Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (678)

Search Parameters:
Keywords = chemical structure defect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 2261 KiB  
Article
Influence of Superplasticizers on the Diffusion-Controlled Synthesis of Gypsum Crystals
by F. Kakar, C. Pritzel, T. Kowald and M. S. Killian
Crystals 2025, 15(8), 709; https://doi.org/10.3390/cryst15080709 (registering DOI) - 31 Jul 2025
Abstract
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and [...] Read more.
Gypsum (CaSO4·2H2O) crystallization underpins numerous industrial processes, yet its response to chemical admixtures remains incompletely understood. This study investigates diffusion-controlled crystal growth in a coaxial test tube system to evaluate how three Sika® ViscoCrete® superplasticizers—430P, 111P, and 120P—affect nucleation, growth kinetics, morphology, and thermal behavior. The superplasticizers, selected for their surface-active properties, were hypothesized to influence crystallization via interfacial interactions. Ion diffusion was maintained quasi-steadily for 12 weeks, with crystal evolution tracked weekly by macro-photography; scanning electron microscopy and thermogravimetric/differential scanning were performed at the final stage. All admixtures delayed nucleation in a concentration-dependent manner. Lower dosages (0.5–1.0 wt%) yielded platy-to-prismatic morphologies and higher dehydration enthalpies, indicating more ordered lattice formation. In contrast, higher dosages (1.5–2.0 wt%) produced denser, irregular crystals and shifted dehydration to lower temperatures, suggesting structural defects or increased hydration. Among the additives, 120P showed the strongest inhibitory effect, while 111P at 0.5 wt% resulted in the most uniform crystals. These results demonstrate that ViscoCrete® superplasticizers can modulate gypsum crystallization and thermal properties. Full article
(This article belongs to the Section Macromolecular Crystals)
14 pages, 3023 KiB  
Article
Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels
by Arménio N. Correia, Daniel F. O. Braga, Ricardo Baptista and Virgínia Infante
Polymers 2025, 17(15), 2084; https://doi.org/10.3390/polym17152084 - 30 Jul 2025
Viewed by 55
Abstract
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric [...] Read more.
This study investigates the friction stir joining of AA6082-T6 aluminum alloy and Noryl GFN2 polymer in a buttstrap configuration, targeting the development of lightweight cylindrical-shaped structures where the polymer provides thermal, chemical, and electrical insulation, while the aluminum ensures mechanical integrity. A parametric analysis was carried out to assess the ability to produce friction stir buttstrap composite panels in a single processing step and assess the resulting tensile and flexural behavior. To that end, travel and rotating speeds ranging from 2150 to 2250 rpm, and 100 to 140 mm/min, respectively, were employed while keeping plunge depth and the tilt angle constant. A total of nine composite joints were successfully produced and subsequently subjected to both tensile and four-point bending tests. The tensile and flexural strength results ranged from 80 to 139 MPa, and 39 to 47 MPa, respectively. Moreover, the microstructural examination revealed that all joints exhibited a defect within the joining region and its size and shape had a significant effect on tensile strength, whereas the flexural strength was less affected with more uniform results. The joining region was also characterized by a decrease in hardness, particularly in the pin-affected region on the aluminum end of the joint, exhibiting a W-shaped pattern. Contrarily, on the polymeric end of the joining region, no significant change in hardness was observed. Full article
Show Figures

