Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (133)

Search Parameters:
Keywords = chemoprotection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4821 KB  
Article
Thymol Preserves Spermatogenesis and Androgen Production in Cisplatin-Induced Testicular Toxicity by Modulating Ferritinophagy, Oxidative Stress, and the Keap1/Nrf2/HO-1 Pathway
by Amira M. Badr, Sheka Aloyouni, Yasmin Mahran, Hanan Henidi, Elshaymaa I. Elmongy, Haya M. Alsharif, Aliyah Almomen and Sahar Soliman
Biomolecules 2025, 15(9), 1277; https://doi.org/10.3390/biom15091277 - 3 Sep 2025
Viewed by 650
Abstract
Cisplatin (CDDP) is a widely used chemotherapeutic agent, but its off-target toxicity, including testicular damage, limits clinical use. Bioactive compounds may help mitigate chemotherapy-induced reproductive toxicity. This study investigates thymol’s role in modulating ferritinophagy to preserve reproductive function and steroidogenesis. Male Wistar rats [...] Read more.
Cisplatin (CDDP) is a widely used chemotherapeutic agent, but its off-target toxicity, including testicular damage, limits clinical use. Bioactive compounds may help mitigate chemotherapy-induced reproductive toxicity. This study investigates thymol’s role in modulating ferritinophagy to preserve reproductive function and steroidogenesis. Male Wistar rats were randomized to control, CDDP, thymol, or CDDP + thymol groups. Thymol (60 mg/kg) was given orally for 14 days, and CDDP (8 mg/kg) was administered intraperitoneally on day 7. Testicular function was assessed through hormonal analysis, sperm evaluation, and histopathology. Ferritinophagy, oxidative stress, and inflammatory markers were assessed to elucidate thymol’s chemoprotective mechanisms. Thymol co-administration preserved steroidogenesis, restored sperm quality, and maintained testicular architecture in CDDP-treated rats. Thymol suppressed ferritinophagy, reducing iron overload and mitigating reactive oxygen species (ROS)-induced cellular damage. Additionally, thymol activated the Keap1/Nrf2/HO-1 pathway, enhancing antioxidant defenses while downregulating inflammatory mediators (TNF-α, IL-6). Additionally, thymol enhanced CDDP’s selectivity toward cancer cells while reducing its toxicity to normal cells. This study provides evidence that thymol modulates ferritinophagy to attenuate CDDP-induced testicular toxicity, helping preserve reproductive function via regulation of iron homeostasis. These findings highlight thymol’s potential as an adjunct therapy to mitigate chemotherapy-associated reproductive damage while maintaining CDDP’s anticancer efficacy. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

17 pages, 900 KB  
Review
Watercress (Nasturtium officinale) as a Functional Food for Non-Communicable Diseases Prevention and Management: A Narrative Review
by Chikondi Maluwa, Blecious Zinan’dala, Hataichanok Chuljerm, Wason Parklak and Kanokwan Kulprachakarn
Life 2025, 15(7), 1104; https://doi.org/10.3390/life15071104 - 15 Jul 2025
Viewed by 2509
Abstract
Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes, cancer, and chronic respiratory conditions are the leading causes of death globally, largely driven by modifiable lifestyle factors. With growing interest in dietary strategies for NCDs prevention and management, functional foods like watercress (Nasturtium [...] Read more.
Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes, cancer, and chronic respiratory conditions are the leading causes of death globally, largely driven by modifiable lifestyle factors. With growing interest in dietary strategies for NCDs prevention and management, functional foods like watercress (Nasturtium officinale) have attracted attention for their rich phytochemical content and potential health benefits. This narrative review synthesizes 88 sources published between 2019 and March 2025, exploring the effects of watercress bioactive compounds on major NCDs. Watercress is abundant in glucosinolates, isothiocyanates (especially phenethyl isothiocyanate), flavonoids, vitamins, and minerals. These compounds contribute to antioxidant, anti-inflammatory, and metabolic regulatory effects. Preclinical and clinical studies show that watercress supplementation may improve lipid profiles, reduce oxidative stress, and modulate inflammation in cardiovascular and respiratory conditions. It also appears to enhance insulin function and reduce blood glucose levels. In cancer models, watercress extracts exhibit antiproliferative, pro-apoptotic, and chemoprotective properties, with selective toxicity towards cancer cells and protective effects on normal cells. These findings highlight the therapeutic potential of watercress as a dietary adjunct in NCDs prevention and management, supporting the need for further clinical research. Full article
Show Figures

