Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = chemical modification of natural compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4268 KiB  
Review
Targeting Bacterial Biofilms on Medical Implants: Current and Emerging Approaches
by Alessandro Calogero Scalia and Ziba Najmi
Antibiotics 2025, 14(8), 802; https://doi.org/10.3390/antibiotics14080802 - 6 Aug 2025
Abstract
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms [...] Read more.
Biofilms are structured communities of microorganisms encased in a self-produced extracellular matrix, and they represent one of the most widespread forms of microbial life on Earth. Their presence poses serious challenges in both environmental and clinical settings. In natural and industrial systems, biofilms contribute to water contamination, pipeline corrosion, and biofouling. Clinically, biofilm-associated infections are responsible for approximately 80% of all microbial infections, including endocarditis, osteomyelitis, cystic fibrosis, and chronic sinusitis. A particularly critical concern is their colonization of medical devices, where biofilms can lead to chronic infections, implant failure, and increased mortality. Implantable devices, such as orthopedic implants, cardiac pacemakers, cochlear implants, urinary catheters, and hernia meshes, are highly susceptible to microbial attachment and biofilm development. These infections are often recalcitrant to conventional antibiotics and frequently necessitate surgical revision. In the United States, over 500,000 biofilm-related implant infections occur annually, with prosthetic joint infections alone projected to incur revision surgery costs exceeding USD 500 million per year—a figure expected to rise to USD 1.62 billion by 2030. To address these challenges, surface modification of medical devices has emerged as a promising strategy to prevent bacterial adhesion and biofilm formation. This review focuses on recent advances in chemical surface functionalization using non-antibiotic agents, such as enzymes, chelating agents, quorum sensing quenching factors, biosurfactants, oxidizing compounds and nanoparticles, designed to enhance antifouling and mature biofilm eradication properties. These approaches aim not only to prevent device-associated infections but also to reduce dependence on antibiotics and mitigate the development of antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial and Antibiofilm Properties of Biomaterial)
Show Figures

Graphical abstract

46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

30 pages, 925 KiB  
Review
Review: Enhancing the Bioavailability and Stability of Anthocyanins for the Prevention and Treatment of Central Nervous System-Related Diseases
by Lan Zhang, Yan Wang, Yalong Cao, Fangxu Wang and Fang Li
Foods 2025, 14(14), 2420; https://doi.org/10.3390/foods14142420 - 9 Jul 2025
Viewed by 730
Abstract
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. [...] Read more.
Central nervous system diseases are highly complex in terms of etiology and pathogenesis, making their treatment and interventions for them a major focus and challenge in neuroscience research. Anthocyanins, natural water-soluble pigments widely present in plants, belong to the class of flavonoid compounds. As natural antioxidants, anthocyanins have attracted extensive attention due to their significant functions in scavenging free radicals, antioxidation, anti-inflammation, and anti-apoptosis. The application of anthocyanins in the field of central nervous system injury, particularly in neurodegenerative diseases, neurotoxicity induced by chemical drugs, stress-related nerve damage, and cerebrovascular diseases, has achieved remarkable research outcomes. However, anthocyanins often exhibit low chemical stability, a short half-life, and relatively low bioavailability, which limit their clinical application. Recent studies have found that the stability and bioavailability of anthocyanins can be significantly improved through nanoencapsulation, acylation, and copigmentation, as well as the preparation of nanogels, nanoemulsions, and liposomes. These advancements offer the potential for the development of anthocyanins as a new type of neuroprotective agent. Future research will focus on the innovative design of nano-delivery systems and structural modification based on artificial intelligence. Such research is expected to break through the bottleneck of anthocyanin application and enable it to become a core component of next-generation intelligent neuroprotective agents. Full article
Show Figures

