was adjusted by adding a small amount of 1 M HCl or 1 M NaOH
aqueous solution to the BRhoC solution, and the UV–Vis absorption and fluorescence
spectra of BRhoC were recorded at different pH values. The added volume of HCl or NaOH
solution was so small that the effect of BRhoC dilution in the spectra was negligible. For
the sugar-response experiment, BRhoC was dissolved in a buffer solution (10 mM HEPES,
pH 7.4) and the UV–Vis absorption and fluorescence spectra of the solution were recorded
with varying sugar concentrations. To obtain the pKa values and binding constants, a
curve-fitting analysis was performed using the KaleidaGraph software (Version 4.01) with
Equations (1) and (2) [37,38].

3. Results and Discussion
3.1. Synthesis of BRhoC

In the previously described synthesis of JS-R [13], 3-(N,N-dimethylamino)phenylboronic
acid and the corresponding aldehyde (4-formylbenzoic acid) were used as starting materi-
als; however, the main product of the reaction was the reduced BRhoC and not the BRhoC
(Scheme 2). The formation of the reduced BRhoC was inferred from the MS spectrum
shown in Figure S5 and the results of the TLC test (Figure 1). On the TLC plate, the reduced
BRhoC was observed as a light-blue spot under the irradiation of UV light at a 365 nm
wavelength; however, the said spot turned red after being exposed to an ordinary fluores-
cent lamp for 5 min. This change is because of the extension of the conjugated system upon
oxidation, which was also observed in a previously published study on a Si-substituted
pyronin derivative [29].
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Figure 1. TLC images. Photos taken under irradiation with ultraviolet light at a 365 nm wave-
length of a TLC plate obtained after conducting a TLC experiment of the reaction between 3-(N,N-
dimethylamino)phenylboronic acid and 4-formylbenzoic acid (developing solvent: CH3OH). The
photo in (a) is of the TLC plate immediately after development (the red circle indicates the spots due
to reduced BRhoC), and the photo in (b) is of the same plate after 5 min exposure to the light of an
ordinary fluorescent lamp.
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We succeeded in synthesizing BRhoC in a one-pot reaction via the post-addition of
chloranil as an oxidizer, and we developed a purification method for the borinic acid form
of BRhoC. After a silica gel chromatographic procedure, the obtained solid was dispersed
in distilled water and the pH of the resulting solution was adjusted to 7 by adding 1 M
NaOH (aq.). BRhoC is soluble in a neutral aqueous solution due to the negative charges
of the carboxylate and borinate groups of BRhoC. The pH of the aqueous solution was
then adjusted to 2 by adding 1 M HCl (aq.), a process that prompted the precipitation of
BRhoC in the borinic acid form as chloride. The structure of BRhoC was confirmed by
NMR spectroscopy (Figures S1–S3) and fast-atom bombardment (FAB)–MS (Figure S4)
data. In the elemental analysis, the found values were C 63.29%, H 6.14%, and N 5.80%
(calculated for C24H24BClN2O3 [BRhoC (borinic acid form)·Cl−] C 66.31%, H 5.56%, and
N 6.44%). The purity was calculated from the nitrogen values, assuming that no nitrogen
was present in the impurities (5.80/6.44 = 90.1%). Considering the purity of the borinic
acid form of BRhoC (90.1%), the synthetic yield was calculated to be 9.4%, which is 10 times
larger than the synthetic yield reported for JS-R (0.86%) [13]. The found values (C 63.29%,
H 6.14%, and N 5.80%) agreed within an upper threshold of 0.4% with the calculated
values for a hydrate form [BRhoC (borinic acid form)·Cl− + H2O] (C24H26N2BClN2O4;
C, 63.67%; H, 5.79%; and N, 6.19%). According to our previous study, the precipitation of
JS-R requires the addition of a large amount of NaCl to an acidic solution of JS-R [13]. In con-
trast, BRhoC precipitates simply as a result of the acidification of its aqueous solution. This
evidence suggests that the benzoic acid moiety of BRhoC contributes to the precipitation of
this compound.

3.2. Optical Properties of BRhoC

The optical properties of BRhoC were investigated by conducting absorbance and
fluorescence spectroscopy experiments. In a buffer solution at pH 7.4, BRhoC exhibits an
absorption maximum (Absmax) at 621 nm and the molar absorption coefficient at Absmax
was calculated to be 1.4 × 105 M−1 cm−1 (Figure 2). BRhoC exhibits an emission maximum
(Emmax) at 644 nm when excited at 621 nm (Figure 2). These wavelengths are about 10
nm longer than those observed for JS-R (Absmax = 611 nm; Emmax = 631 nm) and much
higher than those of pyronin Y (Absmax = 552 nm; Emmax = 569 nm, in CH2Cl2) [25]. By
using cresyl violet as a reference compound, the quantum yield of BRhoC in CH3OH
was calculated to be 0.16 [37,39]. The emission at a long wavelength and the satisfactory
quantum yield demonstrate that BRhoC has application value as a fluorescent dye.
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3.3. pH Response of BRhoC

