Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = chemostratigraphy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3801 KiB  
Article
Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)
by Ewa Krzeszowska
Energies 2024, 17(3), 642; https://doi.org/10.3390/en17030642 - 29 Jan 2024
Cited by 1 | Viewed by 1309
Abstract
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the [...] Read more.
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the increasing availability of alternative energy sources globally, it is a fact that the use of fossil fuels will remain necessary for the next few decades. Therefore, research on coal-bearing formations using modern research methods is still very important. The application of geochemistry and chemostratigraphy in reservoir characterization has become increasingly common in recent years. This paper presents the possibility of applying chemostratigraphic techniques to the study of the Carboniferous coal-bearing succession of the Upper Silesian Coal Basin. The material studied comes from 121 core samples (depth 481–1298 m), representing the Mudstone Series (Westphalian A, B). Major oxide concentrations of Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, and Cr2O3 were obtained using X-ray fluorescence (XRF) spectrometry. Trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP/MS). The geochemical record from the Mudstone Series shows changes in the concentration of major elements and selected trace elements, leading to the identification of four chemostratigraphic units. These units differ primarily in the content of Fe, Ca, Mg, Mn, and P as well as the concentration of Zr, Hf, Nb, Ta, and Ti. The study also discusses quartz origin (based on SiO2 and TiO2), sediment provenance and source-area rock compositions (based on Al2O3/ TiO2, TiO2/Zr, and La/Th), and paleoredox conditions (based on V/Cr, Ni/Co, U/Th, (Cu+Mo)/Zn, and Sr/Ba) for the chemostratigraphic units. Chemostratigraphy was used for the first time in the study of the Carboniferous coal-bearing series of the USCB, concluding that it can be used as an effective stratigraphic tool and provide new information on the possibility of correlating barren sequences of the coal-bearing succession. Full article
Show Figures

Figure 1

18 pages, 10158 KiB  
Article
Berriasian–Valanginian Geochronology and Carbon-Isotope Stratigraphy of the Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA
by Robert M. Joeckel, Celina A. Suarez, Noah M. McLean, Andreas Möller, Gregory A. Ludvigson, Marina B. Suarez, James I. Kirkland, Joseph Andrew, Spencer Kiessling and Garrett A. Hatzell
Geosciences 2023, 13(2), 32; https://doi.org/10.3390/geosciences13020032 - 26 Jan 2023
Cited by 6 | Viewed by 8883
Abstract
The Early Cretaceous Yellow Cat Member of the terrestrial Cedar Mountain Formation in Utah, USA. has been interpreted as a “time-rich” unit because of its dinosaur fossils, prominent paleosols, and the results of preliminary chemostratigraphic and geochronologic studies. Herein, we refine prior interpretations [...] Read more.
The Early Cretaceous Yellow Cat Member of the terrestrial Cedar Mountain Formation in Utah, USA. has been interpreted as a “time-rich” unit because of its dinosaur fossils, prominent paleosols, and the results of preliminary chemostratigraphic and geochronologic studies. Herein, we refine prior interpretations with: (1) a new composite C-isotope chemostratigraphic profile from the well-known Utahraptor Ridge dinosaur site, which exhibits δ13C features tentatively interpreted as the Valanginian double-peak carbon isotope excursion (the so-called “Weissert Event”) and some unnamed Berriasian features; and (2) a new cryptotephra zircon eruption age of 135.10 ± 0.30/0.31/0.34 Ma (2σ) derived from the CA-ID-TIMS U-Pb analyses of zircons from a paleosol cryptotephra. Our interpretations of δ13C features on our chemostratigraphic profile, in the context of our new radiometric age, are compatible with at least one prior age model for the “Weissert Event” and the most recent revision of the Cretaceous time scale. Our results also support the interpretation that the Yellow Cat Member records a significant part of Early Cretaceous time. Full article
Show Figures

