Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = chiral phosphoric acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2002 KiB  
Article
Synthesis and Application of a New Cyclic Phosphoric Acid in Enantioselective Three-Component Mannich Reactions
by Giovanni Ghigo, Alessio Robiolio Bose and Stefano Dughera
Molecules 2025, 30(14), 2928; https://doi.org/10.3390/molecules30142928 - 10 Jul 2025
Viewed by 290
Abstract
A novel point-chiral six-membered cyclic phosphoric acid was synthesized starting from an enantiopure precursor via a concise three-step route. Its catalytic performance was evaluated in enantioselective three-component Mannich reactions. Under optimized conditions, the catalyst provided good yields and satisfactory enantiomeric excesses (up to [...] Read more.
A novel point-chiral six-membered cyclic phosphoric acid was synthesized starting from an enantiopure precursor via a concise three-step route. Its catalytic performance was evaluated in enantioselective three-component Mannich reactions. Under optimized conditions, the catalyst provided good yields and satisfactory enantiomeric excesses (up to 89%). The basic mechanism of the catalysis was also studied by the DFT method. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Organic Chemistry)
Show Figures

Graphical abstract

41 pages, 13502 KiB  
Review
Recent Advances in the Enantioselective Organocatalytic [4+2] Cycloadditions
by Tomasz Bauer
Molecules 2025, 30(9), 1978; https://doi.org/10.3390/molecules30091978 - 29 Apr 2025
Viewed by 840
Abstract
This review covers the recent advances in asymmetric organocatalytic Diels–Alder reactions published since the beginning of 2015. It describes recent approaches to enantioselective [4+2] cycloadditions based on the application of various types of chiral organocatalysts. Full article
(This article belongs to the Special Issue Organocatalysis: Past, Present, and Future Perspectives)
Show Figures

Figure 1

21 pages, 16026 KiB  
Review
Recent Advances in Catalytic Atroposelective Synthesis of Axially Chiral Quinazolinones
by Yilin Liu, Jiaoxue Wang, Yanli Yin and Zhiyong Jiang
Catalysts 2025, 15(5), 426; https://doi.org/10.3390/catal15050426 - 27 Apr 2025
Viewed by 1060
Abstract
Quinazolinones, a class of nitrogen-containing heterocyclic compounds, occupy a crucial position in medicinal chemistry and materials science due to their significant application potential. In recent years, the catalytic asymmetric synthesis of axially chiral quinazolinones has emerged as a prominent research area, driven by [...] Read more.
Quinazolinones, a class of nitrogen-containing heterocyclic compounds, occupy a crucial position in medicinal chemistry and materials science due to their significant application potential. In recent years, the catalytic asymmetric synthesis of axially chiral quinazolinones has emerged as a prominent research area, driven by their prospective applications in the development of bioactive molecules, design of chiral ligands, and fabrication of functional materials. This review comprehensively summarizes recent advancements in the catalytic asymmetric synthesis of axially chiral quinazolinones, with a particular focus on the construction strategies for the three major structural types: the C–N axis, N–N axis, and C–C axis. Key synthetic methodologies, including atroposelective halogenation, kinetic resolution, condensation–oxidation, and photoredox deracemization, are discussed in detail. In addition, the review provides an in-depth analysis of the applications of various catalytic systems, such as peptide catalysis, enzymatic catalysis, metal catalysis, chiral phosphoric acid catalysis, and others. Despite the substantial progress made thus far, several challenges remain, including the expansion of the substrate scope, enhanced control over stereoselectivity, and further exploration of practical applications, such as drug discovery and asymmetric catalysis. These insights are expected to guide future research towards the development of novel synthetic strategies, the diversification of structural variants, and a comprehensive understanding of their biological activities and catalytic functions. Ultimately, this will foster the continued growth and evolution of this rapidly advancing field. Full article
(This article belongs to the Special Issue Recent Catalysts for Organic Synthesis)
Show Figures