Figure 1

15 pages, 966 KB  
Article
Isolation of a Novel Bioactive Fraction from Saffron (Crocus sativus L.) Leaf Waste: Optimized Extraction and Evaluation of Its Promising Antiproliferative and Chemoprotective Effects as a Plant-Based Antitumor Agent
by Raúl Sánchez-Vioque, Julio Girón-Calle, Manuel Alaiz, Javier Vioque-Peña, Adela Mena-Morales, Esteban García-Romero, Lourdes Marchante-Cuevas and Gonzalo Ortiz de Elguea-Culebras
Appl. Sci. 2025, 15(13), 7376; https://doi.org/10.3390/app15137376 - 30 Jun 2025
Viewed by 554
Abstract
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched [...] Read more.
Saffron spice is obtained from the flower’s stigmas through a labor-intensive process. However, other organs (particularly the leaves and tepals) are often regarded as waste. To investigate the health benefits of saffron leaf by-products, an optimized methodology was developed to obtain a phenol-enriched fraction. The main components of this fraction were identified by HPLC-DAD/ESI-MS and the antiproliferative and metal-chelating effects on colon cancer cells (Caco-2) and Fe2+ and Cu2+ ions, respectively, were evaluated. The process involved the extraction of saffron leaves with a 70% hydroalcoholic solution, followed by purification using liquid chromatography. Chemical characterization revealed the presence of several phenolic compounds, including flavonoids (kaempferol, luteolin and quercetin glycosides) as major constituents; whereas, in vitro assays revealed a strong dose-dependent inhibition of cell proliferation. Likewise, the sample exhibited significant iron- and copper-chelating activity, suggesting its potential as a natural chelator to help mitigate the carcinogenic effects of metal accumulation in humans. In summary, this study underscores the potential of the saffron leaf fraction as a promising natural and complementary chemoprotective agent in colorectal cancer. Additionally, these results underscore the value of agricultural by-products, supporting a circular bioeconomy by reducing environmental impact and promoting the sustainable use of natural resources. Full article
Show Figures

Figure 1

20 pages, 2926 KB  
Article
An Experimental Rat Model for Simultaneous Induction of Peripheral Neuropathy and Myelotoxicity by Docetaxel Administration: Evaluating the Protective Role of Dimethyl Fumarate
by Sebastian Cubides-Cely, Alexander David Castro, Pablo Prado-Guevara, Julio César Mantilla-Hernández and Mario Negrette-Guzmán
Int. J. Mol. Sci. 2025, 26(12), 5859; https://doi.org/10.3390/ijms26125859 - 19 Jun 2025
Viewed by 645
Abstract
Docetaxel is extensively used for treating different types of cancer; however, its clinical efficacy is primarily limited by myelotoxicity and peripheral neuropathy, adverse effects that often lead to treatment discontinuation. This study aimed to establish a preclinical model in Wistar rats for the [...] Read more.
Docetaxel is extensively used for treating different types of cancer; however, its clinical efficacy is primarily limited by myelotoxicity and peripheral neuropathy, adverse effects that often lead to treatment discontinuation. This study aimed to establish a preclinical model in Wistar rats for the simultaneous induction of myelotoxicity and peripheral neuropathy associated with docetaxel administration, enabling the evaluation of potential chemopreventive agents. Four distinct docetaxel administration schemes were assessed by performing behavioral nociceptive tests and complete blood cell counts. After establishing the damage model (5 mg/kg/week docetaxel for six weeks), we co-administered 100 mg/kg/week oral dimethyl fumarate to assess its protective effect. Dimethyl fumarate attenuated docetaxel-induced hyperalgesia, likely through preserving normal nerve fiber density in sciatic nerves, but neutropenia was not significantly mitigated. An alternative regimen with additional pre-administered doses of dimethyl fumarate showed a trend toward neutropenia attenuation and suggested an interesting inhibition of docetaxel-induced rat vibrissae loss. Chou-Talalay isobolographic analyses on prostate cancer cell lines revealed that dimethyl fumarate does not impair the therapeutic effect of docetaxel at most combination ratios evaluated; rather, synergistic effects were observed. This experimental model proved useful and will facilitate further research into the protective role of dimethyl fumarate and other potential chemoprotective agents. Full article
Show Figures