Figure 1

24 pages, 11951 KiB  
Article
The Influence of Various Chemical Modifications of Sheep Wool Fibers on the Long-Term Mechanical Properties of Sheep Wool/PLA Biocomposites
by Piotr Szatkowski
Materials 2025, 18(13), 3056; https://doi.org/10.3390/ma18133056 - 27 Jun 2025
Viewed by 442
Abstract
Sheep wool is a natural fiber from various sheep breeds, mainly used in clothing for its insulation properties. It makes up a small share of global fiber production, which is declining as synthetic fibers replace wool and meat farming becomes more profitable. Wool [...] Read more.
Sheep wool is a natural fiber from various sheep breeds, mainly used in clothing for its insulation properties. It makes up a small share of global fiber production, which is declining as synthetic fibers replace wool and meat farming becomes more profitable. Wool from slaughter sheep, often unsuitable for textiles, is treated as biodegradable waste. The aim of the study was to develop a fully biodegradable composite of natural origin from a polylactide (PLA) matrix reinforced with sheep wool and to select the optimal modifications (chemical) of sheep wool fibers to obtain modified properties, including mechanical properties. The behavior of the composites after exposure to aging conditions simulating naturally occurring stimuli causing biodegradation and thus changes in the material’s performance over its lifespan was also examined. Dynamic thermal analysis was used to describe and parameterize the obtained data and their variables, and the mechanical properties were investigated. The research culminated in a microscopic analysis along with changes in surface properties. The study demonstrated that wool-reinforced composites exhibited significantly improved resistance to UV degradation compared to pure PLA, with samples containing 15% unmodified wool showing a 54% increase in storage modulus at 0 °C after aging. Chemical modifications using nitric acid, iron compounds, and tar were successfully implemented to enhance fiber–matrix compatibility, resulting in increased glass transition temperatures and modified mechanical properties. Although wool fiber is not a good choice for modifications to increase mechanical strength, adding wool fiber does not improve mechanical properties but also does not worsen them much. Wool fibers are a good filler that accelerates degradation and are also a waste, which reduces the potential costs of producing such a biocomposite. The research established that these biocomposites maintain sufficient mechanical properties for packaging applications while offering better environmental resistance than pure polylactide, contributing to the development of circular economy solutions for agricultural waste valorization. So far, no studies have been conducted in the literature on the influence of sheep wool and its modified versions on the mechanical properties and the influence of modification on the degradation rate of PLA/sheep wool biocomposites. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Figure 1

22 pages, 1129 KiB  
Review
Research on Volatile Allergenic Substances in Chinese Lacquer: An Integrated Analysis of Their Composition, Detection, Mechanisms, and Prevention
by Yao Wang, Jiangyan Hou, Tianyi Wang, Xinhao Feng and Xinyou Liu
Polymers 2025, 17(13), 1722; https://doi.org/10.3390/polym17131722 - 20 Jun 2025
Viewed by 528
Abstract
As a natural polymerized material, Chinese lacquer has numerous applications, although its processing is associated with volatile organic compounds (VOCs), which will cause a health risk. This paper was mainly focused on the detection of volatiles in the Chinese lacquer and its possible [...] Read more.
As a natural polymerized material, Chinese lacquer has numerous applications, although its processing is associated with volatile organic compounds (VOCs), which will cause a health risk. This paper was mainly focused on the detection of volatiles in the Chinese lacquer and its possible allergy mechanisms based on the properties of the lacquer, such as the main components, chemical properties, and allergy mechanisms of the unit phenols, aldehydes, and ketones and terpenes in the volatiles. Based on the detection technology (such as GC/MS) and allergy mechanism, a variety of prevention and control strategies are proposed, including the use of cyclodextrin–chitosan embedding technology to reduce the antigenicity of lacquer phenols and the directional modification of the active site of laccase to inhibit the generation of quinone toxicity products, as well as the research and development of antioxidant protective equipment for different volatiles, the installation of ventilation and purification devices, and the addition of antioxidants. They are all aimed at providing scientific evidence and practical guidance for the safe use of lacquer, the health protection of the practitioners, and the sustainable development of the related industries. Full article
Show Figures

Figure 1

26 pages, 2730 KiB  
Review
Cysteine Alkylation in Enzymes and Transcription Factors: A Therapeutic Strategy for Cancer
by Celia María Curieses Andrés, Fernando Lobo, José Manuel Pérez de la Lastra, Elena Bustamante Munguira, Celia Andrés Juan and Eduardo Pérez-Lebeña
Cancers 2025, 17(11), 1876; https://doi.org/10.3390/cancers17111876 - 3 Jun 2025
Viewed by 650
Abstract
Metabolic enzymes and cancer-driving transcriptions factors are often overexpressed in neoplastic cells, and their exposed cysteine residues are amenable to chemical modification. This review explores cysteine alkylation as a cancer treatment strategy, focusing on Michael acceptors like curcumin and helenalin, which interact with [...] Read more.
Metabolic enzymes and cancer-driving transcriptions factors are often overexpressed in neoplastic cells, and their exposed cysteine residues are amenable to chemical modification. This review explores cysteine alkylation as a cancer treatment strategy, focusing on Michael acceptors like curcumin and helenalin, which interact with transcription factors NF-κB, STAT3 and HIF-1α. Molecular docking studies using AutoDockFR revealed distinct binding affinities: curcumin showed strong interactions with STAT3 and NF-κB, while helenalin exhibited high affinity for STAT3 and HIF-1α. Synthetic compounds like STAT3-IN-1 and CDDO-Me demonstrated superior binding in most targets, except for CDDO-Me with HIF-1α, suggesting unique structural incompatibilities. Natural products such as zerumbone and umbelliferone displayed moderate activity, while palbociclib highlighted synthetic-drug advantages. These results underscore the importance of ligand−receptor structural complementarity, particularly for HIF-1α’s confined binding site, where helenalin’s terminal Michael acceptor system proved optimal. The findings advocate for integrating computational and experimental approaches to develop cysteine-targeted therapies, balancing synthetic precision with natural product versatility for context-dependent cancer treatment strategies. Full article
(This article belongs to the Special Issue Research on Targeted Drugs in Cancer)
Show Figures