Graphical abstract

19 pages, 3625 KiB  
Article
Geochemical Characteristics and Chemostratigraphic Analysis of Wufeng and Lower Longmaxi Shales, Southwest China
by Shitao Yin, Zhifeng Zhang and Yongjian Huang
Minerals 2022, 12(9), 1124; https://doi.org/10.3390/min12091124 - 3 Sep 2022
Cited by 4 | Viewed by 2585
Abstract
The demand for shale gas has propelled researchers to focus on precise and high-resolution stratigraphic divisions for homogeneous shales, of which the late-Ordovician Wufeng (O3w) and the early-Silurian Longmaxi (S1l) formations in southwest China are two of the best [...] Read more.
The demand for shale gas has propelled researchers to focus on precise and high-resolution stratigraphic divisions for homogeneous shales, of which the late-Ordovician Wufeng (O3w) and the early-Silurian Longmaxi (S1l) formations in southwest China are two of the best candidates for shale gas exploration in China. However, systematic chemostratigraphic work for these strata is still sparse, and the existing chemostratigraphic work either lack representativeness in terms of the proxies used or are subjective during their division procedures. Thus, automatic division process based on multi proxies and an objective statistical technique was applied to establish a quantitative, high-resolution, and robust chemostratigraphic scheme for the Wufeng and lower Longmaxi shales. The geochemical analysis unveils that the Wufeng and Lower Longmaxi shales show prominent heterogeneities in terrigenous inputs, redox conditions, and paleoproductivity, enabling the potential application of chemostratigraphy to these strata. Based on these heterogeneities, the chemostratigraphic scheme for the Wufeng and Lower Longmaxi shales has been established, and the whole strata could be divided into 13 chemozones using constrained clustering analysis. The chemostratigraphic scheme could not only be comparable to the regional sequence stratigraphic scheme but also more objective and higher-resolution. The high TOC content and brittle minerals within chemozone C1 makes it the most preferable layer for shale gas exploration and development. This research gives a systematic chemostratigraphic analysis on Wufeng and Lower Longmaxi shales, which testifies the feasibility and potential of usage of chemostratigraphy for Chinese shale gas exploration and development. Full article
Show Figures

Figure 1

22 pages, 11490 KiB  
Article
Application of Chemical Sequence Stratigraphy to the Prediction of Shale Gas Sweet Spots in the Wufeng and Lower Longmaxi Formations within the Upper Yangtze Region
by Qian Wang, Yongjian Huang, Zhifeng Zhang, Changhong Wang and Xiang Li
Minerals 2022, 12(7), 859; https://doi.org/10.3390/min12070859 - 5 Jul 2022
Cited by 2 | Viewed by 2291
Abstract
Effective shale gas exploration is hindered by the need for obtaining high-resolution correlations between shale strata and the need for classifying shale facies. To address these issues, chemostratigraphy, sequence stratigraphy, and shale gas geology methods were integrated to develop a new method known [...] Read more.
Effective shale gas exploration is hindered by the need for obtaining high-resolution correlations between shale strata and the need for classifying shale facies. To address these issues, chemostratigraphy, sequence stratigraphy, and shale gas geology methods were integrated to develop a new method known as “chemical sequence stratigraphy,” which was successfully applied to the Wufeng–Lower Longmaxi Formations in the upper Yangtze region. Well Huadi 1 was used as a case study, and detailed data were acquired. Multivariate statistical analyses were applied to three defined indices having different genetic significance, namely: terrigenous input intensity (TII), authigenic precipitation intensity (API), and organic matter adsorption and reduction intensity (OARI). By analyzing the trends of these three indices, the Wufeng–Lower Longmaxi Formations were divided into five fourth-order chemical sequences (from bottom to top): LCW, MCL1-1, MCL1-2, MCL1-3, and MCL1-4. The geochemical facies were named and classified using the chemical sequence stratigraphic framework. The enrichment factor (EF) transformation of elements was conducted to determine whether an element is rich or deficient. The results showed that the favorable geochemical facies in the well were EF-Al deficient, EF-Ca rich, and EF-V rich. The organic matter content and rock brittle strength were then used as chemical parameters, and it was predicted that the LCW and MCL1-1 chemical sequences most likely comprised shale gas sweet spots. This conclusion is consistent with the drilling results and indicates that our proposed method is effective and reliable. This method is further applied to the Changning Shuanghe section, the Shizhu Liutang section, and sections in the Xindi 1 well in the upper Yangtze region. The comparative study of these four sections showed that LCW and MCL1-1 are the key chemical sequences for shale gas exploration and development in the Wufeng–Lower Longmaxi Formations within the Upper Yangtze region. Full article
Show Figures

