Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery
Abstract
:1. Introduction
2. Carvacrol
2.1. Biological Activity
2.2. Biological Activities of Carvacrol Derivatives
3. Carvone
3.1. Biological Activity
3.2. Biological Activities of Carvone Derivatives
4. Citral
4.1. Biological Activity
4.2. Biological Activities of Citral Derivatives
5. Menthol
5.1. Biological Activity
5.2. Biological Activities of Menthol Derivatives
6. β-Pinene
6.1. Biological Activities
6.2. Biological Activities of β-Pinene Derivatives
7. Thymol
7.1. Biological Activity
7.2. Biological Activities of Thymol Derivatives
8. Verbenone
8.1. Biological Activity
8.2. Biological Activities of Verbenone Derivatives
9. Menthone
9.1. Biological Activity
9.2. Biological Activities of Menthone Derivatives
10. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doytchinova, I. Drug Design—Past, Present, Future. Molecules 2022, 27, 1496. [Google Scholar] [CrossRef] [PubMed]
- Bemis, G.W.; Murcko, M.A. The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39, 2887–2893. [Google Scholar] [CrossRef]
- Hu, Y.; Stumpfe, D.; Bajorath, J. Lessons Learned from Molecular Scaffold Analysis. J. Chem. Inf. Model. 2011, 51, 1742–1753. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zheng, Z.; Liu, R.; Guo, J.; Zhang, C.; Xie, Y. Monoamine Oxidase B Inhibitors Based on Natural Privileged Scaffolds: A Review of Systematically Structural Modification. Int. J. Biol. Macromol. 2023, 251, 126158. [Google Scholar] [CrossRef] [PubMed]
- Vina, D.; Serra, S.; Lamela, M.; Delogu, G. Herbal Natural Products As a Source of Monoamine Oxidase Inhibitors: A Review. Curr. Top. Med. Chem. 2012, 12, 2131–2144. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Kasprzak-Drozd, K.; Oniszczuk, A.; Borowicz-Reutt, K. Activity of Selected Group of Monoterpenes in Alzheimer’s Disease Symptoms in Experimental Model Studies—A Non-Systematic Review. Int. J. Mol. Sci. 2021, 22, 7366. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural Monoterpenes: Much More than Only a Scent. Chem. Biodivers. 2019, 16, e1900434. [Google Scholar] [CrossRef]
- Blackburn, L.; Achor, S.; Allen, B.; Bauchmire, N.; Dunnington, D.; Klisovic, R.; Naber, S.; Roblee, K.; Samczak, A.; Tomlinson-Pinkham, K.; et al. The Effect of Aromatherapy on Insomnia and Other Common Symptoms Among Patients With Acute Leukemia. Oncol. Nurs. Forum 2017, 44, E185–E193. [Google Scholar] [CrossRef]
- SciELO Brazil—Antioxidant, Analgesic and Anti-Inflammatory Effects of Lavender Essential Oil Antioxidant, Analgesic and Anti-Inflammatory Effects of Lavender Essential Oil. Available online: https://www.scielo.br/j/aabc/a/PxSc9T7wm4fXK4KCXrvWwWy/?lang=en (accessed on 7 February 2025).
- Liu, J.; Liu, X.; Wu, J.; Li, C.-C. Total Synthesis of Natural Products Containing a Bridgehead Double Bond. Chem 2020, 6, 579–615. [Google Scholar] [CrossRef]
- Selka, A.; Abidli, A.; Schiavo, L.; Jeanmart, L.; Hanquet, G.; Lubell, W.D. Recent Advances in Sustainable Total Synthesis and Chiral Pool Strategies with Emphasis on (−)-Sclareol in Natural Products Synthesis. Eur. J. Org. Chem. 2025, 28, e202400983. [Google Scholar] [CrossRef]
- McGlinchey, M.J. Organotransition Metal Chemistry of Terpenes: Syntheses, Structures, Reactivity and Molecular Rearrangements. Molecules 2024, 29, 1409. [Google Scholar] [CrossRef]
- Háznagy, M.B.; Csámpai, A.; Ugrai, I.; Molnár, B.; Haukka, M.; Szakonyi, Z. Stereoselective Synthesis and Catalytical Application of Perillaldehyde-Based 3-Amino-1,2-Diol Regioisomers. Int. J. Mol. Sci. 2024, 25, 4325. [Google Scholar] [CrossRef]
- Trevisan, D.A.C.; Silva, A.F.d.; Negri, M.; de Abreu Filho, B.A.; Machinski Junior, M.; Patussi, E.V.; Campanerut-Sá, P.A.Z.; Mikcha, J.M.G. Antibacterial and Antibiofilm Activity of Carvacrol against Salmonella Enterica Serotype Typhimurium. Braz. J. Pharm. Sci. 2018, 54, e17229. [Google Scholar] [CrossRef]
- Gavaric, N.; Mozina, S.S.; Kladar, N.; Bozin, B. Chemical Profile, Antioxidant and Antibacterial Activity of Thyme and Oregano Essential Oils, Thymol and Carvacrol and Their Possible Synergism. J. Essent. Oil Bear. Plants 2015, 18, 1013–1021. [Google Scholar] [CrossRef]
- Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In Vitro Antibacterial Activity of Thymol and Carvacrol and Their Effects on Broiler Chickens Challenged with Clostridium Perfringens. J. Anim. Sci. Biotechnol. 2015, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; Del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phytother. Res. PTR 2018, 32, 1675–1687. [Google Scholar] [CrossRef] [PubMed]