Figure 1

14 pages, 2079 KiB  
Article
Diastereoselective Synthesis of 2-Amino-spiro[4.5]decane-6-ones Through Synergistic Photocatalysis and Organocatalysis for [3 + 2] Cycloaddition of Cyclopropylamines with Olefins
by Tianxiao Hu and Xufeng Lin
Catalysts 2025, 15(2), 107; https://doi.org/10.3390/catal15020107 - 22 Jan 2025
Viewed by 1535
Abstract
This research employs 2-methylene-tetrahydronaphtalene-1-ones and N-cyclopropylanilines as starting materials, integrating photocatalysis and organic phosphoric acid catalysis to synthesize 2-amino-spiro[4.5]decane-6-ones via a [3 + 2] cycloaddition approach. This method boasts the advantage of mild reaction conditions that are photocatalyst-free and metal catalyst-free. It achieves [...] Read more.
This research employs 2-methylene-tetrahydronaphtalene-1-ones and N-cyclopropylanilines as starting materials, integrating photocatalysis and organic phosphoric acid catalysis to synthesize 2-amino-spiro[4.5]decane-6-ones via a [3 + 2] cycloaddition approach. This method boasts the advantage of mild reaction conditions that are photocatalyst-free and metal catalyst-free. It achieves 100% atom conversion of the substrates, aligning with the principles of green chemistry. Additionally, it attains a high diastereoselectivity result of up to 99:1, demonstrating good stereoselectivity. In the derivatives of 2-methylene-tetrahydronaphtalene-1-ones, substrates with alkane rings of different sizes or thiophene replacing the phenyl ring are also amenable to this method, enabling the synthesis of different [4.4], [4.5], and [4.6] spirocyclic compounds. In the derivatives of N-cyclopropylanilines, substrates with para-fluoro and meta-fluoro substitutions are also amenable to this method. Finally, a preliminary mechanistic investigation was conducted, proposing a plausible reaction mechanism pathway initiating from the intermediate N-cyclopropylanilines with chiral phosphoric acid. Full article
(This article belongs to the Special Issue Sustainable Catalysis for Green Chemistry and Energy Transition)
Show Figures

Figure 1

25 pages, 12011 KiB  
Review
Applications of Hantzsch Esters in Organocatalytic Enantioselective Synthesis
by Ana Maria Faisca Phillips and Armando J. L. Pombeiro
Catalysts 2023, 13(2), 419; https://doi.org/10.3390/catal13020419 - 16 Feb 2023
Cited by 20 | Viewed by 9502
Abstract
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents [...] Read more.
Hantzsch esters (1,4-dihydropyridine dicarboxylates) have become, in this century, very versatile reagents for enantioselective organic transformations. They can act as hydride transfer agents to reduce, regioselectively, a variety of multiple bonds, e.g., C=C and C=N, under mild reaction conditions. They are excellent reagents for the dearomatization of heteroaromatic substances, and participate readily in cascade processes. In the last few years, they have also become useful reagents for photoredox reactions. They can participate as sacrificial electron and hydrogen donors and when 4-alkyl or 4-acyl-substituted, they can act as alkyl or acyl radical transfer agents. These last reactions may take place in the presence or absence of a photocatalyst. This review surveys the literature published in this area in the last five years. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 3392 KiB  
Article
Role of Chiral Skeleton in Chiral Phosphoric Acids Catalyzed Asymmetric Transfer Hydrogenation: A DFT Study
by Xu Li, Shanshan Dong, Ting Fan, Qingji Wang and Tongfei Shi
Catalysts 2023, 13(1), 98; https://doi.org/10.3390/catal13010098 - 3 Jan 2023
Cited by 3 | Viewed by 2339
Abstract
Chiral phosphoric acids (CPAs) have received considerable attention due to their high activity for enantioselective transformations. However, the role of various chiral skeletons of CPAs in regulating the mechanism and enantioselectivity of asymmetric transfer hydrogenation has remained unclear. Density functional theory (DFT) calculations [...] Read more.
Chiral phosphoric acids (CPAs) have received considerable attention due to their high activity for enantioselective transformations. However, the role of various chiral skeletons of CPAs in regulating the mechanism and enantioselectivity of asymmetric transfer hydrogenation has remained unclear. Density functional theory (DFT) calculations are performed to elucidate the role of chiral skeletons on the acidity, mechanism, enantioselectivity, and kinetic stabilities of transition states (TSs) in Asymmetric Transfer Hydrogen (ATH) reaction catalyzed by five CPAs. We found that the acidity of CPAs is strongly dependent on the chiral skeleton. The origin of enantioselectivity of ATH reaction arises from the differential noncovalent interactions between TSs and CPAs. Moreover, the shape and size of the catalyst pocket depending on chiral skeletons play key roles in the stability of TSs and the enantioselectivity of ATH. This study might facilitate to design and computationally screening of CPAs and guide the strategic choice of CPA skeletons to reduce the experimental workload. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