Figure 1

10 pages, 609 KiB  
Communication
Scalable Synthesis of 2D TiNCl via Flash Joule Heating
by Gabriel A. Silvestrin, Marco Andreoli, Edson P. Soares, Elita F. Urano de Carvalho, Almir Oliveira Neto and Rodrigo Fernando Brambilla de Souza
Physchem 2025, 5(3), 30; https://doi.org/10.3390/physchem5030030 - 28 Jul 2025
Viewed by 224
Abstract
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural [...] Read more.
A scalable synthesis of two-dimensional titanium nitride chloride (TiNCl) via flash Joule heating (FJH) using titanium tetrachloride (TiCl4) precursor has been developed. This single-step method overcomes traditional synthesis challenges, including high energy consumption, multi-step procedures, and hazardous reagent requirements. The structural and chemical properties of the synthesized TiNCl were characterized through multiple analytical techniques. X-ray diffraction (XRD) patterns confirmed the presence of TiNCl phase, while Raman spectroscopy data showed no detectable oxide impurities. Fourier transform infrared spectroscopy (FTIR) analysis revealed characteristic Ti–N stretching vibrations, further confirming successful titanium nitride synthesis. Transmission electron microscopy (TEM) imaging revealed thin, plate-like nanostructures with high electron transparency. These analyses confirmed the formation of highly crystalline TiNCl flakes with nanoscale dimensions and minimal structural defects. The material exhibits excellent structural integrity and phase purity, demonstrating potential for applications in photocatalysis, electronics, and energy storage. This work establishes FJH as a sustainable and scalable approach for producing MXenes with controlled properties, facilitating their integration into emerging technologies. Unlike conventional methods, FJH enables rapid, energy-efficient synthesis while maintaining material quality, providing a viable route for industrial-scale production of two-dimensional materials. Full article
(This article belongs to the Section Nanoscience)
Show Figures

Figure 1

13 pages, 1758 KiB  
Article
Microwave Based Non-Destructive Testing for Detecting Cold Welding Defects in Thermal Fusion Welded High-Density Polyethylene Pipes
by Zhen Wang, Chaoming Zhu, Jinping Pan, Ran Huang and Lianjiang Tan
Polymers 2025, 17(15), 2048; https://doi.org/10.3390/polym17152048 - 27 Jul 2025
Viewed by 167
Abstract
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose [...] Read more.
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose significant safety risks. Traditional non-destructive testing (NDT) methods face challenges in detecting cold welding defects due to the polymer’s complex structure and characteristics. This study presents a microwave-based NDT system for detecting cold welding defects in thermal fusion welds of HDPE pipes. The system uses a focusing antenna with a resonant cavity, connected to a vector network analyzer (VNA), to measure changes in microwave parameters caused by cold welding defects in thermal fusion welds. Experiments conducted on HDPE pipes welded at different temperatures demonstrated the system’s effectiveness in identifying areas with a lack of fusion. Mechanical and microstructural analyses, including tensile tests and scanning electron microscopy (SEM), confirmed that cold welding defects lead to reduced mechanical properties and lower material density. The proposed microwave NDT method offers a sensitive, efficient approach for detecting cold welds in HDPE pipelines, enhancing pipeline integrity and safety. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 178
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Modification of G-C3N4 by the Surface Alkalinization Method and Its Photocatalytic Depolymerization of Lignin
by Zhongmin Ma, Ling Zhang, Lihua Zang and Fei Yu
Materials 2025, 18(14), 3350; https://doi.org/10.3390/ma18143350 - 17 Jul 2025
Viewed by 282
Abstract
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, [...] Read more.
The efficient depolymerization of lignin has become a key challenge in the preparation of high-value-added chemicals. Graphitic carbon nitride (g-C3N4)-based photocatalytic system shows potential due to its mild and green characteristics over other depolymerization methods. However, its inherent defects, such as a wide band gap and rapid carrier recombination, severely limit its catalytic performance. In this paper, a g-C3N4 modification strategy of K⁺ doping and surface alkalinization is proposed, which is firstly applied to the photocatalytic depolymerization of the lignin β-O-4 model compound (2-phenoxy-1-phenylethanol). K⁺ doping is achieved by introducing KCl in the precursor thermal polymerization stage to weaken the edge structure strength of g-C3N4, and post-treatment with KOH solution is combined to optimize the surface basic groups. The structural/compositional evolution of the materials was analyzed by XRD, FTIR, and XPS. The morphology/element distribution was visualized by SEM-EDS, and the optoelectronic properties were evaluated by UV–vis DRS, PL, EIS, and transient photocurrent (TPC). K⁺ doping and surface alkalinization synergistically regulate the layered structure of the material, significantly increase the specific surface area, introduce nitrogen vacancies and hydroxyl functional groups, effectively narrow the band gap (optimized to 2.35 eV), and inhibit the recombination of photogenerated carriers by forming electron capture centers. Photocatalytic experiments show that the alkalinized g-C3N4 can completely depolymerize 2-phenoxy-1-phenylethanol with tunable product selectivity. By adjusting reaction time and catalyst dosage, the dominant product can be shifted from benzaldehyde (up to 77.28% selectivity) to benzoic acid, demonstrating precise control over oxidation degree. Mechanistic analysis shows that the surface alkaline sites synergistically optimize the Cβ-O bond breakage path by enhancing substrate adsorption and promoting the generation of active oxygen species (·OH, ·O2). This study provides a new idea for the efficient photocatalytic depolymerization of lignin and lays an experimental foundation for the interface engineering and band regulation strategies of g-C3N4-based catalysts. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