Figure 1

22 pages, 2885 KiB  
Article
Application of Chemostratigraphic Methods to Floodplain Alluvial Deposits within the Big Harris Creek Basin, North Carolina
by Samantha N. Sullivan, Jerry R. Miller and Carmen L. Huffman
Geosciences 2022, 12(5), 187; https://doi.org/10.3390/geosciences12050187 - 26 Apr 2022
Cited by 1 | Viewed by 2809
Abstract
Big Harris Creek, North Carolina, possesses a geomorphic history and alluvial stratigraphic record similar to many drainages in southern Appalachian Piedmont. An approximately 1 km reach of Upper Stick Elliott Creek, a tributary to Big Harris Creek, was used herein to (1) explore [...] Read more.
Big Harris Creek, North Carolina, possesses a geomorphic history and alluvial stratigraphic record similar to many drainages in southern Appalachian Piedmont. An approximately 1 km reach of Upper Stick Elliott Creek, a tributary to Big Harris Creek, was used herein to (1) explore the use of chemostratigraphic methods to define and correlate late Holocene alluvial deposits along this relatively uncontaminated rural stream containing legacy sediments (historic, anthropogenically derived deposits), and (2) interpret depositional floodplain processes within small (<10 km2), headwater drainages. The lithofacies within four floodplain sections were described in channel banks and sampled at about 5 cm intervals. The 128 collected samples were then analyzed for grain size and the concentration of 22 elements using X-ray fluorescence. Well-defined chemostratigraphic units (facies) were defined on the basis of a multi-elemental fingerprint using a principal component analysis (PCA) and verified using discriminant analysis (DA). Chemostratigraphic units did not reflect grain size at a site (by design) but marginally correlated to lithofacies defined by field descriptions. Of significant importance, chemostratigraphic units could be quantitatively correlated between the four stratigraphic sections at a much higher spatial resolution (~5 cm) than could be performed using other sedimentologic parameters alone. In combination, the lithostratigraphic and chemostratigraphic architecture of the floodplain is consistent with a previously proposed sequence of deposition for the legacy deposits in which extensive land-use change associated with the onset of cotton farming in the 1860s led to upstream incision and gully formation and downstream deposition on the floodplain surface. Deposition appears to have progressed downvalley as incision deepened, probably in the form of crevasse splay deposits or proximal sandsheets that were occasionally interbedded with vertically accreted sediments. The results indicate that chemostratigraphy represents a highly useful approach to the assessment of floodplain depositional processes over (at least) relatively small temporal and spatial scales, even in areas with minimal sediment contamination. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