13 pages, 3258 KiB  
Article
A Mechanistic Study of Asymmetric Transfer Hydrogenation of Imines on a Chiral Phosphoric Acid Derived Indium Metal-Organic Framework
by Xu Li, Ting Fan, Qingji Wang and Tongfei Shi
Molecules 2022, 27(23), 8244; https://doi.org/10.3390/molecules27238244 - 26 Nov 2022
Cited by 5 | Viewed by 2156
Abstract
A density functional theory (DFT) study is reported to examine the asymmetric transfer hydrogenation (ATH) of imines catalyzed by an indium metal-organic framework (In-MOF) derived from a chiral phosphoric acid (CPA). It is revealed that the imine and reducing agent (i.e., thiazoline) are [...] Read more.
A density functional theory (DFT) study is reported to examine the asymmetric transfer hydrogenation (ATH) of imines catalyzed by an indium metal-organic framework (In-MOF) derived from a chiral phosphoric acid (CPA). It is revealed that the imine and reducing agent (i.e., thiazoline) are simultaneously adsorbed on the CPA through H-bonding to form an intermediate, subsequently, a proton is transferred from thiazoline to imine. The transition state TS-R and TS-S are stabilized on the CPA via H-bonding. Compared to the TS-S, the TS-R has shorter H-bonding distances and longer C-H···π distances, it is more stable and experiences less steric hindrance. Consequently, the TS-R exhibits a lower activation barrier affording to the (R)-enantiomer within 68.1% ee in toluene. Imines with substituted groups such as −NO2, −F, and −OCH3 are used to investigate the substitution effects on the ATH. In the presence of an electron-withdrawing group like −NO2, the electrophilicity of imine is enhanced and the activation barrier is decreased. The non-covalent interactions and activation-strain model (ASM) analysis reveal that the structural distortions and the differential noncovalent interactions of TSs in a rigid In-MOF provide the inherent driving force for enantioselectivity. For −OCH3 substituted imine, the TS-S has the strongest steric hindrance, leading to the highest enantioselectivity. When the solvent is changed from toluene to dichloromethane, acetonitrile, and dimethylsulfoxide with increasing polarity, the activation energies of transition state increase whereas their difference decreases. This implies the reaction is slowed down and the enantioselectivity becomes lower in a solvent of smaller polarity. Among the four solvents, toluene turns out to be the best for the ATH. The calculated results in this study are in fairly good agreement with experimental observations. This study provides a mechanistic understanding of the reaction mechanism, as well as substitution and solvent effects on the activity and enantioselectivity of the ATH. The microscopic insights are useful for the development of new chiral MOFs toward important asymmetric reactions. Full article
(This article belongs to the Special Issue Application of Computer Simulation in Materials Science of Molecules)
Show Figures