21 pages, 5279 KiB  
Article
The Influence of Zn and Ca Addition on the Microstructure, Mechanical Properties, Cytocompatibility, and Electrochemical Behavior of WE43 Alloy Intended for Orthopedic Applications
by Mircea Cătălin Ivănescu, Corneliu Munteanu, Ramona Cimpoeșu, Maria Daniela Vlad, Bogdan Istrate, Fabian Cezar Lupu, Eusebiu Viorel Șindilar, Alexandru Vlasa, Cristinel Ionel Stan, Maria Larisa Ivănescu and Georgeta Zegan
Medicina 2025, 61(7), 1271; https://doi.org/10.3390/medicina61071271 - 14 Jul 2025
Viewed by 318
Abstract
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop [...] Read more.
Background and Objectives: Magnesium (Mg)-based materials, such as the WE43 alloy, show potential in biomedical applications owing to their advantageous mechanical properties and biodegradability; however, their quick corrosion rate and hydrogen release restrict their general clinical utilization. This study aimed to develop a novel Mg-Zn-Ca alloy system based on WE43 alloy, evaluating the influence of Zn and Ca additions on microstructure, mechanical properties, cytocompatibility, and electrochemical behavior for potential use in biodegradable orthopedic applications. Materials and Methods: The WE43-Zn-Ca alloy system was developed by alloying standard WE43 (Mg–Y–Zr–RE) with 1.5% Zn and Ca concentrations of 0.2% (WE43_0.2Ca alloy) and 0.3% (WE43_0.3Ca alloy). Microstructural analysis was performed utilizing scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDS), while the chemical composition was validated through optical emission spectroscopy and X-ray diffraction (XRD). Mechanical properties were assessed through tribological tests. Electrochemical corrosion behavior was evaluated using potentiodynamic polarization in a 3.5% NaCl solution. Cytocompatibility was assessed in vitro on MG63 cells using cell viability assays (MTT). Results: Alloys WE43_0.2Ca and WE43_0.3Ca exhibited refined, homogeneous microstructures with grain sizes between 70 and 100 µm, without significant structural defects. Mechanical testing indicated reduced stiffness and an elastic modulus similar to human bone (19.2–20.3 GPa), lowering the risk of stress shielding. Cytocompatibility tests confirmed non-cytotoxic behavior for alloys WE43_0.2Ca and WE43_0.3Ca, with increased cell viability and unaffected cellular morphology. Conclusions: The study validates the potential of Mg-Zn-Ca alloys (especially WE43_0.3Ca) as biodegradable biomaterials for orthopedic implants due to their favorable combination of mechanical properties, corrosion resistance, and cytocompatibility. The optimization of these alloys contributed to obtaining an improved microstructure with a reduced degradation rate and a non-cytotoxic in vitro outcome, which supports efficient bone tissue regeneration and its integration into the body for complex biomedical applications. Full article
Show Figures