Figure 1

25 pages, 2020 KiB  
Article
Boron-Based Compounds for Solid-State Hydrogen Storage: A Review
by Yernat Kozhakhmetov, Sherzod Kurbanbekov, Nurya Mukhamedova, Azamat Urkunbay, Aibar Kizatov, Leila Bayatanova, Raushan Nurdillayeva and Dilnoza Baltabayeva
Crystals 2025, 15(6), 536; https://doi.org/10.3390/cryst15060536 - 3 Jun 2025
Viewed by 790
Abstract
Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered [...] Read more.
Due to the depletion of hydrocarbon resources worldwide, intensive research is being conducted to identify alternative energy carriers. Hydrogen has emerged as a promising candidate due to its high energy density and environmentally friendly nature. However, large-scale implementation of hydrogen energy is hindered by the lack of safe, efficient, and cost-effective storage methods. Among the various materials studied for solid-state hydrogen storage, boron nitride (BN)-based compounds have attracted significant attention owing to their high thermal stability, tunable morphology, and potential for physisorption-based storage. This review focuses on recent advances in the synthesis, functionalization, and structural optimization of BN-based materials, including nanotubes, nanosheets, porous frameworks, and chemically modified BN. Although other boron-containing hydrides such as LiBH4, Mg(BH4)2, and closo-borates are briefly mentioned for comparison, the primary emphasis is placed on BN-related systems. This paper discusses various modification strategies aimed at enhancing hydrogen uptake and reversibility, offering insights into the future potential of BN-based materials in hydrogen storage technologies. Full article
Show Figures

Figure 1

22 pages, 3601 KiB  
Article
Fast Removal of Naphthol Blue Black B Dye from Water Using Polyethyleneimine Functionalized Zinc, Iron, and Manganese Porphyrinic Complexes: Structural Characterization, Kinetic, and Isotherms Studies
by Sahar Y. Rajeh, Aljazi Abdullah Alrashidi, Raoudha Soury and Mahjoub Jabli
Polymers 2025, 17(11), 1494; https://doi.org/10.3390/polym17111494 - 28 May 2025
Viewed by 369
Abstract
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed [...] Read more.
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed using several analytical techniques, including 1H NMR, FT-IR, UV-vis, XRD, XRF, TGA-DTA, SEM, and EDX. The presence of sharp main peaks at 2θ between 10° and 80°, in XRD analysis, for all studied compounds suggested the crystalline nature of the porphyrinic complexes. The morphological properties of the porphyrininc complexes were significantly affected by the chemical modification with polyethyleneimine. EDX result confirmed the complexation of zinc, iron, and manganese metals with the porphyrinic core. The increase in carbon and nitrogen contents after the addition of polyethyleneimine to the complexes (13) was noticeable. After thermal decomposition, the total mass loss was equal to 92.97%, 66.77%, and 26.78% for complexes (1), (2), and (3), respectively. However, for the complex (1)-PEI, complex (2)-PEI, and complex (3)-PEI, the total mass losses were 83.12%, 81.88%, and 35.78%, respectively. The synthetic compounds were additionally utilized for the adsorption of Naphthol blue black B from water. At optimum adsorption conditions (T = 20 °C, time = 60 min, pH = 5), the highest adsorption capacities were 154 mg/g, 139 mg/g, and 119 mg/g for complex (3)-PEI, complex (2)-PEI, and complex (1)-PEI, respectively. The adsorption mechanism followed the pseudo second order, the Freundlich, and the Temkin models. The results indicated that the adsorption process is reliant on chemical interactions. It was also governed by intraparticular diffusion and other kinetic phenomena. Full article
Show Figures