Graphical abstract

57 pages, 24187 KiB  
Review
Construction of Non-Biaryl Atropisomeric Amide Scaffolds Bearing a C–N Axis via Enantioselective Catalysis
by Xiao Xiao, Biao Chen, Yi-Ping Yao, Hai-Jie Zhou, Xu Wang, Neng-Zhong Wang and Fen-Er Chen
Molecules 2022, 27(19), 6583; https://doi.org/10.3390/molecules27196583 - 4 Oct 2022
Cited by 24 | Viewed by 4343
Abstract
The significant scaffold offered by atropisomeric amides with a C–N chiral axis has been extensively utilized for pharmaceuticals, agricultural science, and organic syntheses. As a result, the field of atropisomer synthesis has attracted considerable interest within chemistry communities. To date, a range of [...] Read more.
The significant scaffold offered by atropisomeric amides with a C–N chiral axis has been extensively utilized for pharmaceuticals, agricultural science, and organic syntheses. As a result, the field of atropisomer synthesis has attracted considerable interest within chemistry communities. To date, a range of catalytic atroposelective approaches has been reported for the efficient construction of these challenging scaffolds. However, greatly concise and highly useful methodologies for the synthesis of these atropisomeric compounds, focusing on transition-metal, chiral amine, and phosphoric acid catalysis reactions, etc., are still desirable. Hence, it is indispensable to succinctly and systematically present all such reports by means of disclosing the mechanistic analysis and application, as well as the challenges and issues associated with the establishment of these atropisomers. In this review, we summarize the development of catalytic asymmetric synthetic strategies to access non-biaryl atropisomers rotating around a C–N chiral axis, including the reaction methods, mechanism, late-stage transformations, and applications. Full article
(This article belongs to the Special Issue Atroposelective Synthesis of Novel Axially Chiral Molecules)
Show Figures

Figure 1

14 pages, 3727 KiB  
Article
Supramolecular Self-Assembly of Atomically Precise Silver Nanoclusters with Chiral Peptide for Temperature Sensing and Detection of Arginine
by Wenjuan Wang, Zhi Wang, Di Sun, Shulin Li, Quanhua Deng and Xia Xin
Nanomaterials 2022, 12(3), 424; https://doi.org/10.3390/nano12030424 - 27 Jan 2022
Cited by 31 | Viewed by 4741
Abstract
Metal nanoclusters (NCs) as a new type of fluorescent material have attracted great interest due to their good biocompatibilities and outstanding optical properties. However, most of the studies on metal NCs focus on the synthesis, atomic or molecular assembly, whereas metal NCs ability [...] Read more.
Metal nanoclusters (NCs) as a new type of fluorescent material have attracted great interest due to their good biocompatibilities and outstanding optical properties. However, most of the studies on metal NCs focus on the synthesis, atomic or molecular assembly, whereas metal NCs ability to self-assemble to higher-level hierarchical nanomaterials through supramolecular interactions has rarely been reported. Herein, we investigate atomic precise silver NCs (Ag9-NCs, [Ag9(mba)9], where H2mba = 2-mercaptobenzoic acid) and peptide DD-5 were used to induce self-assembly, which can trigger an aggregation-induced luminescence (AIE) effect of Ag9-NCs through non-covalent forces (H-bond, π–π stacking) and argentophilic interactions [Ag(I)–Ag(I)]. The large Stokes shift (~140 nm) and the microsecond fluorescence lifetime (6.1 μs) indicate that Ag9-NCs/DD-5 hydrogel is phosphor. At the same time, the chirality of the peptide was successfully transferred to the achiral Ag9-NCs because of the supramolecular self-assembly, and the Ag9-NCs/DD-5 hydrogel also has good circularly polarized luminescence (CPL) properties. In addition, Ag9-NCs/DD-5 luminescent hydrogel is selective and sensitive to the detection of small biological molecule arginine. This work shows that DD-5 successfully induces the self-assembly of Ag9-NCs to obtain high luminescent gel, which maybe become a candidate material in the fields of sensors and biological sciences. Full article
Show Figures