- Baranauskaite, J.; Kubiliene, A.; Marksa, M.; Petrikaite, V.; Vitkevičius, K.; Baranauskas, A.; Bernatoniene, J. The Influence of Different Oregano Species on the Antioxidant Activity Determined Using HPLC Postcolumn DPPH Method and Anticancer Activity of Carvacrol and Rosmarinic Acid. BioMed Res. Int. 2017, 2017, 1681392. [Google Scholar] [CrossRef]
- Hassan, Q.; Aljelehawy, Q.H.A.; Maroufi, Y.; Javid, H.; Mohammadi, M.R.; Raji, O.; Allah, M.; Taheri, S.; Mohammadzade, H. Nano Micro Biosystems Anticancer, Antineurodegenerative, Antimicrobial, and Antidiabetic Activities of Carvacrol: Recent Advances and Limitations for Effective Formulations. Nano Micro Biosyst. 2023, 2, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, Y.; Wu, C. Chicken Embryonic Toxicity and Potential in Vitro Estrogenic and Mutagenic Activity of Carvacrol and Thymol in Low Dose/Concentration. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 150, 112038. [Google Scholar] [CrossRef]
- Baser, K.H.C. Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential Oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef]
- Silva, F.V.; Guimarães, A.G.; Silva, E.R.S.; Sousa-Neto, B.P.; Machado, F.D.F.; Quintans-Júnior, L.J.; Arcanjo, D.D.R.; Oliveira, F.A.; Oliveira, R.C.M. Anti-Inflammatory and Anti-Ulcer Activities of Carvacrol, a Monoterpene Present in the Essential Oil of Oregano. J. Med. Food 2012, 15, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.d.S.; Quintans-Júnior, L.J.; de Santana, W.A.; Martins Kaneto, C.; Pereira Soares, M.B.; Villarreal, C.F. Anti-Inflammatory Effects of Carvacrol: Evidence for a Key Role of Interleukin-10. Eur. J. Pharmacol. 2013, 699, 112–117. [Google Scholar] [CrossRef]
- Hikal, W.; Tkachenko, K.; Said-Al Ahl, H.; Sany, H.; Sabra, A.; Baeshen, R.; Bratovcic, A. Chemical Composition and Biological Significance of Thymol as Antiparasitic. Open J. Ecol. 2021, 11, 240–266. [Google Scholar] [CrossRef]
- Trailovic, S.M.; Rajkovic, M.; Marjanovic, D.S.; Neveu, C.; Charvet, C.L. Action of Carvacrol on Parascaris Sp. and Antagonistic Effect on Nicotinic Acetylcholine Receptors. Pharmaceuticals 2021, 14, 505. [Google Scholar] [CrossRef] [PubMed]
- Marjanović, D.S.; Zdravković, N.; Milovanović, M.; Trailović, J.N.; Robertson, A.P.; Todorović, Z.; Trailović, S.M. Carvacrol Acts as a Potent Selective Antagonist of Different Types of Nicotinic Acetylcholine Receptors and Enhances the Effect of Monepantel in the Parasitic Nematode Ascaris Suum. Vet. Parasitol. 2020, 278, 109031. [Google Scholar] [CrossRef]
- de Souza, G.H.d.A.; Dos Santos Radai, J.A.; Mattos Vaz, M.S.; Esther da Silva, K.; Fraga, T.L.; Barbosa, L.S.; Simionatto, S. In Vitro and in Vivo Antibacterial Activity Assays of Carvacrol: A Candidate for Development of Innovative Treatments against KPC-Producing Klebsiella Pneumoniae. PLoS ONE 2021, 16, e0246003. [Google Scholar] [CrossRef]
- Silva, E.R.; de Carvalho, F.O.; Teixeira, L.G.B.; Santos, N.G.L.; Felipe, F.A.; Santana, H.S.R.; Shanmugam, S.; Quintans Júnior, L.J.; de Souza Araújo, A.A.; Nunes, P.S. Pharmacological Effects of Carvacrol in In Vitro Studies: A Review. Curr. Pharm. Des. 2018, 24, 3454–3465. [Google Scholar] [CrossRef]
- Azizi, Z.; Majlessi, N.; Choopani, S.; Naghdi, N. Neuroprotective Effects of Carvacrol against Alzheimer’s Disease and Other Neurodegenerative Diseases: A Review. Avicenna J. Phytomedicine 2022, 12, 371–387. [Google Scholar] [CrossRef]
- Askin, H.; Yildiz, M.; Ayar, A. Effects of Thymol and Carvacrol on Acetylcholinesterase from Drosophila Melanogaster. Acta Phys. Pol. A 2017, 132, 720–722. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; De Martino, L.; De Feo, V.; Nazzaro, F. Anti-Cholinesterase and Anti-α-Amylase Activities and Neuroprotective Effects of Carvacrol and p-Cymene and Their Effects on Hydrogen Peroxide Induced Stress in SH-SY5Y Cells. Int. J. Mol. Sci. 2023, 24, 6073. [Google Scholar] [CrossRef]
- Althaher, A.R.; Oran, S.A.; Jarrar, Y. Phytochemical Investigation and Biological Activities of Ruta Chalepensis Methanolic Extract: Antioxidant, Anti-Inflammatory, Anticollagenase, and Antielastase Properties. J. Food Biochem. 2024, 2024, 9921218. [Google Scholar] [CrossRef]