Graphical abstract

12 pages, 671 KB  
Article
Statins Are Not Associated with Improved Bladder Cancer Outcomes in Patients with Early-Stage Bladder Cancer Treated with BCG Immunotherapy
by Estelle Ndukwe, Paz Lotan, Michael Risk, Elizabeth L. Koehne, Daniel D. Shapiro, Robert P. Tyllo, Glenn O. Allen, E. Jason Abel, David F. Jarrard and Kyle A. Richards
Cancers 2025, 17(12), 2027; https://doi.org/10.3390/cancers17122027 - 17 Jun 2025
Viewed by 670
Abstract
Background: Statins are commonly used cholesterol-lowering drugs with evidence of additional chemoprotective and immunomodulatory effects resulting from the inhibition of DNA replication, cell proliferation, and TH1-cell inhibition. There are conflicting reports regarding the potential benefit of concurrent statin treatment on non-muscle invasive [...] Read more.
Background: Statins are commonly used cholesterol-lowering drugs with evidence of additional chemoprotective and immunomodulatory effects resulting from the inhibition of DNA replication, cell proliferation, and TH1-cell inhibition. There are conflicting reports regarding the potential benefit of concurrent statin treatment on non-muscle invasive bladder cancer (NMIBC) and specifically on intravesical Bacillus Calmette–Guerin (BCG) outcomes. We therefore aimed to analyze the effects of concurrent BCG and statin use in patients with NMIBC. Methods: National Veterans Affairs databases were used to retrospectively identify men with NMIBC between 2000 and 2010 who were treated with BCG. Pharmacy data was interrogated, and patients were divided according to statin therapy status. Statins had to be given at the beginning of BCG treatments and continued for at least 6 months. Cox proportional hazard ratios after inverse propensity score-weighted and competing risks adjustments were calculated for recurrence, secondary events (e.g., progression), cancer-specific survival, and overall survival. Results: Among 8814 patients, with a median follow-up of 11.3 years, statins were used by 38% of the patients. Patients taking statins were older (71 vs. 68, p < 0.0001), had more comorbidities (Charlson Comorbidity Index (CCI > 2; 38.6% vs. 31.4%, p < 0.0001), and had a higher-grade disease (40.2% vs. 34.3%, p < 0.0001) compared to those not on statins. After adjusting for stage, grade, age, race, CCI, agent orange exposure, and year of diagnosis, Cox proportional hazard analysis revealed no association with recurrence (HR 1.05, 95% CI 0.97–1.15, p = 0.23), secondary events (HR 0.91, 95% CI 0.80–1.05, p = 0.189), or bladder cancer specific survival (HR 0.88, 95% CI 0.76–1.02, p = 0.09) of statin use. However, statins were associated with improved overall survival (HR 0.89, 95% CI 0.83–0.96, p = 0.002). Conclusions: Concurrent statin and BCG use in patients with NMIBC was associated with improved overall survival, but not recurrence, secondary events, or bladder cancer-specific survival. These results confirm the real-world well-established cardiovascular benefit of statin treatment and primary preventive care. However, this large population study did not find any association between statins and the outcomes of patients with NMIBC treated with BCG immunotherapy. Full article
(This article belongs to the Special Issue Recent Advances in Non-muscle Invasive Bladder Cancer)
Show Figures