Figure 1

13 pages, 3878 KiB  
Perspective
Horizons in Asymmetric Organocatalysis: En Route to the Sustainability and New Applications
by Sandra Ardevines, Eugenia Marqués-López and Raquel P. Herrera
Catalysts 2022, 12(1), 101; https://doi.org/10.3390/catal12010101 - 16 Jan 2022
Cited by 16 | Viewed by 5069
Abstract
Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and [...] Read more.
Nowadays, the development of new enantioselective processes is highly relevant in chemistry due to the relevance of chiral compounds in biomedicine (mainly drugs) and in other fields, such as agrochemistry, animal feed, and flavorings. Among them, organocatalytic methods have become an efficient and sustainable alternative since List and MacMillan pioneering contributions were published in 2000. These works established the term asymmetric organocatalysis to label this area of research, which has grown exponentially over the last two decades. Since then, the scientific community has attended to the discovery of a plethora of organic reactions and transformations carried out with excellent results in terms of both reactivity and enantioselectivity. Looking back to earlier times, we can find in the literature a few examples where small organic molecules and some natural products could act as effective catalysts. However, with the birth of this type of catalysis, new chemical architectures based on amines, thioureas, squaramides, cinchona alkaloids, quaternary ammonium salts, carbenes, guanidines and phosphoric acids, among many others, have been developed. These organocatalysts have provided a broad range of activation modes that allow privileged interactions between catalysts and substrates for the preparation of compounds with high added value in an enantioselective way. Here, we briefly cover the history of this chemistry, from our point of view, including our beginnings, how the field has evolved during these years of research, and the road ahead. Full article
(This article belongs to the Special Issue Organocatalysis: Advances, Opportunity, and Challenges)
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides
by Si-Jia Liu, Man-Su Tu, Kai-Yue Liu, Jia-Yi Chen, Shao-Fei Ni, Yu-Chen Zhang and Feng Shi
Molecules 2021, 26(21), 6751; https://doi.org/10.3390/molecules26216751 - 8 Nov 2021
Cited by 7 | Viewed by 3377
Abstract
Catalytic asymmetric [2 + 4] cycloadditions of 3-vinylindoles with ortho-quinone methides and their precursors were carried out in the presence of chiral phosphoric acid to afford a series of indole-containing chroman derivatives with structural diversity in overall high yields (up to 98%), [...] Read more.
Catalytic asymmetric [2 + 4] cycloadditions of 3-vinylindoles with ortho-quinone methides and their precursors were carried out in the presence of chiral phosphoric acid to afford a series of indole-containing chroman derivatives with structural diversity in overall high yields (up to 98%), good diastereoselectivities (up to 93:7 dr) and moderate to excellent enantioselectivities (up to 98% ee). This approach not only enriches the chemistry of catalytic asymmetric cycloadditions involving 3-vinylindoles but is also useful for synthesizing chiral chroman derivatives. Full article
Show Figures

Figure 1

14 pages, 1620 KiB  
Article
Synergistic Palladium-Phosphoric Acid Catalysis in (3 + 2) Cycloaddition Reactions between Vinylcyclopropanes and Imines
by Vasco Corti, Enrico Marcantonio, Martina Mamone, Alessandro Giungi, Mariafrancesca Fochi and Luca Bernardi
Catalysts 2020, 10(2), 150; https://doi.org/10.3390/catal10020150 - 24 Jan 2020
Cited by 12 | Viewed by 4660
Abstract
The palladium-catalyzed (3 + 2) cycloaddition reaction between vinylcyclopropanes (VCPs) bearing geminal EWG’s and imines represents a straightforward and flexible entry to polysubstituted pyrrolidine derivatives. In this paper, we demonstrate that using a synergistic catalysis approach, based on the combination of phosphoric acid [...] Read more.
The palladium-catalyzed (3 + 2) cycloaddition reaction between vinylcyclopropanes (VCPs) bearing geminal EWG’s and imines represents a straightforward and flexible entry to polysubstituted pyrrolidine derivatives. In this paper, we demonstrate that using a synergistic catalysis approach, based on the combination of phosphoric acid and palladium catalysts, it is possible to engage for the first time N-aryl and N-benzyl imines in this cycloaddition reaction. A range of polysubstituted pyrrolidines is obtained with moderate to good yields and diastereoselectivities, using a simple palladium species (Pd(PPh3)4) and an archetypical phosphoric acid as catalyst combination. A two-step scheme which exploits the same palladium catalyst for two consecutive and mechanistically distinct reactions (the cycloaddition and a Suzuki–Miyaura cross-coupling) is also presented. This synergistic catalysis approach is well posited for the development of the enantioselective version of this reaction. A screening of common BINOL-derived chiral phosphoric acids as catalyst component identified a species giving the product with moderate, yet promising, enantioselectivity (64% ee). Full article
(This article belongs to the Special Issue Exploring Hydrogen Bond and Bronsted Acid Catalysis)
Show Figures