- Torres-Pagán, N.; Muñoz, M.; Barbero, S.; Mamone, R.; Peiró, R.; Carrubba, A.; Sánchez-Moreiras, A.M.; Gómez de Barreda, D.; Verdeguer, M. Herbicidal Potential of the Natural Compounds Carvacrol, Thymol, Eugenol, p-Cymene, Citral and Pelargonic Acid in Field Conditions: Indications for Better Performance. Agronomy 2024, 14, 537. [Google Scholar] [CrossRef]
- De Mastro, G.; El Mahdi, J.; Ruta, C. Bioherbicidal Potential of the Essential Oils from Mediterranean Lamiaceae for Weed Control in Organic Farming. Plants 2021, 10, 818. [Google Scholar] [CrossRef]
- Giatropoulos, A.; Koliopoulos, G.; Pantelakis, P.-N.; Papachristos, D.; Michaelakis, A. Evaluating the Sublethal Effects of Origanum Vulgare Essential Oil and Carvacrol on the Biological Characteristics of Culex Pipiens Biotype Molestus (Diptera: Culicidae). Insects 2023, 14, 400. [Google Scholar] [CrossRef] [PubMed]
- Alagöz, T.; Çalişkan, F.G.; Bilgiçli, H.G.; Zengin, M.; Sadeghi, M.; Taslimi, P.; Gulçin, İ. Synthesis, Characterization, Biochemical, and Molecular Modeling Studies of Carvacrol-Based New Thiosemicarbazide and 1,3,4-Thiadiazole Derivatives. Arch. Pharm. (Weinheim) 2023, 356, e2300370. [Google Scholar] [CrossRef] [PubMed]
- Bytyqi-Damoni, A.; Uc, E.M.; Bora, R.E.; Bilgicli, H.G.; Alagöz, M.A.; Zengin, M.; Gülçin, İ. Synthesis, Characterization, and Computational Study of Novel Carvacrol-Based 2-Aminothiol and Sulfonic Acid Derivatives as Metabolic Enzyme Inhibitors. J. Mol. Struct. 2024, 1303, 137516. [Google Scholar] [CrossRef]
- Vasconcelos, A.P.; Xavier, F.J.S.; Castro, A.; Lima, M.F.; Terceiro, L.E.L.; Silva, F.P.L.; Vasconcellos, M.L.A.A.; Dantas, B.B.; Barbosa, A.M.; Duarte, S.S.; et al. Synthesis and Analysis of Carvacrol-Derived Morita-Baylis-Hillman Adducts as Potential Anticancer Agents. J. Braz. Chem. Soc. 2024, 35, e20240022. [Google Scholar] [CrossRef]
- Peter, S.; Sotondoshe, N.; Aderibigbe, B.A. Carvacrol and Thymol Hybrids: Potential Anticancer and Antibacterial Therapeutics. Molecules 2024, 29, 2277. [Google Scholar] [CrossRef]
- Bhoi, R.; Rajput, J.; Bendre, R. An Efficient Synthesis of Rearranged New Biologically Active Benzimidazoles Derived from 2-Formyl Carvacrol. Res. Chem. Intermed. 2022, 48, 401–422. [Google Scholar] [CrossRef]
- Mbese, Z.; Nell, M.; Fonkui, Y.T.; Ndinteh, D.T.; Steenkamp, V.; Aderibigbe, B.A. Hybrid Compounds Containing Carvacrol Scaffold: In Vitro Antibacterial and Cytotoxicity Evaluation. Recent Adv. Anti-Infect. Drug Discov. 2022, 17, 54–68. [Google Scholar] [CrossRef]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef] [PubMed]
- Pina, L.T.S.; Serafini, M.R.; Oliveira, M.A.; Sampaio, L.A.; Guimarães, J.O.; Guimarães, A.G. Carvone and Its Pharmacological Activities: A Systematic Review. Phytochemistry 2022, 196, 113080. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska, A.; Fajdek-Bieda, A.; Markowska-Szczupak, A.; Radkowska, M. Preliminary Microbiological Tests of S-Carvone and Geraniol and Selected Derivatives of These Compounds That May Be Formed in the Processes of Isomerization and Oxidation. Molecules 2022, 27, 7012. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Neves, B.M.; Leitão, A.J.; Mendes, A.F. Molecular Mechanisms Underlying the Anti-Inflammatory Properties of (R)-(-)-Carvone: Potential Roles of JNK1, Nrf2 and NF-κB. Pharmaceutics 2023, 15, 249. [Google Scholar] [CrossRef]
- Nesterkina, M.; Barbalat, D.A.; Konovalova, I.; Shishkina, S.; Atakay, M.; Salih, B.; Kravchenko, I. Novel (-)-Carvone Derivatives as Potential Anticonvulsant and Analgesic Agents. Nat. Prod. Res. 2020, 35, 1756804. [Google Scholar] [CrossRef]
- Zein, N.; Shehata, M.M.; Amer, A.M. Carvone Hypoglycemic and Hypolipidemic Effects by Regulation of Key Proteins Involved in Fatty Acid Beta-Oxidation in Alloxan-Induced Diabetic Rats. Bull. Fac. Sci. Zagazig Univ. 2022, 2022, 96–107. [Google Scholar] [CrossRef]
- Vahedi, M.; Abbasi-Maleki, D.S.; Amir, H. Abdolghafari The Antidepressant Potential of (R)-(-)-Carvone Involves Antioxidant and Monoaminergic Mechanisms in Mouse Models. Phytomedicine Plus 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Rudkowska, M.; Klimek, K.; Mołdoch, J.; Agacka-Mołdoch, M.; Budzyńska, B.; Oniszczuk, A. S-(+)-Carvone, a Monoterpene with Potential Anti-Neurodegenerative Activity—In Vitro, In Vivo and Ex Vivo Studies. Molecules 2024, 29, 4365. [Google Scholar] [CrossRef]