Figure A1

17 pages, 1433 KB  
Article
Insights into Chemopreventive Effects of Rosmarinic Acid Against Aflatoxin B1-Induced Genotoxic Effects
by Veronika Furlan, Matjaž Novak, Martina Štampar, Alja Štern, Bojana Žegura and Urban Bren
Foods 2025, 14(12), 2111; https://doi.org/10.3390/foods14122111 - 16 Jun 2025
Viewed by 658
Abstract
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation [...] Read more.
In this study, the chemopreventive effects of rosmarinic acid (RA), a major phenolic acid of the plant Rosmarinus officinalis L., against the carcinogenic naturally occurring mycotoxin aflatoxin B1 (AFB1) were investigated using both in silico and in vitro approaches. The in silico investigation of the chemical reactions between rosmarinic acid and the carcinogenic metabolite of AFB1, aflatoxin B1 exo-8,9-epoxide (AFBO), was conducted by activation free energies calculations with DFT functionals M11-L and MN12-L, in conjunction with the 6-311++G(d,p) flexible basis set and implicit solvation model density (SMD), according to a newly developed quantum mechanics-based protocol for the evaluation of carcinogen scavenging activity (QM-CSA). Following the computational analyses, the chemoprotective effects of RA were further studied in vitro in human hepatocellular carcinoma HepG2 cells by analyzing its influence on AFB1-induced genotoxicity using a comet assay, γH2AX, and p-H3, while its impact on cell proliferation and cell cycle modulation was assessed using flow cytometry. Our computational results revealed that the activation free energy required for the reaction of RA with AFBO (14.86 kcal/mol) is significantly lower than the activation free energy for the competing reaction of AFBO with guanine (16.88 kcal/mol), which indicates that RA acts as an efficient natural scavenger of AFBO, potentially preventing AFB1-specific DNA adduct formation. The chemoprotective activity of RA was confirmed through in vitro experiments, which demonstrated a statistically significant (p < 0.05) reduction in AFB1-induced single- and double-strand breaks in HepG2 cells exposed to a mixture of AFB1 and RA at non-cytotoxic concentrations. In addition, RA reversed the AFB1-induced reduction in cell proliferation. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Graphical abstract

16 pages, 12926 KB  
Article
B Cell Activating Factor Induces Drug Resistance in Hairy Cell Leukemia Variant
by Claire Fritz, Daniel Feinberg, Akshaya Radhakrishnan, Kayla Klatt, E. Ricky Chan, Philip Rock, Richard Burack and Reshmi Parameswaran
Biomedicines 2025, 13(4), 890; https://doi.org/10.3390/biomedicines13040890 - 7 Apr 2025
Viewed by 822
Abstract
Background: Chemoresistance is an existing challenge faced in the treatment of the hairy cell leukemia variant (HCL-v). Classical hairy cell leukemia (HCL-c) is very sensitive to the standard of care with purine nucleoside analogs (PNAs) cladribine (cDa) and pentostatin. However, almost half of [...] Read more.
Background: Chemoresistance is an existing challenge faced in the treatment of the hairy cell leukemia variant (HCL-v). Classical hairy cell leukemia (HCL-c) is very sensitive to the standard of care with purine nucleoside analogs (PNAs) cladribine (cDa) and pentostatin. However, almost half of these patients eventually become less sensitive to chemotherapy and relapse. HCL-variant (HCL-v) is a biologically distinct entity from HCL-c that is not sensitive to frontline PNA therapy, and this treatment is not recommended for these patients. To address these treatment challenges, we investigated the role of B-cell activating factor (BAFF) in promoting HCL-v cell chemoresistance. Methods: Flow cytometry and quantitative PCR were used to measure the levels of BAFF and its receptors. To determine BAFF activated pathways in HCL-c and HCL-v, the Bonna-12 HCL-c cell line or HCL-v patient-derived cancer cells were stimulated with recombinat BAFF and activation of common BAFF-activated pathways, including the nonclassical nuclear factor kappa B (NF-κB) pathway, the Extracellular Signal-Regulated Kinase (Erk) and phosphatidylinositol-3 (PI-3) kinase (PI3K)/AKT serine/threonine kinase (AKT) pathways were measured by western blotting. To test whether BAFF signaling promotes chemoresistance in HCL-v, we stimulated patient-derived HCL-v cells with BAFF and performed RNA sequencing. Lastly, to confirm the functional implications of BAFF signaling in HCL-v, we treated patient-derived HCL-v cells with exogenous BAFF before treatment with cladribine. Results: We found that HCL-v patient-derived cancer cells express receptors of BAFF at varying degrees and express relatively lower levels of membrane-bound BAFF ligand expression. BAFF stimulation of these cells resulted in substantial activation of the nonclassical NF-κB pathway, which is known to promote anti-apoptotic and pro-survival effects in B-cell cancers. Conversely, in the Bonna-12 cell line, we observed constitutive activation of the nonclassical NF-κB pathway. Through RNA sequencing, we found that BAFF upregulates a myriad of genes that are known to promote chemoresistance in various cancers, including IL1, CXCL1/2, CXCL5, CXCL8, TRAF3, and PTGS2. Lastly, we found that BAFF protects these cells from cladribine-induced cell death in vitro. Conclusions: We conclude that BAFF provides chemo-protection in HCL-v cells by activating nonclassical NF-κB signaling, which results in the upregulation of multiple pro-survival or anti-apoptotic genes. Our results highlight an important role of BAFF in HCL-v resistance to chemotherapy and suggest that the BAFF blockade may enhance the chemosensitivity to PNAs in drug-resistant HCL-v patients. Full article
(This article belongs to the Special Issue Drug Resistance and Novel Targets for Cancer Therapy—Second Edition)
Show Figures