Figure 1

24 pages, 4491 KiB  
Review
Bioimaging and Sensing Properties of Curcumin and Derivatives
by Chiara Maria Antonietta Gangemi, Salvatore Mirabile, Maura Monforte, Anna Barattucci and Paola Maria Bonaccorsi
Int. J. Mol. Sci. 2025, 26(10), 4871; https://doi.org/10.3390/ijms26104871 - 19 May 2025
Viewed by 588
Abstract
Curcumin (Cur) is one of the most studied natural polyphenolic compounds, with many pharmacological properties and a luminescent skeleton. Natural fluorescent molecules are peculiar tools in nanomedicine for bioimaging and sensing, and this review focuses on the photophysical properties and applications of Cur [...] Read more.
Curcumin (Cur) is one of the most studied natural polyphenolic compounds, with many pharmacological properties and a luminescent skeleton. Natural fluorescent molecules are peculiar tools in nanomedicine for bioimaging and sensing, and this review focuses on the photophysical properties and applications of Cur in these biomedical fields. The first part of the review opens with a description of the Cur chemical skeleton and its connection with the luminescent nature of this molecule. The 1,6-heptadiene-3,5-dionyl chain causes the involvement of Cur in a keto–enol tautomerism, which influences its solvatochromism. The polyphenolic nature of its skeleton justifies the Cur generation of singlet oxygen and ROS upon photoexcitation, and this is responsible for the photophysical processes that may be related to the photodynamic therapy (PDT) effects of Cur. In the second part of the review, bioimaging based on Cur derivatives is reviewed, with a deeper attention paid to the molecular diagnostic and nano-formulations in which Cur is involved, either as a drug or a source of fluorescence. Theragnostics is an innovative idea in medicine based on the integration of diagnosis and therapy with nanotechnology. The combination of diagnostics and therapy provides optimal and targeted treatment of the disease from its early stages. Curcumin has been involved in a series of nano-formulations exploiting its pharmacological and photophysical characteristics and overcoming its strong lipophilicity using biocompatible nanomaterials. In the third part of the review, modifications of the Cur skeleton were employed to synthesize probes that change their color in response to specific stimuli as a consequence of the trapping of specific molecules. Finally, the methodologies of sensing biothiols, anions, and cations by Cur are described, and the common features of such luminescent probes reveal how each modification of the skeleton can deeply influence its natural luminescence. Full article
(This article belongs to the Special Issue Luminescent Dyes as Tools for Biological and Medical Applications)
Show Figures

Graphical abstract

22 pages, 11628 KiB  
Review
Advances in Heavy Metal Extraction Using Organophosphorus Compounds: A Comprehensive Review
by Meriem Essakhraoui, Aziz Boukhair, Fouad Bentiss, Hamid Mazouz, Redouane Beniazza and Nils Haneklaus
Metals 2025, 15(5), 524; https://doi.org/10.3390/met15050524 - 6 May 2025
Viewed by 1367
Abstract
Organophosphorus compounds (OPC) are a large class of organic compounds that provide a wide range of applications, and their importance has grown steadily in recent years. In each category and family, these compounds have similarities and differences. Due to their immense variety, these [...] Read more.
Organophosphorus compounds (OPC) are a large class of organic compounds that provide a wide range of applications, and their importance has grown steadily in recent years. In each category and family, these compounds have similarities and differences. Due to their immense variety, these chemicals have various properties and, therefore, various applications. In fact, various works have been published recently that present the main applications of OPC, especially in metal extraction. Despite their extemsive range of use, optimizing their performance as extractant agents remains a challenge due to their structural variability and sensitivity to process parameters. This review provides a critical analysis of pentavalent OPCs, focusing on how their chemical nature influences heavy metal extraction efficiency. For the first time, we present a novel classification system for OPCs based on phosphorus valency and heteroatom coordination, offering a framework to guide future research. Our findings reveal that the direct coordination of the phosphorus to heteroatoms such as oxygen, sulfur, and nitrogen has a great influence on the physicochemical characteristics of the extractant and the metal extraction efficiency. This observation is in line with Pearson’s Hard and Soft Acids and Bases (HSAB) theory in the sense that it demonstrates that altering the heteroatom alters the metal affinity of the ligand. As a result, these structural modifications can improve the extraction performance by up to 40% for some heavy metals, highlighting the potential for optimized molecular designs to maximize industrial applications. In the future, this work offers a solid foundation for future studies on the rational design of organophosphorus-based extractants. Using HSAB theory and our novel classification system, researchers can rationally design OPCs for their target metal with unparalleled precision. These results have transformative impacts on metal recovery efficiency-intensive sectors like mining, waste recycling, and clean energy technologies. Full article
Show Figures