Graphical abstract

10 pages, 1708 KiB  
Article
Enantioseparation Using Cellulose Tris(3,5-dimethylphenylcarbamate) as Chiral Stationary Phase for HPLC: Influence of Molecular Weight of Cellulose
by Yuji Okada, Chiyo Yamamoto, Masami Kamigaito, Yuan Gao, Jun Shen and Yoshio Okamoto
Molecules 2016, 21(11), 1484; https://doi.org/10.3390/molecules21111484 - 8 Nov 2016
Cited by 26 | Viewed by 7114
Abstract
The cellulose oligomers with different degrees of polymerization (DP), 7, 11, 18, 24, 26, 40 and 52, were prepared by hydrolysis of microcrystalline cellulose with phosphoric acid. These oligomers including the starting microcrystalline cellulose (DP 124) were converted to tris(3,5-dimethylphenylcarbamate) (CDMPC) derivatives by [...] Read more.
The cellulose oligomers with different degrees of polymerization (DP), 7, 11, 18, 24, 26, 40 and 52, were prepared by hydrolysis of microcrystalline cellulose with phosphoric acid. These oligomers including the starting microcrystalline cellulose (DP 124) were converted to tris(3,5-dimethylphenylcarbamate) (CDMPC) derivatives by the reaction with an excess of 3,5-dimethylphenyl isocyanate to be used as the chiral stationary phase (CSP) in high-performance liquid chromatography (HPLC). The structures of the CDMPC derivatives were investigated by infrared spectroscopy (IR), 1H-NMR, circular dichroism (CD) and size exclusion chromatography (SEC), and the DPs of the derivatives estimated by SEC agreed with those estimated by 1H-NMR. After coating the derivatives on silica gel, their chiral recognition abilities were evaluated using eight racemates under a normal phase condition with a hexane-2-propanol (99/1) mixture as an eluent. The chiral recognition abilities of 7- and 11-mers, particularly the former, were lower than those of the higher oligomers from DP 18 to 52, which had rather similar abilities to that of 124-mer, although the abilities depended on the racemates. DP 18 seems to be sufficient for CDMPC to exhibit chiral recognition similar to that of the CDMPC with larger DPs. Full article
Show Figures

Graphical abstract

24 pages, 1356 KiB  
Review
Enantioselective Cycloaddition Reactions Catalyzed by BINOL-Derived Phosphoric Acids and N-Triflyl Phosphoramides: Recent Advances
by Felix E. Held, Dominik Grau and Svetlana B. Tsogoeva
Molecules 2015, 20(9), 16103-16126; https://doi.org/10.3390/molecules200916103 - 3 Sep 2015
Cited by 66 | Viewed by 11011
Abstract
Over the last several years there has been a huge increase in the development and applications of new efficient organocatalysts for enantioselective pericyclic reactions, which represent one of the most powerful types of organic transformations. Among these processes are cycloaddition reactions (e.g., [3+2]; [...] Read more.
Over the last several years there has been a huge increase in the development and applications of new efficient organocatalysts for enantioselective pericyclic reactions, which represent one of the most powerful types of organic transformations. Among these processes are cycloaddition reactions (e.g., [3+2]; formal [3+3]; [4+2]; vinylogous [4+2] and 1,3-dipolar cycloadditions), which belong to the most utilized reactions in organic synthesis of complex nitrogen- and oxygen-containing heterocyclic molecules. This review presents the breakthrough realized in this field using chiral BINOL-derived phosphoric acids and N-triflyl phosphoramide organocatalysts. Full article
(This article belongs to the Collection Recent Advances in Organocatalysis)
Show Figures

Graphical abstract

10 pages, 121 KiB  
Communication
Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline
by Miguel Rubio and Antonio Pizzano
Molecules 2010, 15(11), 7732-7741; https://doi.org/10.3390/molecules15117732 - 29 Oct 2010
Cited by 14 | Viewed by 8281
Abstract
The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, [...] Read more.
The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity. Full article
(This article belongs to the Special Issue Bifunctional Catalysis)
Show Figures

Figure 1

Back to TopTop