17 pages, 5650 KiB  
Article
Intermittent Beginning to the Formation of Hydrogenous Ferromanganese Nodules in the Vast Field: Insights from Multi-Element Chemostratigraphy Using Microfocus X-ray Fluorescence
by Shiki Machida, Ryo Shimomura, Kentaro Nakamura, Tetsu Kogiso and Yasuhiro Kato
Minerals 2021, 11(11), 1246; https://doi.org/10.3390/min11111246 - 10 Nov 2021
Cited by 4 | Viewed by 2504
Abstract
Vast ferromanganese nodule fields have been found on the deep-sea floor of all oceans worldwide. They have received attention because they potentially provide high-grade metal resources to develop future high- and green-technology. However, how these vast nodule fields were formed and developed owing [...] Read more.
Vast ferromanganese nodule fields have been found on the deep-sea floor of all oceans worldwide. They have received attention because they potentially provide high-grade metal resources to develop future high- and green-technology. However, how these vast nodule fields were formed and developed owing to their widespread nature or tendency to be denser with an increasing number of nodules has not yet been established. In this study, the fine-scale inner structure of nodules of various sizes was analyzed on the basis of chemical mapping using microfocus X-ray fluorescence. We found that nodules distributed in the vast field around Minamitorishima (Marcus) Island have several types of innermost layers, which correspond to different chemostratigraphic layers of nodules that have been previously reported by us in this region. As nodules grow in order from the center to the outside, the different types in the innermost layer indicate a difference in the timing of the beginning of their growth. Moreover, because the differences in the chemical features of each layer reflect differences in the composition of the original deep-sea water, our results imply that the beginning of nodule formation occurred intermittently at each time of a water mass replacement due to new deep-sea currents flowing into this region. We recognized that the northern part of the study area was dominated by large nodules that started to grow in relatively earlier times, while the southern part tended to have many nodules that grew in relatively later times. Based on these observations, we hypothesize that the intermittent beginning of nodule formation is governed by the northward inflow of the deep-sea current that originated from the Lower Circumpolar Deep Water for an extended time to form the vast nodule field. Because patterns in the timing of nodule formation were different in the eastern and western regions, we thus further propose that the topographic framework, i.e., the arrangement of individual large seamounts and the cluster of small knolls and petit-spot volcanoes, strongly regulates the flow path of the deep-sea current, even if the position of the entire seamount changes owing to plate motion. The deep-sea current might supply some materials to be nuclei, resulting in the nodule formation at the beginning of the process. Full article
Show Figures

Figure 1

21 pages, 3902 KiB  
Article
Chemostratigraphic Analysis of Wufeng and Longmaxi Formation in Changning, Sichuan, China: Achieved by Principal Component and Constrained Clustering Analysis
by Zhifeng Zhang, Yongjian Huang, Bo Ran, Wei Liu, Xiang Li and Chengshan Wang
Energies 2021, 14(21), 7048; https://doi.org/10.3390/en14217048 - 28 Oct 2021
Cited by 6 | Viewed by 1916
Abstract
The increasing proportion of unconventional worldwide energy demands have consistently promoted the necessity for exploring a precise, high-resolution, objective, and quantitative stratigraphic division method for macroscopically homogeneous mudstone successions. The chemostratigraphy can resolve this problem well, although it has been applied successfully in [...] Read more.
The increasing proportion of unconventional worldwide energy demands have consistently promoted the necessity for exploring a precise, high-resolution, objective, and quantitative stratigraphic division method for macroscopically homogeneous mudstone successions. The chemostratigraphy can resolve this problem well, although it has been applied successfully in North America, but not systematically studied in China for shale gas exploration and development. This work has conducted a chemostratigraphic analysis of Wufeng and Longmaxi Formation on the Changning section of Sichuan Province, southwestern China, to testify its applicability for shale gas exploration in China. Principal component analysis (PCA) was first employed to reduce the dimensionality of datasets. Three chemofacies, including detrital (K, Ti, Fe, Al, Na, Mg, Cr, Zr, Rb), authigenic (Ca, Sr, Mn, Si, S, Ba), and redox-organic (P, V, Ni, Zn, Cu, TOC), were found. Subsequently, constrained clustering analysis was utilized for the zonation of each chemofacies into chemozones. Consequently, the whole Changning section was divided into twelve chemozones (CZ I–CZ Ⅻ). The geochemical interpretation for these chemozones can be resolved from the regional changes in paleogeography and paleoceanography during the Late Ordovician to Early Silurian period. Thus, a three-stage geochemical evolution along the Changning section can be classified: (1) the siliceous and anoxic deposits of Wufeng Formation (CZ I–CZ III) with high TOC contents; (2) the siliceous and anoxic sedimentary rocks of bottom Longmaxi Formation with still higher TOC (CZ Ⅳ); (3) the calcarous-detrital and oxic sediments for the rest of Longmaxi Formation (CZ Ⅴ–CZ Ⅻ). In considering their high content of TOC and abundant brittle siliceous minerals, the CZ (I–Ⅳ, 0 m–33.6 m) are thought to be the most preferable sweet spot for shale gas exploration. Full article
Show Figures