The pH response of BRhoC was investigated by adding small amounts of HCl and
NaOH to the solution of BRhoC (10 mM HEPES; Figures 3 and S6). The absorption spectra
changed with the pH in an acidic region (Figure 3a), whereas they remained almost un-
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changed in an alkaline region (Figure S6a). The lack of isosbestic points in the acidic region
suggests the presence of more than two chemical species [40,41]. This observation probably
stems from the fact that changes in both the borinic acid and carboxylic acid moieties affect
the absorbance spectrum. By contrast, the fluorescence spectrum exhibited an intensity
increase as the pH increased (Figures 3b and 4). This outcome implies that only the borinic
acid group, not the carboxylic acid group, affects the fluorescence intensity because the
borinic acid is incorporated into the fluorescent xanthene skeleton. To determine the pKa of
the borinic acid group of BRhoC, a curve-fitting analysis was conducted on the plot of the
fluorescence intensity at 644 nm versus the pH (Figure 4) based on Equation (1) [37]:

F = F0 + (Flim − F0)/(1 + [H+]/Ka) (1)

where F is the fluorescence intensity measured at a particular pH value, F0 is the fluo-
rescence intensity measured for the borinic acid form of BRhoC, Flim is the fluorescence
intensity measured for the borinate form of BRhoC, [H+] is the proton concentration, and Ka
is the acid dissociation constant of the borinic acid moiety of BRhoC. The pKa of BRhoC can
thus be estimated to have a value of 4.4, which is similar to the value previously reported
for the pKa value of BRhoC of JS-R (pKa = 4.0) [13].
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3.4. Response of BRhoC to Sugar

Herein, the potential of BRhoC as a sugar chemosensor is evaluated. Figure 5 shows
data that reflect the effects of Fru on the absorption and fluorescence spectra of BRhoC
in a buffer solution at pH 7.4. An increase in the Fru concentration resulted in a red shift
of the Absmax (621 nm without Fru, 637 nm at 100 mM Fru) and Emmax (644 nm without
Fru, 658 nm at 100 mM Fru) peaks. Similar results were obtained with Glc, although the
responsiveness of BRhoC to Glc was weaker than that to Fru (Figure 6).
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Figure 6. Effect of different concentrations of Glc (0, 10, 20, 50, 100, 200, 500, and 1000 mM) on the
(a) absorption spectra, and (b) fluorescence spectra (excited at 621 nm) of BRhoC (8.5 µM) in a 10 mM
HEPES buffer at pH 7.4.

The sugar-induced red shift of the absorption peak indicates a decrease in the HOMO–
LUMO gap, which was previously confirmed by quantum calculations using the JS-R
structure [13]. Generally, the fluorescence intensity is proportional to the absorbance. This
indicates that changes in the absorbance affect the fluorescence intensity. The addition of
Fru reduces the absorbance at 621 nm, which is employed as the excitation wavelength.
Thus, the intensity of the emitted fluorescence at an excitation wavelength of 621 nm
decreased (Figure 5b). The color change upon Fru addition was observed with the naked
eye (Figure 7a). When irradiated with a 532 nm laser, the solution of BRhoC emitted red
fluorescence (Figure 7b) and the fluorescence intensity was reduced in the presence of
Fru (Figure 7c).
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The binding constant (K) of the BRhoC–sugar complexes can be calculated using a
curve-fitting analysis based on Equation (2) for the sugar-response curve (Figure 8) [16]:

FR = (FR0 + FRlim K [sugar])/(1 + K [sugar]) (2)

where FR is the fluorescence intensity ratio at 644 nm and 658 nm (I644/I658) for a particular
concentration of sugar, FR0 is the initial fluorescence ratio, FRlim is the limiting (final)
fluorescence ratio, and [sugar] is the concentration of sugar. The binding constants (K)
were determined to be 2.3 × 102 M−1 and 3.1 M−1 for Fru and Glc, respectively. The
dissociation constants (Kd), which are the reciprocal of K, were calculated to be 4.3 mM and
0.32 M for Fru and Glc, respectively. The sugar-binding ability and selectivity of BRhoC are
comparable to those exhibited by JS-R (K = 1.2 × 102 M−1 for Fru, K = 3.3 M−1 for Glc) [13],
indicating that BRhoC has the potential to be used as a sugar chemosensor.
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4. Conclusions

We have succeeded in synthesizing a new JS-R derivative, BRhoC, and demonstrated
that it works as an absorbance- and fluorescence-based sugar chemosensor. Unlike JS-R,
chloranil is required for the synthesis of BRhoC. The improved synthetic yield of BRhoC
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compared to that of JS-R increases the likelihood of its further usage. Additionally, BRhoC
has the advantage that the carboxylic acid moiety on the rhodamine-like structure can be
used to chemically modify the compound. In the future, BRhoC will be used as a building
block to create more advanced chemosensors for a wide range of applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23031528/s1, Figure S1: 1H NMR spectrum of BRhoC; Figure S2:
13C NMR spectrum of BRhoC; Figure S3: 11B NMR spectrum of BRhoC; Figure S4: Mass spectrum of
BRhoC; Figure S5: Mass spectrum of reduced BRhoC; Figure S6: The effect of pH on the absorption
(a) and fluorescence (b) spectra of BRhoC (pH 8–13).
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