Figure 1

21 pages, 13173 KiB  
Article
Surface Modification by Plasma Electrolytic Oxidation of Friction Surfacing 4043 Aluminum-Based Alloys Deposited onto Structural S235 Steel Substrate
by Roxana Muntean and Ion-Dragoș Uțu
Materials 2025, 18(14), 3302; https://doi.org/10.3390/ma18143302 - 13 Jul 2025
Viewed by 446
Abstract
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without [...] Read more.
The friction surfacing (FS) process has emerged over the past few years as a method for joining both similar and dissimilar materials, for volume damage repair of defective components, and for corrosion protection. The possibility to produce a metallic coating by FS, without melting the material, classifies this technique as distinct from other standard methods. This unconventional deposition method is based on the severe plastic deformation that appears on a rotating metallic rod (consumable material) pressed against the substrate under an axial load. The present study aims to investigate the tribological properties and corrosion resistance provided by the aluminum-based FS coatings deposited onto a structural S235 steel substrate and further modified by plasma electrolytic oxidation (PEO). During the PEO treatment, the formation of a ceramic film is enabled, while the hardness, chemical stability, corrosion, and wear resistance of the modified surfaces are considerably increased. The morpho-structural characteristics and chemical composition of the PEO-modified FS coatings are further investigated using scanning electron microscopy combined with energy dispersive spectroscopy analysis and X-ray diffraction. Dry sliding wear testing of the PEO-modified aluminum-based coatings was carried out using a ball-on-disc configuration, while the corrosion resistance was electrochemically evaluated in a 3.5 wt.% NaCl solution. The corrosion rates of the aluminum-based coatings decreased significantly when the PEO treatment was applied, while the wear rate was substantially reduced compared to the untreated aluminum-based coating and steel substrate, respectively. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 704 KiB  
Review
Advancements in Chitosan-Based Scaffolds for Chondrogenic Differentiation and Knee Cartilage Regeneration: Current Trends and Future Perspectives
by Kamila Rawojć, Ryszard Tadeusiewicz and Ewa Zych-Stodolak
Bioengineering 2025, 12(7), 740; https://doi.org/10.3390/bioengineering12070740 - 7 Jul 2025
Viewed by 467
Abstract
Cartilage damage, particularly in the knee joint, presents a significant challenge in regenerative medicine due to its limited capacity for self-repair. Conventional treatments like microfracture surgery, autologous chondrocyte implantation (ACI), and osteochondral allografts often fall short, particularly in cases of larger defects or [...] Read more.
Cartilage damage, particularly in the knee joint, presents a significant challenge in regenerative medicine due to its limited capacity for self-repair. Conventional treatments like microfracture surgery, autologous chondrocyte implantation (ACI), and osteochondral allografts often fall short, particularly in cases of larger defects or degenerative conditions. This has led to a growing interest in tissue engineering approaches that utilize biomaterial scaffolds to support cartilage regeneration. Among the many materials explored, chitosan—a naturally derived polysaccharide—has gained attention for its biocompatibility, biodegradability, and structural resemblance to the extracellular matrix (ECM) of cartilage. Recent advances in scaffold design have focused on modifying chitosan to improve its mechanical properties and enhance its biological performance. These modifications include chemical crosslinking, the incorporation of bioactive molecules, and the development of composite formulations. Such enhancements have allowed chitosan-based scaffolds to better support mesenchymal stem cell (MSC) differentiation into chondrocytes, paving the way for improved regenerative strategies. This review explores the latest progress in chitosan scaffold fabrication, preclinical findings, and the transition toward clinical applications. It also discusses the challenges that need to be addressed, such as mechanical stability, degradation rates, and the successful translation of research into viable therapeutic solutions. Full article
(This article belongs to the Special Issue Advanced Engineering Technologies in Orthopaedic Research)
Show Figures

Figure 1

13 pages, 5053 KiB  
Article
Thermoelectric Properties of NbCoNixSn (x = 0–1)
by Moritz Thiem, Ruijuan Yan, Anke Weidenkaff and Wenjie Xie
Materials 2025, 18(13), 3189; https://doi.org/10.3390/ma18133189 - 5 Jul 2025
Viewed by 443
Abstract
The half-Heusler (HH) compound NbCoSn, with 18 valence electrons, is a promising thermoelectric (TE) material due to its favourable electrical properties and excellent thermal and chemical stability. Enhancing its TE performance typically involves doping and microstructure engineering. In this study, Ni was introduced [...] Read more.
The half-Heusler (HH) compound NbCoSn, with 18 valence electrons, is a promising thermoelectric (TE) material due to its favourable electrical properties and excellent thermal and chemical stability. Enhancing its TE performance typically involves doping and microstructure engineering. In this study, Ni was introduced into NbCoSn to form NbCoNixSn (x = 0–1), and the effects of Ni content on the microstructure and TE properties were systematically investigated. At low doping levels (x ≤ 0.05), Ni occupies interstitial sites, forming NbCoNixSn solid solutions. At higher concentrations (x > 0.05), full-Heusler (FH) secondary phases emerge, resulting in HH–FH composites. The introduction of Co/Ni interstitials enhances TE performance by creating in-gap electronic states and increasing phonon scattering through point defects. A clear structural transition from HH to FH phases is observed with increasing Ni content. The highest figure of merit, ZT ≈ 0.52 at 975 K, was obtained for NbCoNi0.05Sn, comparable to the best values reported for this system. Full article
Show Figures