- Alipanah, H.; Rasti, F.; Zarenezhad, E.; Dehghan, A.; Sahebnazar, B.; Osanloo, M. Comparison of Anticancer Effects of Carvone, Carvone- Rich Essential Oils, and Chitosan Nanoparticles Containing Each of Them. Biointerface Res. Appl. Chem. 2022, 12, 5716–5726. [Google Scholar] [CrossRef]
- Tahri, D.; Elhouiti, F.; Chelghoum, M.; Nebeg, H.; Ouinten, M.; Yousfi, M. Biosynthesis and Biological Activities of Carvone and Carvotanacetone Derivatives. Rev. Bras. Farmacogn. 2022, 32, 708–723. [Google Scholar] [CrossRef]
- Oubella, A.; Bimoussa, A.; Byadi, S.; Fawzi, M.; Laamari, Y.; Aziz, A.; Morjani, H.; Robert, A.; Riahi, A.; Ait Itto, M. Design, Synthesis, in Vitro Anticancer Activity, and Molecular Docking Studies of New (R)-Carvone-Pyrazole-1,2,3-Triazoles. J. Mol. Struct. 2022, 1265, 133383. [Google Scholar] [CrossRef]
- Moço, G.; Sousa, C.; Capitão, A.; MacKinnon, S.S.; Leitão, A.J.; Mendes, A.F. Synthesis of Carvone Derivatives and In Silico and In Vitro Screening of Anti-Inflammatory Activity in Murine Macrophages. Int. J. Mol. Sci. 2023, 24, 2263. [Google Scholar] [CrossRef]
- Subramaniyan, S.; Pathalam, G.; Antony, S.; Michael, G.P.; Samuel, R.; Kedike, B.; Sekar, A.; Boovaragamurthy, A.; Osamu, S.; Mahmoud, A.H.; et al. Mosquitocidal Effect of Monoterpene Ester and Its Acetyl Derivative from Blumea Mollis (D. Don) Merr against Culex Quinquefasciatus (Diptera: Culicidae) and Their Insilico Studies. Exp. Parasitol. 2021, 223, 108076. [Google Scholar] [CrossRef]
- de B. da Silva, C.; Guterres, S.S.; Weisheimer, V.; Schapoval, E.E.S. Antifungal Activity of the Lemongrass Oil and Citral against Candida spp. Braz. J. Infect. Dis. Off. Publ. Braz. Soc. Infect. Dis. 2008, 12, 63–66. [Google Scholar] [CrossRef]
- Gutiérrez-Pacheco, M.M.; Torres-Moreno, H.; Flores-Lopez, M.L.; Velázquez Guadarrama, N.; Ayala-Zavala, J.F.; Ortega-Ramírez, L.A.; López-Romero, J.C. Mechanisms and Applications of Citral’s Antimicrobial Properties in Food Preservation and Pharmaceuticals Formulations. Antibiotics 2023, 12, 1608. [Google Scholar] [CrossRef]
- Gao, S.; Liu, G.; Li, J.; Chen, J.; Li, L.; Li, Z.; Zhang, X.; Zhang, S.; Thorne, R.F.; Zhang, S. Antimicrobial Activity of Lemongrass Essential Oil (Cymbopogon Flexuosus) and Its Active Component Citral Against Dual-Species Biofilms of Staphylococcus Aureus and Candida Species. Front. Cell. Infect. Microbiol. 2020, 10, 603858. [Google Scholar] [CrossRef]
- Viktorová, J.; Stupák, M.; Řehořová, K.; Dobiasová, S.; Hoang, L.; Hajšlová, J.; Thanh, T.V.; Tri, L.V.; Tuan, N.V.; Ruml, T. Lemon Grass Essential Oil Does Not Modulate Cancer Cells Multidrug Resistance by Citral-Its Dominant and Strongly Antimicrobial Compound. Foods Basel Switz. 2020, 9, 585. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Gutiérrez-Pacheco, M.M.; Vargas-Arispuro, I.; González-Aguilar, G.A.; Martínez-Téllez, M.A.; Ayala-Zavala, J.F. Inhibition of Glucosyltransferase Activity and Glucan Production as an Antibiofilm Mechanism of Lemongrass Essential Oil against Escherichia Coli O157:H7. Antibiot. Basel Switz. 2020, 9, 102. [Google Scholar] [CrossRef]
- Ruiz-Bustos, E.; Velazquez, C.; Garibay-Escobar, A.; García, Z.; Plascencia-Jatomea, M.; Cortez-Rocha, M.O.; Hernandez-Martínez, J.; Robles-Zepeda, R.E. Antibacterial and Antifungal Activities of Some Mexican Medicinal Plants. J. Med. Food 2009, 12, 1398–1402. [Google Scholar] [CrossRef]
- Habib, S.; Gupta, P.; Bhat, S.S.; Gupta, J. In Silico, in-Vitro and in Vivo Screening of Biological Activities of Citral. Int. J. Vitam. Nutr. Res. Int. Z. Vitam. Ernahrungsforschung J. Int. Vitaminol. Nutr. 2021, 91, 251–260. [Google Scholar] [CrossRef]
- Ganjewala, D.; Gupta, A.K.; Muhury, R. An Update on Bioactive Potential of a Monoterpene Aldehyde Citral. J. Biol. Act. Prod. Nat. 2012, 2, 186–199. [Google Scholar] [CrossRef]
- Santos, B.M.; Santos, W.S.; Solon, I.G.; Garcia, F.S.; Emilio-Silva, M.T.; Jesus, A.A.; Hiruma-Lima, C.A.; Nascimento, G.C.; Cárnio, E.C.; Branco, L.G.S. Orofacial Anti-Hypernociceptive Effect of Citral in Acute and Persistent Inflammatory Models in Rats. Arch. Oral Biol. 2023, 152, 105734. [Google Scholar] [CrossRef]
- Oliveira, H.B.M.; das Neves Selis, N.; Brito, T.L.S.; Sampaio, B.A.; de Souza Bittencourt, R.; Oliveira, C.N.T.; Júnior, M.N.S.; Almeida, C.F.; Almeida, P.P.; Campos, G.B.; et al. Citral Modulates Human Monocyte Responses to Staphylococcus Aureus Infection. Sci. Rep. 2021, 11, 22029. [Google Scholar] [CrossRef]