Figure 1

11 pages, 1472 KB  
Article
Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells
by Chujie Li, Yue Wang, Jian Liang, Guido R. M. M. Haenen, Yonger Chen, Zhengwen Li, Ming Zhang and Ludwig J. Dubois
Curr. Issues Mol. Biol. 2025, 47(1), 36; https://doi.org/10.3390/cimb47010036 - 9 Jan 2025
Viewed by 1264
Abstract
Background/Aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. [...] Read more.
Background/Aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells. Materials and Methods: HepG2 liver, MCF7 breast, and H1299 lung cancer cells were grown under ambient conditions with or without MonoHER exposure. CCK8 assay was used to assess cell viability. Apoptosis, JC-1, and mitochondrial mass were determined using flow cytometry and confocal analysis. The effects of monoHER on apoptosis proteins were detected by confocal microscopy analysis and Western blot. Results: It was found that MonoHER can reduce HepG2 cells’ and MCF7 cells’ viability, but not H1299 cells’, and induced apoptosis only in HepG2 cells. MonoHER has the potential to enhance the expression of caspase-9 and caspase-3, to damage mitochondria, and to provoke the release of cytochrome C from the mitochondria. Conclusion: MonoHER can inhibit cell growth and induce apoptosis especially in HepG2 human liver cancer cells by triggering the mitochondrial signal transduction pathway, leading to the release of cytochrome C in the cytoplasm and the subsequent activation of caspase-9 and caspase-3. Future research should further explore MonoHER’s mechanism of action, efficacy, and potential for clinical translation. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer Therapy)
Show Figures

Figure 1

20 pages, 5057 KB  
Article
Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways
by George J. Dugbartey, Karl K. Alornyo, Ismaila Adams, Samuel Adjei, Daniel Amoah and Richard Obeng-Kyeremeh
Int. J. Mol. Sci. 2025, 26(1), 384; https://doi.org/10.3390/ijms26010384 - 4 Jan 2025
Cited by 1 | Viewed by 3872
Abstract
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (H2S) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the [...] Read more.
Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (H2S) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN. Twenty-five male Sprague Dawley rats were randomly assigned to the following groups: HC: Healthy control (received 10 mL/kg/day of 0.9% saline intraperitoneally (ip), [n = 5]), CIN: Cisplatin (received single dose of 7 mg/kg cisplatin ip [n = 5]); CIN + PAG: Cisplatin and daily ip administration of 40 mg/kg of the H2S inhibitor, DL-propargylglycine (PAG) for 28 days (n = 5); CIN + PAG + STS: Cisplatin and daily PAG and STS (150 µM) ip injection for 28 days; CIN + STS: Cisplatin and daily STS ip administration for 28 days (n = 5). Rats in each group were kept in metabolic cages for 24 h on day 0, 14 and 29 after cisplatin administration for urine collection. Rats were then euthanized, and kidney and blood samples were collected for analysis. Histologically, CIN was characterized by glomerular and tubular injury and significant macrophage influx and tubular apoptosis, as well as markedly increased levels of plasma and renal IL-1β, IL-6 and TNF-α and impaired renal antioxidant status compared to HC rats (p < 0.001). These pathological changes were exacerbated in CIN + PAG rats and were strongly reduced in CIN + PAG + STS rats relative to CIN + PAG rats (p < 0.01), while superior renal protection was observed in CIN + STS rats. Functionally, CIN was evidenced by markedly increased levels of serum creatinine and BUN, and significantly decreased urine creatinine, renal creatinine clearance, as well as electrolyte imbalance and urinary concentrating defect in comparison with HC (p < 0.01). These functional changes worsened significantly in CIN + PAG rats (p < 0.05) but improved in CIN + PAG + STS rats, with further improvement in CIN + STS rats to levels comparable to HC rats. Mechanistically, STS increased renal and plasma levels of H2S, arginine, cAMP, nitric oxide (NO) and cGMP as well as SIRT3 and PGC-1α. We have shown for the first time that STS provides chemoprotection against CIN by activating renal arginine/cAMP and NO/cGMP signaling pathways and their downstream mechanisms through increased renal H2S production. Full article
Show Figures