Figure 1

17 pages, 7952 KiB  
Article
Achyrophanite, (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5, a New Mineral with the Novel Structure Type from Fumarolic Exhalations of the Tolbachik Volcano, Kamchatka, Russia
by Igor V. Pekov, Natalia V. Zubkova, Natalia N. Koshlyakova, Dmitry I. Belakovskiy, Marina F. Vigasina, Atali A. Agakhanov, Sergey N. Britvin, Anna G. Turchkova, Evgeny G. Sidorov, Pavel S. Zhegunov and Dmitry Yu. Pushcharovsky
Minerals 2025, 15(7), 706; https://doi.org/10.3390/min15070706 - 2 Jul 2025
Viewed by 280
Abstract
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, [...] Read more.
The new mineral achyrophanite (K,Na)3(Fe3+,Ti,Al,Mg)5O2(AsO4)5 was found in high-temperature sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with aphthitalite-group sulfates, hematite, alluaudite-group arsenates (badalovite, calciojohillerite, johillerite, nickenichite, hatertite, and khrenovite), ozerovaite, pansnerite, arsenatrotitanite, yurmarinite, svabite, tilasite, katiarsite, yurgensonite, As-bearing sanidine, anhydrite, rutile, cassiterite, and pseudobrookite. Achyrophanite occurs as long-prismatic to acicular or, rarer, tabular crystals up to 0.02 × 0.2 × 1.5 mm, which form parallel, radiating, bush-like, or chaotic aggregates up to 3 mm across. It is transparent, straw-yellow to golden yellow, with strong vitreous luster. The mineral is brittle, with (001) perfect cleavage. Dcalc is 3.814 g cm–3. Achyrophanite is optically biaxial (+), α = 1.823(7), β = 1.840(7), γ = 1.895(7) (589 nm), 2V (meas.) = 60(10)°. Chemical composition (wt.%, electron microprobe) is: Na2O 3.68, K2O 9.32, CaO 0.38, MgO 1.37, MnO 0.08, CuO 0.82, ZnO 0.48, Al2O3 2.09, Fe2O3 20.42, SiO2 0.12, TiO2 7.35, P2O5 0.14, V2O5 0.33, As2O5 51.88, SO3 1.04, and total 99.40. The empirical formula calculated based on 22 O apfu is Na1.29K2.15Ca0.07Mg0.34Mn0.01Cu0.11Zn0.06Al0.44Fe3+2.77Ti1.00Si0.02P0.02S0.14V0.04As4.90O22. Achyrophanite is orthorhombic, space group P2221, a = 6.5824(2), b = 13.2488(4), c = 10.7613(3) Å, V = 938.48(5) Å3 and Z = 2. The strongest reflections of the PXRD pattern [d,Å(I)(hkl)] are 5.615(59)(101), 4.174(42)(022), 3.669(31)(130), 3.148(33)(103), 2.852(43)(141), 2.814(100)(042, 202), 2.689(29)(004), and 2.237(28)(152). The crystal structure of achyrophanite (solved from single-crystal XRD data, R = 4.47%) is unique. It is based on the octahedral-tetrahedral M-T-O pseudo-framework (M = Fe3+ with admixed Ti, Al, Mg, Na; T = As5+). Large-cation A sites (A = K, Na) are located in the channels of the pseudo-framework. The achyrophanite structure can be described as stuffed, with the defect heteropolyhedral pseudo-framework derivative of the orthorhombic Fe3+AsO4 archetype. The mineral is named from the Greek άχυρον, straw, and φαίνομαι, to appear, in allusion to its typical straw-yellow color and long prismatic habit of crystals. Full article
Show Figures