Figure 1

11 pages, 2890 KiB  
Article
Controlling Factors for Organic Carbon Burial in the Late Cretaceous Nenjiang Formation of the Songliao Basin, NE China
by Lu Niu, Yuan Gao, He Huang, Xing Tian, Tian Dong, Qian Yang, Xiaomeng Cao and Chengshan Wang
Energies 2021, 14(16), 4783; https://doi.org/10.3390/en14164783 - 6 Aug 2021
Cited by 4 | Viewed by 2163
Abstract
The Songliao Basin (SLB) is a large terrestrial petroliferous basin located in northeastern China. The Nenjiang Formation represents excellent hydrocarbon source rocks for the Daqing oil field. Previous studies have indicated that the oil shale intervals from the first (K2n1 [...] Read more.
The Songliao Basin (SLB) is a large terrestrial petroliferous basin located in northeastern China. The Nenjiang Formation represents excellent hydrocarbon source rocks for the Daqing oil field. Previous studies have indicated that the oil shale intervals from the first (K2n1) and second (K2n2) members of the Nenjiang Formation were formed in different depositional settings. In this study, we provide a new high-resolution (1 m interval) record from SK-1s core and compile three sets of published datasets from two drilling holes (Zk3389 and LY-1) and a composite outcrop section. According to the total organic carbon (TOC) chemostratigraphy, we have divided three variation cycles spanning from K2n1 to K2n2 and detected three potential oil shale intervals in the Nenjiang Formation. Combined with the productivity, salinity, and oxygenation proxies, we discuss the paleolimnological environmental changes during deposition of the Nenjiang Formation. Our new and compiled records support the model that excellent preservation conditions were associated with the formation of organic-rich sediments in the K2n1, while the productivity was the major controlling factor for organic matter enrichment in the K2n2. Full article
Show Figures

Graphical abstract

20 pages, 5777 KiB  
Article
Localisation of Ancient Migration Pathways inside a Fractured Metamorphic Hydrocarbon Reservoir in South-East Hungary
by Tivadar M. Tóth, László Molnár, Sándor Körmös, Nóra Czirbus and Félix Schubert
Appl. Sci. 2020, 10(20), 7321; https://doi.org/10.3390/app10207321 - 19 Oct 2020
Cited by 4 | Viewed by 2257
Abstract
Numerous fractured hydrocarbon reservoirs exist in the metamorphic basement of the Pannonian Basin in Hungary. Many decades of experience in production have proven that these reservoirs are highly compartmentalised, resulting in a complex mosaic of permeable and impermeable domains situated next to each [...] Read more.
Numerous fractured hydrocarbon reservoirs exist in the metamorphic basement of the Pannonian Basin in Hungary. Many decades of experience in production have proven that these reservoirs are highly compartmentalised, resulting in a complex mosaic of permeable and impermeable domains situated next to each other. Consequently, in most fields, only a small amount of the total hydrocarbon reserve can be extracted. This paper aims to locate the potential migration pathways inside the most productive basement reservoir of the Pannonian Basin, using a multiscale approach. To achieve this, evaluation well-log data, DFN modelling and a composition analysis of fluid trapped in a vein-filling zeolite phase are combined. Data on a single well are presented as an example. The results of the three approaches indicate the presence of two highly fractured intervals separated by a barely fractured amphibolite. The two zones are probably part of the communicating fracture system inside the single metamorphic mass. The gas analysis further specifies the migrated fluids and indicates hydrocarbons of a composition similar to that of the recently produced oil. Consequently, we conclude that the two zones do not only form an ancient migration pathway but are also members of a more recent hydrocarbon system. Full article
(This article belongs to the Special Issue Fractured Reservoirs)
Show Figures