Figure 1

18 pages, 5480 KB  
Article
A Novel In Vitro Model of the Bone Marrow Microenvironment in Acute Myeloid Leukemia Identifies CD44 and Focal Adhesion Kinase as Therapeutic Targets to Reverse Cell Adhesion-Mediated Drug Resistance
by Eleni E. Ladikou, Kim Sharp, Fabio A. Simoes, John R. Jones, Thomas Burley, Lauren Stott, Aimilia Vareli, Emma Kennedy, Sophie Vause, Timothy Chevassut, Amarpreet Devi, Iona Ashworth, David M. Ross, Tanja Nicole Hartmann, Simon A. Mitchell, Chris J. Pepper, Giles Best and Andrea G. S. Pepper
Cancers 2025, 17(1), 135; https://doi.org/10.3390/cancers17010135 - 3 Jan 2025
Viewed by 2143
Abstract
Background/Objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has [...] Read more.
Background/Objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential. Methods: Using both primary donor AML cells and cell lines, we developed an in vitro co-culture model of the AML BMME. We used this model to identify the most effective agent(s) to block AML cell adherence and reverse adhesion-mediated treatment resistance. Results: We identified that anti-CD44 treatment significantly increased the efficacy of cytarabine. However, some AML cells remained adhered, and transcriptional analysis identified focal adhesion kinase (FAK) signaling as a contributing factor; the adhered cells showed elevated FAK phosphorylation that was reduced by the FAK inhibitor, defactinib. Importantly, we demonstrated that anti-CD44 and defactinib were highly synergistic at diminishing the adhesion of the most primitive CD34high AML cells in primary autologous co-cultures. Conclusions: Taken together, we identified anti-CD44 and defactinib as a promising therapeutic combination to release AML cells from the chemoprotective AML BMME. As anti-CD44 is already available as a recombinant humanized monoclonal antibody, the combination of this agent with defactinib could be rapidly tested in AML clinical trials. Full article
(This article belongs to the Special Issue Targeting the Tumor Microenvironment (Volume II))
Show Figures

Figure 1

12 pages, 637 KB  
Review
Evaluating the Role of Aspirin in Liver Disease: Efficacy, Safety, Potential Benefits and Risks
by Amani Elshaer and Blanca C. Lizaola-Mayo
Life 2024, 14(12), 1701; https://doi.org/10.3390/life14121701 - 23 Dec 2024
Viewed by 2899
Abstract
The rise in liver disease incidence and prevalence has led to increasing morbidity and mortality worldwide. Persistent hepatic inflammation drives disease progression by increasing fibrosis, advancing to cirrhosis, and potentially developing into hepatocellular carcinoma (HCC). Addressing these complications is essential to reduce liver-related [...] Read more.
The rise in liver disease incidence and prevalence has led to increasing morbidity and mortality worldwide. Persistent hepatic inflammation drives disease progression by increasing fibrosis, advancing to cirrhosis, and potentially developing into hepatocellular carcinoma (HCC). Addressing these complications is essential to reduce liver-related mortality. Recent studies suggest that non-steroidal anti-inflammatory drugs, particularly aspirin, may play a beneficial role in managing liver disease. Aspirin’s anti-inflammatory and chemoprotective effects contribute to slowing disease progression and reducing the risks associated with chronic liver disease (CLD). This review highlights the current literature on the effects of aspirin in CLD, with a focus on patients with metabolic-associated steatotic liver disease (MASLD) and hepatitis B and C. We will examine aspirin’s potential ability to mitigate fibrosis, reduce the incidence of HCC, and lower liver-related mortality. Additionally, we will discuss its potential side effects and safety considerations, particularly in the context of liver disease, where there is an increased risk of bleeding. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