Figure 1

20 pages, 2896 KiB  
Article
Annealing-Driven Modifications in ZnO Nanorod Thin Films and Their Impact on NO2 Sensing Performance
by Sandip M. Nikam, Tanaji S. Patil, Nilam A. Nimbalkar, Raviraj S. Kamble, Vandana R. Patil, Uttam E. Mote, Sadaf Jamal Gilani, Sagar M. Mane, Jaewoong Lee and Ravindra D. Mane
Micromachines 2025, 16(7), 778; https://doi.org/10.3390/mi16070778 - 30 Jun 2025
Viewed by 311
Abstract
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at [...] Read more.
This research examines the effect of annealing temperature on the growth orientation of zinc oxide (ZnO) nanorods and its subsequent influence on NO2 gas sensing efficiency. Zinc oxide (ZnO) nanorods were synthesized using the chemical bath deposition method, followed by annealing at 300, 400, and 500 °C. Diffraction analysis confirmed that both non-annealed and annealed ZnO nanorods crystallize in a hexagonal wurtzite structure. However, increasing the annealing temperature shifts the growth orientation from the c-axis (002) toward the (100) and (101) directions. Microscopy images (FE-SEM) revealed a reduction in nanorod diameter as the annealing temperature increases. Optical characterization using UV–visible and photoluminescence spectroscopy indicated shifts in the band gap energy and emission properties. Contact angle measurements demonstrated the hydrophobic nature of the films. Gas sensing tests at 200 °C revealed that the ZnO thin film annealed at 400 °C achieved the highest NO2 response of 5.88%. The study highlights the critical role of annealing in modifying the crystallinity, growth orientation, and defect states of ZnO thin films, ultimately enhancing their NO2 detection capability. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for High-Performance Gas Sensors)
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
Research on Corrosion Protection of TETA-Modified Li–Al LDHs for AZ31 Magnesium Alloy in Simulated Seawater
by Sifan Tu, Liyan Wang, Sixu Wang, Haoran Chen, Qian Huang, Ning Hou, Zhiyuan Feng and Guozhe Meng
Metals 2025, 15(7), 724; https://doi.org/10.3390/met15070724 - 28 Jun 2025
Viewed by 306
Abstract
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. [...] Read more.
Magnesium alloys are lightweight metals but suffer from high corrosion susceptibility due to their chemical reactivity, limiting their large-scale applications. To enhance corrosion resistance, this work combines Li–Al layered double hydroxides (LDHs) with triethylenetetramine (TETA) inhibitors to form an efficient corrosion protection system. Electrochemical tests, SEM, FT-IR, XPS, and 3D depth-of-field microscopy were employed to evaluate TETA-modified Li–Al LDH coatings at varying concentrations. Among them, the Li–Al LDHs without the addition of a TETA corrosion inhibitor decreased significantly at |Z|0.01 Hz after immersion for 4 h. However, the Li–Al LDHs coating of 23.5 mM TETA experienced a sudden drop at |Z|0.01 Hz after holding for about 60 h, and the Li–Al LDHs coating of 70.5 mM TETA also experienced a sudden drop at |Z|0.01 Hz after holding for about 132 h. By contrast, at the optimal concentration (47 mM), after 24 h of immersion, the maximum |Z|0.01 Hz reached 7.56 × 105 Ω∙cm2—three orders of magnitude higher than pure Li–Al LDH coated AZ31 (2.55 × 102 Ω∙cm2). After 300 h of immersion, the low-frequency impedance remained above 105 Ω∙cm2, demonstrating superior long-term protection. TETA modification significantly improved the durability of Li–Al LDHs coatings, addressing the short-term protection limitation of standalone Li–Al LDHs. Li–Al LDHs themselves have a layered structure and effectively capture corrosive Cl ions in the environment through ion exchange capacity, reducing the corrosion of the interface. Furthermore, TETA exhibits strong adsorption on Li–Al LDHs layers, particularly at coating defects, enabling rapid barrier formation. This inorganic–organic hybrid design achieves defect compensation and enhanced protective barriers. Full article
(This article belongs to the Special Issue Metal Corrosion Behavior and Protection in Service Environments)
Show Figures