- Maaroufi, Z.; Cojean, S.; Loiseau, P.M.; Yahyaoui, M.; Agnely, F.; Abderraba, M.; Mekhloufi, G. In Vitro Antileishmanial Potentialities of Essential Oils from Citrus Limon and Pistacia Lentiscus Harvested in Tunisia. Parasitol. Res. 2021, 120, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Bouabdallah, S.; Cianfaglione, K.; Azzouz, M.; Batiha, G.E.-S.; Alkhuriji, A.F.; Al-Megrin, W.A.I.; Ben-Attia, M.; Eldahshan, O.A. Sustainable Extraction, Chemical Profile, Cytotoxic and Antileishmanial Activities In-Vitro of Some Citrus Species Leaves Essential Oils. Pharm. Basel Switz. 2022, 15, 1163. [Google Scholar] [CrossRef]
- Muñoz-Pérez, V.M.; Ortiz, M.I.; Salas-Casa, A.; Pérez-Guerrero, J.; Castillo-Pacheco, N.; Barragán-Ramírez, G.; Hernándes-Alejandro, M. In Vitro Effects of Citral on the Human Myometrium: Potential Adjunct Therapy to Prevent Preterm Births. Birth Defects Res. 2021, 113, 613–622. [Google Scholar] [CrossRef]
- Bailly, C. Targets and Pathways Involved in the Antitumor Activity of Citral and Its Stereo-Isomers. Eur. J. Pharmacol. 2020, 871, 172945. [Google Scholar] [CrossRef]
- Rostaminejad, F.; Hemmati, S.; Badr, P. Spasmolytic Effect of Black Bile-Reducing Plants from Lamiaceae: The Correlation between Traditional Iranian Medicine and Pharmacological and Phytochemical Surveys. Trends Pharm. Sci. 2022, 8, 233–242. [Google Scholar] [CrossRef]
- Mashitah, M.W.; Widodo, N.; Permatasari, N.; Rudijanto, A. Anti-Obesity Activity of Cymbopogon Citratus (Lemongrass): A Systematic Review. J. Pharm. Pharmacogn. Res. 2024, 12, 1090–1110. [Google Scholar] [CrossRef]
- Adhikary, K.; Banerjee, P.; Barman, S.; Banerjee, A.; Sarkar, A.; Bag, S.; Chatterjee, S.; Bandyopadhyay, B.; Panja, A.S. Larvicidal Activity of β-Citral: An In-Vitro and In-Silico Study to Understand Its Potential against Mosquito. Acta Trop. 2024, 258, 107356. [Google Scholar] [CrossRef]
- Baccega, B.; Fenalti, J.M.; de Mello, A.B.; Islabão, Y.W.; Birmann, P.T.; Neis, A.; de Giacometi, M.; Monteiro, F.L.; de Oliveira Hubner, S.; de Almeida Vaucher, R.; et al. Properties of Compounds Citral and Geraniol on Trichomonas Gallinae: Activity in Vitro and Cytotoxicity. Iran. J. Parasitol. 2024, 19, 440–447. [Google Scholar] [CrossRef]
- Sanei-Dehkordi, A.; Fereydouni, N.; Agholi, M.; Ziaei, S.A.; Azadpour, Z.; Zarenezhad, E.; Osanloo, M. Larvicidal Efficacies of Nanoliposomes Containing Alpha-Pinene, Citral, Camphor, and Thymol Against Aedes Aegypti and Anopheles Stephensi Mosquito Vectors. Acta Parasitol. 2025, 70, 56. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Klimek, K.; Agacka-Mołdoch, M.; Mołdoch, J.; Michalak, A. Expanding Knowledge about the Influence of Citral on Cognitive Functions—In Vitro, In Vivo and Ex Vivo Studies. Int. J. Mol. Sci. 2024, 25, 6866. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, Y.; Duan, X.; He, W.; Si, H.; Wang, P.; Chen, S.; Luo, H.; Rao, X.; Wang, Z.; et al. Novel Citral-Thiazolyl Hydrazine Derivatives as Promising Antifungal Agents against Phytopathogenic Fungi. J. Agric. Food Chem. 2021, 69, 14512–14519. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Zou, X.; Huang, C.; Si, H.; Song, J.; Zhang, J.; Luo, H.; Wang, Z.; Wang, P.; Fan, G.; et al. Novel Design of Citral-Thiourea Derivatives for Enhancing Antifungal Potential against Colletotrichum Gloeosporioides. J. Agric. Food Chem. 2023, 71, 3173–3183. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Y.; Shi, Y.; Si, H.; Luo, H.; Chen, S.; Wang, Z.; He, H.; Liao, S. Synthesis, Antifungal Activity and Action Mechanism of Novel Citral Amide Derivatives against Rhizoctonia Solani. Pest Manag. Sci. 2024, 80, 4482–4494. [Google Scholar] [CrossRef]
- Gao, W.; Hua, X.; Liao, S.; Xiahou, Z.; Yang, H.; Hu, L.; Chi, Y. Newly Synthesized Citral Derivatives Serve as Novel Inhibitor in HepG2 Cells. ChemistryOpen 2024, 2024, e202400112. [Google Scholar] [CrossRef]
- Batohi, N.; Lone, S.A.; Marimani, M.; Wani, M.Y.; Al-Bogami, A.S.; Ahmad, A. Citral and Its Derivatives Inhibit Quorum Sensing and Biofilm Formation in Chromobacterium Violaceum. Arch. Microbiol. 2021, 203, 1451–1459. [Google Scholar] [CrossRef]
- Sepúlveda-Arias, J.C.; Veloza, L.A.; Escobar, L.M.; Orozco, L.M.; Lopera, I.A. Anti-Inflammatory Effects of the Main Constituents and Epoxides Derived from the Essential Oils Obtained from Tagetes Lucida, Cymbopogon Citratus, Lippia Alba and Eucalyptus Citriodora. J. Essent. Oil Res. 2013, 25, 186–193. [Google Scholar] [CrossRef]