21 pages, 1699 KB  
Review
The Botany, Phytochemistry and the Effects of the Juglans regia on Healthy and Diseased Skin
by Miljan Adamovic, Ana Adamovic, Marijana Andjic, Jovana Dimitrijevic, Nebojsa Zdravkovic, Olivera Kostic, Danijela Pecarski, Teodora Pecarski, Dusica Obradovic and Marina Tomovic
Cosmetics 2024, 11(5), 163; https://doi.org/10.3390/cosmetics11050163 - 20 Sep 2024
Cited by 2 | Viewed by 4055
Abstract
This review aims to provide a detailed overview of the botanical, phytochemical, and dermatological properties of Juglans regia (J. regia). The entire tree contains a wealth of chemical compounds, including phenols, tannins, alkaloids, saponins, reducing sugars, and amino acids, which contribute [...] Read more.
This review aims to provide a detailed overview of the botanical, phytochemical, and dermatological properties of Juglans regia (J. regia). The entire tree contains a wealth of chemical compounds, including phenols, tannins, alkaloids, saponins, reducing sugars, and amino acids, which contribute to its significant nutritional and pharmacological value. Extracts and oils from all parts of J. regia have been studied for their effects on various skin conditions, demonstrating antioxidant, antimicrobial, anti-inflammatory, UV-protective, and chemoprotective properties. Additionally, these substances have shown potential in promoting wound healing, anti-aging, skin hydration, anti-tyrosinase activity, and hair dyeing. These benefits have been evaluated in various in vitro and in vivo studies. The therapeutic potential of J. regia suggests that its components could be integrated into treatment protocols and skincare routines. However, to optimize effectiveness and safety, future research should focus on in vivo studies in human subjects to determine the ideal concentrations and formulations of J. regia active compounds for specific skin conditions. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

21 pages, 2421 KB  
Review
Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic
by Shabana Bano, Avisek Majumder, Ayush Srivastava and Kasturi Bala Nayak
Biomolecules 2024, 14(9), 1166; https://doi.org/10.3390/biom14091166 - 18 Sep 2024
Cited by 6 | Viewed by 6152
Abstract
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer [...] Read more.
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer risk. Recently, researchers have extracted and tested multiple phytochemicals from cardamom to assess their potential effectiveness against various types of human malignancy. These studies have indicated that cardamom can help overcome drug resistance to standard chemotherapy and protect against chemotherapy-induced toxicity due to its scavenging properties. Furthermore, chemical compounds in cardamom, including limonene, cymene, pinene, linalool, borneol, cardamonin, indole-3-carbinol, and diindolylmethane, primarily target the programmed cell death lignin-1 gene, which is more prevalent in cancer cells than in healthy cells. This review provides the medicinal properties and pharmacological uses of cardamom, its cellular effects, and potential therapeutic uses in cancer prevention and treatment, as well as its use in reducing drug resistance and improving the overall health of cancer patients. Based on previous preclinical studies, cardamom shows significant potential as an anti-cancer agent, but further exploration for clinical use is warranted due to its diverse mechanisms of action. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