Figure 1

12 pages, 2291 KiB  
Article
Processing and Evaluation of an Aluminum Matrix Composite Material
by Calin-Octavian Miclosina, Remus Belu-Nica, Costel Relu Ciubotariu and Gabriela Marginean
J. Compos. Sci. 2025, 9(7), 335; https://doi.org/10.3390/jcs9070335 - 27 Jun 2025
Viewed by 443
Abstract
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the [...] Read more.
This study signifies the development and characterization of a composite material with a metallic matrix of aluminum reinforced with a steel mesh, utilizing centrifugal casting technology. An evaluation was conducted to ascertain the influence of the formulation process and the presence of the insert on the mechanical behavior with regard to tensile strength. The aluminum matrix was obtained from commercial and scrap alloys, elaborated by advanced methods of degassing and chemical modification. Meanwhile, the steel mesh reinforcement was cleaned, copper plated, and preheated to optimize wetting and, consequently, adhesion. The structural characterization was performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy analyses (EDX), which highlighted a well-defined interface and uniform copper distribution. The composite was produced by means of horizontal-axis centrifugal casting in a fiberglass mold, followed by cold rolling to obtain flat specimens. A total of eight tensile specimens were examined, with measured ultimate tensile strengths ranging from 78.5 to 119.8 (MPa). A thorough examination of the fractured specimens revealed a brittle fracture mechanism, devoid of substantial plastic deformation. The onset of failures was frequently observed at the interface between the aluminum matrix and the steel mesh. The use of SEM and EDX investigations led to the confirmation of the uniformity of the copper coating and the absence of significant porosity or interfacial defects. A bimodal distribution of tensile strength values was observed, a phenomenon that is likely attributable to variations in mesh positioning and local differences in solidification. A correlation was established between the experimental results and an analytical polynomial model, thereby confirming a reasonable fit. In sum, the present study provides a substantial foundation for the development of metal matrix composites with enhanced performance, specifically designed for challenging structural applications. This method also demonstrates potential for recycling aluminum scrap into high-performance composites with controlled microstructure and mechanical integrity. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

16 pages, 18636 KiB  
Article
Irradiation Performance of a Multiphase MoNbTiVZr Refractory High-Entropy Alloy: Role of Zr-Rich Phase Precipitation
by Liqiu Yong, Yilong Zhong, Hongyang Xin, An Li, Dongsheng Xie, Lu Wu and Jijun Yang
Metals 2025, 15(7), 720; https://doi.org/10.3390/met15070720 - 27 Jun 2025
Viewed by 318
Abstract
Body-centered cubic (BCC) refractory high-entropy alloys (RHEAs) demonstrate significant potential as nuclear structural materials due to their exceptional mechanical properties and radiation tolerance. While Zr-containing RHEAs often develop multiphase structures through Zr-rich phase precipitation to enhance high-temperature mechanical performance, their irradiation response mechanisms [...] Read more.
Body-centered cubic (BCC) refractory high-entropy alloys (RHEAs) demonstrate significant potential as nuclear structural materials due to their exceptional mechanical properties and radiation tolerance. While Zr-containing RHEAs often develop multiphase structures through Zr-rich phase precipitation to enhance high-temperature mechanical performance, their irradiation response mechanisms remain poorly understood. This study investigated the microstructure evolution and radiation damage behavior in equiatomic MoNbTiVZr RHEA under Au-ion irradiation at fluences of 2 × 1015, 4 × 1015, and 1 × 1016 ions/cm2. Microstructural characterization revealed that the annealed alloy primarily consisted of near-equiatomic BCC1 phase, Zr-rich BCC2 phase, (Mo,V)Zr Laves phase, and ordered Zr2C phase. Post-irradiation analysis showed distinct defect evolution patterns: the BCC1 phase developed fine dislocation loops, while the Zr-rich BCC2 and Zr2C phases exhibited dislocation clusters and dense dislocation networks, respectively. BCC1 phase exhibited the most pronounced irradiation hardening corresponding to its fine, dispersed dislocation loop characteristics. Phase separation induced by Zr precipitation reduced chemical complexity, accelerating irradiation defect evolution. These findings demonstrated that Zr-rich phase precipitation detrimentally impacted the radiation resistance of BCC-structured RHEAs, suggesting that single-phase stability should be prioritized in nuclear material design. Full article
Show Figures

Figure 1

Back to TopTop