- Cheng, H.; An, X. Cold Stimuli, Hot Topic: An Updated Review on the Biological Activity of Menthol in Relation to Inflammation. Front. Immunol. 2022, 13, 1023746. [Google Scholar] [CrossRef]
- Gillis, D.; Vellante, A.; Gallo, J.; DʼAmico, A. Influence of Menthol on Recovery From Exercise-Induced Muscle Damage. J. Strength Cond. Res. 2018, 34, 1. [Google Scholar] [CrossRef] [PubMed]
- Topp, R.; Ledford, E.R.; Jacks, D.E. Topical Menthol, Ice, Peripheral Blood Flow, and Perceived Discomfort. J. Athl. Train. 2013, 48, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Talley, N.J.; Spiegel, B.M.R.; Foxx-Orenstein, A.E.; Schiller, L.; Quigley, E.M.M.; Moayyedi, P. Effect of Fibre, Antispasmodics, and Peppermint Oil in the Treatment of Irritable Bowel Syndrome: Systematic Review and Meta-Analysis. BMJ 2008, 337, a2313. [Google Scholar] [CrossRef] [PubMed]
- Plevkova, J.; Kollarik, M.; Poliacek, I.; Brozmanova, M.; Surdenikova, L.; Tatar, M.; Mori, N.; Canning, B.J. The Role of Trigeminal Nasal TRPM8-Expressing Afferent Neurons in the Antitussive Effects of Menthol. J. Appl. Physiol. 2013, 115, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Mahendran, G.; Rahman, L.-U. Ethnomedicinal, Phytochemical and Pharmacological Updates on Peppermint (Mentha × Piperita L.)-A Review. Phytother. Res. PTR 2020, 34, 2088–2139. [Google Scholar] [CrossRef]
- Ashworth, E.T.; Cotter, J.D.; Kilding, A.E. Impact of Elevated Core Temperature on Cognition in Hot Environments within a Military Context. Eur. J. Appl. Physiol. 2021, 121, 1061–1071. [Google Scholar] [CrossRef]
- Szostek, T.; Szulczyk, D.; Szymańska-Majchrzak, J.; Koliński, M.; Kmiecik, S.; Otto-Ślusarczyk, D.; Zawodnik, A.; Rajkowska, E.; Chaniewicz, K.; Struga, M.; et al. Design and Synthesis of Menthol and Thymol Derived Ciprofloxacin: Influence of Structural Modifications on the Antibacterial Activity and Anticancer Properties. Int. J. Mol. Sci. 2022, 23, 6600. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Duan, W.-G.; Lin, G.-S.; Li, B.-Y. Synthesis, Antifungal Activity, 3D-QSAR, and Molecular Docking Study of Novel Menthol-Derived 1,2,4-Triazole-Thioether Compounds. Mol. Basel Switz. 2021, 26, 6948. [Google Scholar] [CrossRef]
- Qiu, Y.-G.; Yang, Z.-H.; Sun, X.-B.; Jin, D.-J.; Zheng, Y.-M.; Li, J.; Gu, W. Synthesis and Antifungal Activity of Novel L-Menthol Hydrazide Derivatives as Potential Laccase Inhibitors. Chem. Biodivers. 2023, 20, e202300539. [Google Scholar] [CrossRef]
- Nisar, S.; Hanif, M.A.; Rashid, U.; Jilani, M.I.; Bhatti, I.A.; Ali, I.; Zieniuk, B. Synthesis of Water-Soluble Menthol Derivatives Using Response Surface Methodology. Indones. J. Chem. 2024, 24, 1701–1716. [Google Scholar] [CrossRef]
- Clemente, C.M.; Robledo, S.M.; Ravetti, S. Menthol Carbonates as Potent Antiparasitic Agents: Synthesis and in Vitro Studies along with Computer-Aided Approaches. BMC Complement. Med. Ther. 2022, 22, 156. [Google Scholar] [CrossRef]
- Dosoky, N.S.; Satyal, P.; Barata, L.M.; da Silva, J.K.R.; Setzer, W.N. Volatiles of Black Pepper Fruits (Piper nigrum L.). Molecules 2019, 24, 4244. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D. Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef]
- da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of A-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.-A.; Elfeki, A.; Talarmin, H. Potential Protective Effects of Alpha-Pinene against Cytotoxicity Caused by Aspirin in the IEC-6 Cells. Biomed. Pharmacother. 2017, 93, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Nóbrega, J.R.; de F. Silva, D.; de Andrade Júnior, F.P.; Sousa, P.M.S.; de Figueiredo, P.T.R.; Cordeiro, L.V.; de O. Lima, E. Antifungal Action of α-Pinene against Candida Spp. Isolated from Patients with Otomycosis and Effects of Its Association with Boric Acid. Nat. Prod. Res. 2021, 35, 6190–6193. [Google Scholar] [CrossRef]
- Liao, S.; Shang, S.; Shen, M.; Rao, X.; Si, H.; Song, J.; Song, Z. One-Pot Synthesis and Antimicrobial Evaluation of Novel 3-Cyanopyridine Derivatives of (−)-β-Pinene. Bioorg. Med. Chem. Lett. 2016, 26, 1512–1515. [Google Scholar] [CrossRef]
- Synthesis and Antifungal Activity of Series of N-Hydronopol Pyridine Ammonium Halide. Available online: https://www.aeeisp.com/lchxygy/en/article/doi/10.3969/j.issn.0253-2417.2017.03.017 (accessed on 25 February 2025).