Figure 1

19 pages, 5981 KiB  
Article
Chemostratigraphic Correlations of Deep-Sea Sediments in the Western North Pacific Ocean: A New Constraint on the Distribution of Mud Highly Enriched in Rare-Earth Elements
by Erika Tanaka, Kentaro Nakamura, Kazutaka Yasukawa, Kazuhide Mimura, Koichiro Fujinaga, Junichiro Ohta, Koichi Iijima, Tatsuo Nozaki, Shiki Machida and Yasuhiro Kato
Minerals 2020, 10(6), 575; https://doi.org/10.3390/min10060575 - 26 Jun 2020
Cited by 31 | Viewed by 4673
Abstract
Deep-sea sediments with total rare-earth elements and yttrium (ΣREY) concentrations exceeding 400 ppm, which are termed REY-rich mud, are widely distributed in the world oceans. Specifically, deep-sea sediments within the Japanese exclusive economic zone (EEZ) surrounding Minamitorishima Island in the western North Pacific [...] Read more.
Deep-sea sediments with total rare-earth elements and yttrium (ΣREY) concentrations exceeding 400 ppm, which are termed REY-rich mud, are widely distributed in the world oceans. Specifically, deep-sea sediments within the Japanese exclusive economic zone (EEZ) surrounding Minamitorishima Island in the western North Pacific have attracted significant attention as a new REY resource, because they contain REY-enriched layers exceeding 2000 ppm of ΣREY. However, neither the sediments deeper than 15 m below the seafloor (mbsf) nor those outside the Minamitorishima EEZ have ever been studied. Recently, a number of distinct geochemical features which are aligned in stratigraphic order were recognized in these sediments, based on multi-elemental composition data. Chemostratigraphy enables us to laterally correlate three REY peaks among apparently featureless pelagic clays. Here, we apply chemostratigraphic correlation to 19 new cores collected from the northern Pigafetta Basin and several small basins within the Marcus-Wake Seamounts. This study revealed that the REY-enriched layers occur at greater depths than the piston core length in a wider area than previously investigated (e.g., ~20.5 mbsf at Ocean Drilling Program Site 801A). This finding suggests that the depositional environments in these areas were basically similar, although local geographic conditions could have affected the continuity of REY peaks. Full article
(This article belongs to the Special Issue Marine Geology and Minerals)
Show Figures

Figure 1

14 pages, 3095 KiB  
Article
Chemostratigraphy of the Upper Jurassic (Oxfordian) Smackover Formation for Little Cedar Creek and Brooklyn Fields, Alabama
by Lance D. Yarbrough, Rian A. Engle and Greg Easson
Geosciences 2019, 9(6), 269; https://doi.org/10.3390/geosciences9060269 - 20 Jun 2019
Cited by 1 | Viewed by 5690
Abstract
The Upper Jurassic (Oxfordian Age) Smackover Formation is a significant source for hydrocarbon production in southwest Alabama. Brooklyn Field is in southeast Conecuh County, Alabama, and has been a major producer of oil and natural gas for the state. The Smackover is a [...] Read more.
The Upper Jurassic (Oxfordian Age) Smackover Formation is a significant source for hydrocarbon production in southwest Alabama. Brooklyn Field is in southeast Conecuh County, Alabama, and has been a major producer of oil and natural gas for the state. The Smackover is a carbonate formation that has been divided into seven distinct lithofacies in the Brooklyn and Little Cedar Creek fields. In southwest Alabama, the facies distribution in the Smackover Formation was influenced by paleotopography of the underlying Paleozoic rocks of the Appalachian system. The goal of this study is to determine elemental ratios in rock core within the Smackover Formation using an X-ray fluorescence (XRF) handheld scanner and to correlate these elemental characteristics to the lithofacies of the Smackover Formation in the Brooklyn and Little Cedar Creek fields. Eight wells were used for the study within Brooklyn Field and Little Cedar Creek fields. Cores from the eight wells were scanned at six-inch intervals. Chemical logs were produced to show elemental weights in relation to depth and lithofacies. The chemical signatures within producing zones were correlated to reservoir lithofacies and porosity. Aluminum, silicon, calcium, titanium, and iron were the most significant (>95% confidence level) predictors of porosity and may be related to the depositional environment and subsequent diageneses of the producing facies. The XRF data suggests relative enrichments in iron, titanium, and potassium. These elements may be related to deposition in relatively restricted marine waters. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

Back to TopTop