20 pages, 2715 KB  
Article
Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus (Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo
by Rosa Iris Godínez-Santillán, Aarón Kuri-García, Iza Fernanda Ramírez-Pérez, María Guadalupe Herrera-Hernández, Santiaga Marisela Ahumada-Solórzano, Salvador Horacio Guzmán-Maldonado and Haydé Azeneth Vergara-Castañeda
Antioxidants 2024, 13(9), 1112; https://doi.org/10.3390/antiox13091112 - 14 Sep 2024
Cited by 1 | Viewed by 3911
Abstract
This research identified the bioactive compounds and antioxidant capacity of the extractable (EP) and non-extractable (NEP) polyphenol fractions of berrycactus (BC). Additionally, the effects of BC and its residue (BCR) on preventing AOM/DSS-induced early colon carcinogenesis were evaluated in vivo. Male Sprague Dawley [...] Read more.
This research identified the bioactive compounds and antioxidant capacity of the extractable (EP) and non-extractable (NEP) polyphenol fractions of berrycactus (BC). Additionally, the effects of BC and its residue (BCR) on preventing AOM/DSS-induced early colon carcinogenesis were evaluated in vivo. Male Sprague Dawley rats were randomly assigned to six groups (n = 12/group): healthy control (C), AOM/DSS, BC, BCR, BC+AOM/DSS, and BCR+AOM/DSS. NEP was obtained through acid hydrolysis using H2SO4 and HCl (1 M or 4 M). The HCl-NEP fraction exhibited the highest total phenolic and flavonoid content, while condensed tannins were more abundant in the H2SO4-NEP fraction. A total of 33 polyphenols were identified by UPLC-QTOF-MSE in both EP and NEP, some of which were novel to BC. Both NEP hydrolysates demonstrated significant total antioxidant capacity (TEAC), with HCl-NEP exhibiting the highest ORAC values. The BC+AOM/DSS and BCR+AOM/DSS groups exhibited fewer aberrant crypt foci (p < 0.05), reduced colonic epithelial injury, and presented lower fecal β-glucuronidase activity, when compared to AOM/DSS group. No differences in butyric acid concentrations were observed between groups. This study presents novel bioactive compounds in EP and NEP from BC that contribute to chemopreventive effects in early colon carcinogenesis, while reducing fecal β-glucuronidase activity and preserving colonic mucosal integrity. Full article
Show Figures

Figure 1

16 pages, 724 KB  
Article
Study of Liposomes Containing Extract from the Leaves of Protium heptaphyllum (Aubl.) March in Animals Submitted to a Mutagenic Model Induced by Cyclophosphamide
by Naiéle Sartori Patias, Valéria Dornelles Gindri Sinhorin, Ana Júlia Lopes Braga Ferneda, João Maurício Andrade Ferneda, Marina Mariko Sugui, Stela Regina Ferrarini, Gisele Facholi Bomfim, Joaz Wellington Lopes, Nadia Aline Bobbi Antoniassi, Larissa Cavalheiro, Nelson Luís de Campos Domingues and Adilson Paulo Sinhorin
Biology 2024, 13(9), 706; https://doi.org/10.3390/biology13090706 - 8 Sep 2024
Cited by 1 | Viewed by 1636
Abstract
Cyclophosphamide (CPA) is an alkylating agent used as a chemotherapy agent in the treatment of cancer, but it has immunosuppressive effects. Protium heptaphyllum (P. heptaphyllum) is a plant rich in triterpenes and flavonoids, with some bioactive and therapeutic properties presented in [...] Read more.
Cyclophosphamide (CPA) is an alkylating agent used as a chemotherapy agent in the treatment of cancer, but it has immunosuppressive effects. Protium heptaphyllum (P. heptaphyllum) is a plant rich in triterpenes and flavonoids, with some bioactive and therapeutic properties presented in the literature. Thus, the present study aimed to investigate the chemoprotective potential of P. heptaphyllum extract inserted into liposomes against oxidative damage chemically induced by CPA. Male Swiss mice received 1.5 mg/kg of P. heptaphyllum liposomes as a pre-treatment for 14 consecutive days (via gavage) and 100 mg/kg of CPA in a single dose (via intraperitoneal) on the 15th day. After the experimental period, blood and organ samples were collected for histopathological and biochemical analyses, including superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione S-transferase (GST), reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS), ascorbic acid (ASA), carbonyl protein, cytokine measurement, and micronucleus testing. The results showed that liposomes containing P. heptaphyllum extract have an antimutagenic effect against damage induced to DNA by CPA, and that they also protect against oxidative stress, as verified by the increase in the antioxidant enzymes SOD and GPx. The improvement in alkaline phosphatase and creatinine markers suggests a beneficial effect on the liver and kidneys, respectively. However, the depletion of GSH in the liver and brain suggests the use of antioxidants for the metabolism of molecules generated in these tissues. In general, these data show good prospects for the use of P. heptaphyllum liposomes as a cancer chemoprotective agent, as well as possible antioxidant action, conceivably attributed to the flavonoids present in the plant extract. Full article
(This article belongs to the Special Issue Plant Natural Products: Mechanisms of Action for Promoting Health)
Show Figures

Graphical abstract

Back to TopTop