- Feng, X.; Xiao, Z.; Yang, Y.; Chen, S.; Liao, S.; Luo, H.; He, L.; Wang, Z.; Fan, G. β-Pinene Derived Products With Enhanced In Vitro Antimicrobial Activity. Nat. Prod. Commun. 2021, 16, 1934578X2199221. [Google Scholar] [CrossRef]
- Gavrilov, V.V.; Startseva, V.A.; Nikitina, L.E.; Lodochnikova, O.A.; Gnezdilov, O.I.; Lisovskaya, S.A.; Glushko, N.I.; Klimovitskii, E.N. Synthesis and Antifungal Activity of Sulfides, Sulfoxides, and Sulfones Based on (1S)-(-)-β-Pinene. Pharm. Chem. J. 2010, 44, 126–129. [Google Scholar] [CrossRef]
- Shi, Y.; Si, H.; Wang, P.; Chen, S.; Shang, S.; Song, Z.; Wang, Z.; Liao, S. Derivatization of Natural Compound β-Pinene Enhances Its In Vitro Antifungal Activity against Plant Pathogens. Molecules 2019, 24, 3144. [Google Scholar] [CrossRef]
- Nikitina, L.E.; Kiselev, S.V.; Startseva, V.A.; Lodochnikova, O.A.; Rakhmatullina, A.A.; Fedyunina, I.V.; Gilfanov, I.R. New Aspects of Using Biologically Active Thioterpenoids of Pinane Series. Russ. Chem. Bull. 2019, 68, 1031–1035. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, X.; Xu, Q.; Cai, Y.; Gao, W.; Chen, W. Anti-Tumor Activities and Mechanism Study of α-Pinene Derivative in Vivo and in Vitro. Cancer Chemother. Pharmacol. 2020, 85, 367–377. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Zhang, Q.; Shan, Y.; Gu, W.; Wang, S. Design, Synthesis and Biological Evaluation of Novel β-Pinene-Based Thiazole Derivatives as Potential Anticancer Agents via Mitochondrial-Mediated Apoptosis Pathway. Bioorganic Chem. 2019, 84, 468–477. [Google Scholar] [CrossRef]
- Obieziurska, M.; Pacuła, A.J.; Długosz-Pokorska, A.; Krzemiński, M.; Janecka, A.; Ścianowski, J. Bioselectivity Induced by Chirality of New Terpenyl Organoselenium Compounds. Materials 2019, 12, 3579. [Google Scholar] [CrossRef]
- Tian, L.; Wang, X.; Liu, R.; Zhang, D.; Wang, X.; Sun, R.; Guo, W.; Yang, S.; Li, H.; Gong, G. Antibacterial Mechanism of Thymol against Enterobacter Sakazakii. Food Control 2020, 123, 107716. [Google Scholar] [CrossRef]
- Kachur, K.; Suntres, Z. The Antibacterial Properties of Phenolic Isomers, Carvacrol and Thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, S.; Du, S.; Chen, S.; Sun, H. Antifungal Activity of Thymol and Carvacrol against Postharvest Pathogens Botrytis Cinerea. J. Food Sci. Technol. 2019, 56, 2611–2620. [Google Scholar] [CrossRef]
- Nascimento, L.D.d.; Silva, S.G.; Cascaes, M.M.; da Costa, K.S.; Figueiredo, P.L.B.; Costa, C.M.L.; de A. Andrade, E.H.; de Faria, L.J.G. Drying Effects on Chemical Composition and Antioxidant Activity of Lippia Thymoides Essential Oil, a Natural Source of Thymol. Molecules 2021, 26, 2621. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Tsagkalias, I.; Vouvoudi, E.C.; Achilias, D.S. Development of Bio-Composites with Enhanced Antioxidant Activity Based on Poly(Lactic Acid) with Thymol, Carvacrol, Limonene, or Cinnamaldehyde for Active Food Packaging. Polymers 2021, 13, 3652. [Google Scholar] [CrossRef]
- Chroho, M.; Rouphael, Y.; Petropoulos, S.A.; Bouissane, L. Carvacrol and Thymol Content Affects the Antioxidant and Antibacterial Activity of Origanum Compactum and Thymus Zygis Essential Oils. Antibiotics 2024, 13, 139. [Google Scholar] [CrossRef] [PubMed]
- Hajibonabi, A.; Yekani, M.; Sharifi, S.; Nahad, J.S.; Dizaj, S.M.; Memar, M.Y. Antimicrobial Activity of Nanoformulations of Carvacrol and Thymol: New Trend and Applications. OpenNano 2023, 13, 100170. [Google Scholar] [CrossRef]
- Sampaio, L.A.; Pina, L.T.S.; Serafini, M.R.; Tavares, D.D.S.; Guimarães, A.G. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front. Pharmacol. 2021, 12, 702487. [Google Scholar] [CrossRef]
- Herrera-Bravo, J.; Belén, L.H.; Reyes, M.E.; Silva, V.; Fuentealba, S.; Paz, C.; Loren, P.; Salazar, L.A.; Sharifi-Rad, J.; Calina, D. Thymol as Adjuvant in Oncology: Molecular Mechanisms, Therapeutic Potentials, and Prospects for Integration in Cancer Management. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 8259–8284. [Google Scholar] [CrossRef]
- Laftouhi, A.; Slimani, M.; Elrherabi, A.; Bouhrim, M.; Mahraz, M.A.; Mounadi Idrissi, A.; Eloutassi, N.; Rais, Z.; Abdeslam, T.; Taleb, A. Effect of Temperature and Water Stress on the Antioxidant and Antidiabetic Activities of Thymus Vulgaris Essential Oil. Trop. J. Nat. Prod. Res. 2024, 8, 5785–5793. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Effect of Thymol and Carvacrol Feed Supplementation on Performance, Antioxidant Enzyme Activities, Fatty Acid Composition, Digestive Enzyme Activities, and Immune Response in Broiler Chickens. Poult. Sci. 2013, 92, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Liu, Y.; Shi, R.; Zhang, D.; Li, C.; Shi, J. New Thymol and Isothymol Derivatives from Eupatorium Fortunei and Their Cytotoxic Effects. Bioorganic Chem. 2020, 98, 103644. [Google Scholar] [CrossRef]
- Valverde Sancho, J.; Carreño Amate, C.; Caparrós Pérez, M.d.M.; Santana Méridas, O.; Julio, L.F. Biological Activity of Hybrid Molecules Based on Major Constituents of Cinnammomun Verum and Thymus Vulgaris Essential Oils. Life 2023, 13, 499. [Google Scholar] [CrossRef]