Figure 1

16 pages, 1645 KiB  
Review
Proteomic Strategies on the Management of Phytopathogenic Fungi
by Aldrey Nathália Ribeiro Corrêa, Ana Carolina Ritter and Adriano Brandelli
J. Fungi 2025, 11(4), 306; https://doi.org/10.3390/jof11040306 - 11 Apr 2025
Viewed by 752
Abstract
Phytopathogenic fungi are important causative agents of many plant diseases, resulting in substantial economic losses in agriculture. Proteomics has become one of the most relevant high-throughput technologies, and current advances in proteomic methodologies have been helpful in obtaining massive biological information about several [...] Read more.
Phytopathogenic fungi are important causative agents of many plant diseases, resulting in substantial economic losses in agriculture. Proteomics has become one of the most relevant high-throughput technologies, and current advances in proteomic methodologies have been helpful in obtaining massive biological information about several organisms. This review outlines recent advances in mass spectrometry-based proteomics applied to the study of phytopathogenic fungi, including analytical platforms such as LC-MS/MS and MALDI-TOF, as well as quantitative strategies including TMT, iTRAQ, and label-free quantification. Key findings are presented from studies exploring infection-related protein expression, virulence-associated factors, post-translational modifications, and fungal adaptation to chemical fungicides, antimicrobial peptides, and biological control agents. Proteomic analyses have also elucidated mechanisms of resistance, oxidative stress response, and metabolic disruption following exposure to natural products, including essential oils and volatile organic compounds. The proteomic approach enables a comprehensive understanding of fungal biology by identifying proteins related to pathogenicity, stress adaptation, and antifungal resistance, while also facilitating the discovery of molecular targets and natural compounds for the development of sustainable antifungal strategies that reduce risks to human health and the environment. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

31 pages, 2564 KiB  
Review
Epigenetic Alterations in Cancer: The Therapeutic Potential of Epigenetic Drugs in Cancer Therapy
by Preeti Gupta
Drugs Drug Candidates 2025, 4(2), 15; https://doi.org/10.3390/ddc4020015 - 5 Apr 2025
Viewed by 2909
Abstract
To date, numerous studies have emerged that indicate the possible role of epigenetic modulation in the development and progression of several diseases, including cancer. Epigenetic alterations participate in various steps of carcinogenesis. They play important regulatory roles in processes like cell division, proliferation, [...] Read more.
To date, numerous studies have emerged that indicate the possible role of epigenetic modulation in the development and progression of several diseases, including cancer. Epigenetic alterations participate in various steps of carcinogenesis. They play important regulatory roles in processes like cell division, proliferation, angiogenesis, and metastasis. Thus, epigenetic modifications such as DNA methylation, histone modifications, and non-coding RNAs serve as attractive and promising targets for cancer prevention and anti-cancer therapy. Epigenetic drugs or epi-drugs possess the ability to reverse many such epigenetic alterations and thus can help manage the clinical manifestations of cancer. Epigenetic drugs broadly target epigenetic modifications, including DNA methylation and histone post-translational modifications, to manifest their effects. Several naturally occurring as well as chemically synthesized compounds have been recognized as epigenetic drugs. Some of them are clinically approved, while many are in their preclinical and clinical trials. In this review, we aim to present a broad overview of the epigenetic modifications implicated in carcinogenesis. The review also compiles various epigenetic drugs that are approved for clinical practice, as well as those that are in the preclinical and clinical stages of investigation for anti-cancer therapy. Full article
Show Figures

Graphical abstract

26 pages, 3572 KiB  
Review
Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery
by Jarosław Mołdoch, Monika Agacka-Mołdoch, Grzegorz Jóźwiak and Karolina Wojtunik-Kulesza
Molecules 2025, 30(7), 1480; https://doi.org/10.3390/molecules30071480 - 27 Mar 2025
Cited by 3 | Viewed by 1627
Abstract
One of the most common strategies used in drug design is the molecular scaffold approach, which combines traditional medicine based on natural active compounds derived from plants with modern synthetic drug development. Designing new compounds based on natural skeletons enables extensive modifications of [...] Read more.
One of the most common strategies used in drug design is the molecular scaffold approach, which combines traditional medicine based on natural active compounds derived from plants with modern synthetic drug development. Designing new compounds based on natural skeletons enables extensive modifications of both bioavailability and biological activity. An excellent example of a natural molecular scaffold is the monoterpenes group, which serves as a core structure for building more complex molecules by attaching various chemical groups. Their ability to interact with biological targets, combined with structural versatility, makes them promising molecular scaffolds in pharmaceutical research and green chemistry applications. This review paper focuses on selected monoterpenes (carvacrol, carvone, citral, menthol, menthone, β-pinene, thymol, and verbenone), which are frequently used as molecular scaffolds. The newly designed derivatives exhibit various biological activities, including anticancer, antibacterial, antiviral, neuroprotective, and many others. Full article
Show Figures

Figure 1

28 pages, 17349 KiB  
Article
Removal of Hexavalent Chromium Ions from Industrial Effluents Using Natural and Modified Diatomite, Taurite, Lewatit M500, and Activated Carbon
by Bagdaulet Kenzhaliyev, Dametken Fischer, Saniya Temirova, Almagul Ultarakova, Zhazira Baltabekova, Nauryzbek Bakhytuly and Kenzhegali Smailov
Processes 2025, 13(4), 997; https://doi.org/10.3390/pr13040997 - 26 Mar 2025
Cited by 1 | Viewed by 394
Abstract
Hexavalent chromium Cr (VI) compounds present in ilmenite concentrate not only pose significant environmental hazards due to their toxicity but also complicate further processing, interfering with technological operations in industrial production. The high chromium content in ilmenite concentrates hinders their conversion into titanium-containing [...] Read more.
Hexavalent chromium Cr (VI) compounds present in ilmenite concentrate not only pose significant environmental hazards due to their toxicity but also complicate further processing, interfering with technological operations in industrial production. The high chromium content in ilmenite concentrates hinders their conversion into titanium-containing slag, necessitating the removal of chromium ions to permissible residual levels to produce titanium dioxide. In this study, various sorbents were investigated for the removal of chromate ions from the industrial effluents generated during ilmenite concentrate processing. The sorbents examined included natural and modified diatomite, activated carbon, taurite (shungite), and the ion-exchange resin Lewatit M500. The structures of both natural and modified diatomite were analyzed using scanning electron microscopy (SEM). It was determined that natural diatomite samples consist of diatom frustules of various shapes and their fragments, with structural element sizes ranging from submicron dimensions to 50 µm. A mathematical analysis of the sorption data for hexavalent chromium ion removal from solutions was performed. The results demonstrated high sorption efficiencies for Lewatit M500 (98.34%) and diatomite modified with iron compounds (98.95%). The findings suggest that diatomite is a promising sorbent for chromate ion removal from wastewater due to its availability and potential for chemical modification. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 1626 KiB  
Review
Potential of Bio-Sourced Oligogalacturonides in Crop Protection
by Camille Carton, Maryline Magnin-Robert, Béatrice Randoux, Corinne Pau-Roblot and Anissa Lounès-Hadj Sahraoui
Molecules 2025, 30(6), 1392; https://doi.org/10.3390/molecules30061392 - 20 Mar 2025
Cited by 1 | Viewed by 803
Abstract
During plant development or interactions with pathogens, modifications of the plant cell wall occur. Among the enzymes involved, pectinases, particularly polygalacturonases (PGases), play a crucial role in the controlled hydrolysis of cell wall polysaccharides, leading to the formation of oligogalacturonides (OGs). These pectin-derived [...] Read more.
During plant development or interactions with pathogens, modifications of the plant cell wall occur. Among the enzymes involved, pectinases, particularly polygalacturonases (PGases), play a crucial role in the controlled hydrolysis of cell wall polysaccharides, leading to the formation of oligogalacturonides (OGs). These pectin-derived fragments act as key elicitors of plant defense responses, stimulating innate immunity and enhancing resistance to pathogens by modulating the expression of genes involved in immune responses and inducing the production of defense compounds. OGs are of particular interest for plant protection as a natural alternative to conventional phytosanitary products as they can be obtained through chemical, thermal, or enzymatic degradation of plant biomass. In a sustainable approach, agricultural by-products rich in pectin, such as citrus peels, apple pomace, or sugar beet pulp, offer an eco-friendly and cost-effective alternative for OG production. Thus, the current review aims to (i) update the state of the art about the different methods used to produce OGs, (ii) explore the potential of OGs as bio-based biocontrol molecules, and (iii) examine the relevance of new pectin sources for OG production. Full article
Show Figures

Figure 1

Back to TopTop