- Laamari, Y.; Bimoussa, A.; Fawzi, M.; Oubella, A.; Rohand, T.; Van Meervelt, L.; Ait Itto, M.Y.; Morjani, H.; Auhmani, A. Synthesis, Crystal Structure and Evaluation of Anticancer Activities of Some Novel Heterocyclic Compounds Based on Thymol. J. Mol. Struct. 2023, 1278, 134906. [Google Scholar] [CrossRef]
- Sahin, D.; Kepekci, R.A.; Türkmenoğlu, B.; Akkoc, S. Biological Evaluations and Computational Studies of Newly Synthesized Thymol-Based Schiff Bases as Anticancer, Antimicrobial and Antioxidant Agents. J. Biomol. Struct. Dyn. 2025, 43, 3375–3389. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, S.; Zhang, M.; Li, T.; Jin, Z.; Wu, X.; Chi, Y.R. Discovery of Novel Piperidine-Containing Thymol Derivatives as Potent Antifungal Agents for Crop Protection. Pest Manag. Sci. 2024, 80, 4906–4914. [Google Scholar] [CrossRef]
- Pengsook, A.; Tharamak, S.; Keosaeng, K.; Koul, O.; Bullangpoti, V.; Kumrungsee, N.; Pluempanupat, W. Insecticidal and Growth Inhibitory Effects of Some Thymol Derivatives on the Beet Armyworm, Spodoptera Exigua (Lepidoptera: Noctuidae) and Their Impact on Detoxification Enzymes. Pest Manag. Sci. 2022, 78, 684–691. [Google Scholar] [CrossRef]
- Hu, Q.; Lin, G.-S.; Duan, W.-G.; Huang, M.; Lei, F.-H. Synthesis and Biological Activity of Novel (Z)- and (E)-Verbenone Oxime Esters. Molecules 2017, 22, 1678. [Google Scholar] [CrossRef]
- Tijjani, H.; Danyaro, A.M.; Olatunde, A.; Kura, A.U. Antihyperglycemic Activity of Verbenone and L-Arginine in Nicotinamide-Streptozotocin-Induced Diabetic Mice: In Vitro and in Vivo Studies. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 94. [Google Scholar] [CrossRef]
- Moghtader, M.; Salari, H.; Farahmand, A. Evaluation of the Antifungal Effects of Rosemary Oil and Comparison with Synthetic Borneol and Fungicide on the Growth of Aspergillus Flavus. J. Ecol. Nat. Environ. 2011, 3, 210–214. [Google Scholar]
- Zhou, Y.; Oh, M.H.; Kim, Y.J.; Kim, E.; Kang, J.; Chung, S.; Ju, C.; Kim, W.-K.; Lee, K. Metabolism and Pharmacokinetics of SP-8356, a Novel (1S)-(−)-Verbenone Derivative, in Rats and Dogs and Its Implications in Humans. Molecules 2020, 25, 1775. [Google Scholar] [CrossRef]
- Yang, J.-Y.; Lee, H.-S. Verbenone Structural Analogues Isolated from Artemesia Aucheri as Natural Acaricides against Dermatophagoides Spp. and Tyrophagus Putrescentiae. J. Agric. Food Chem. 2013, 61, 12292–12296. [Google Scholar] [CrossRef] [PubMed]
- González-Velasco, H.E.; Pérez-Gutiérrez, M.S.; Alonso-Castro, Á.J.; Zapata-Morales, J.R.; Niño-Moreno, P.d.C.; Campos-Xolalpa, N.; González-Chávez, M.M. Anti-Inflammatory and Antinociceptive Activities of the Essential Oil of Tagetes Parryi A. Gray (Asteraceae) and Verbenone. Molecules 2022, 27, 2612. [Google Scholar] [CrossRef] [PubMed]
- Nesterkina, M.; Barbalat, D.; Kravchenko, I. Design, Synthesis and Pharmacological Profile of (−)-Verbenone Hydrazones. Open Chem. 2020, 18, 943–950. [Google Scholar] [CrossRef]
- Mander, S.; Kim, D.H.; Thi Nguyen, H.; Yong, H.J.; Pahk, K.; Kim, E.-Y.; Lee, K.; Seong, J.Y.; Kim, W.-K.; Hwang, J.-I. SP-8356, a (1S)-(–)-Verbenone Derivative, Exerts in Vitro and in Vivo Anti-Breast Cancer Effects by Inhibiting NF-κB Signaling. Sci. Rep. 2019, 9, 6595. [Google Scholar] [CrossRef]
- Ju, C.; Song, S.; Hwang, S.; Kim, C.; Kim, M.; Gu, J.; Oh, Y.-K.; Lee, K.; Kwon, J.; Lee, K.; et al. Discovery of Novel (1S)-(−)-Verbenone Derivatives with Anti-Oxidant and Anti-Ischemic Effects. Bioorg. Med. Chem. Lett. 2013, 23, 5421–5425. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Yong, H.J.; Mander, S.; Nguyen, H.T.; Nguyen, L.P.; Park, H.-K.; Cha, H.K.; Kim, W.-K.; Hwang, J.-I. SP-8356, a (1S)-(-)-Verbenone Derivative, Inhibits the Growth and Motility of Liver Cancer Cells by Regulating NF-κB and ERK Signaling. Biomol. Ther. 2021, 29, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Fawzi, M.; Bimoussa, A.; Laamari, Y.; Oussidi, A.N.; Oubella, A.; Ketatni, E.M.; Saadi, M.; Ammari, L.E.; Morjani, H.; Ait Itto, M.Y.; et al. New (S)-Verbenone-Isoxazoline-1,3,4-Thiadiazole Hybrids: Synthesis, Anticancer Activity and Apoptosis-Inducing Effect. Future Med. Chem. 2023, 15, 1603–1619. [Google Scholar] [CrossRef]
- Ju, C.; Song, S.; Kim, M.; Choi, Y.; Kim, W.-K. Up-Regulation of Astroglial Heme Oxygenase-1 by a Synthetic (S)-Verbenone Derivative LMT-335 Ameliorates Oxygen–Glucose Deprivation-Evoked Injury in Cortical Neurons. Biochem. Biophys. Res. Commun. 2013, 431, 484–489. [Google Scholar] [CrossRef]
- Jasemi, S.V.; Khazaei, H.; Morovati, M.R.; Joshi, T.; Aneva, I.Y.; Farzaei, M.H.; Echeverría, J. Phytochemicals as Treatment for Allergic Asthma: Therapeutic Effects and Mechanisms of Action. Phytomedicine 2024, 122, 155149. [Google Scholar] [CrossRef]
- Naveen, K.L.; Bhattacharjee, A.; Hegde, K.; Shabarayanbsp, A. A Detailed Review on Pharmacological Profile of Mentha Piperita. RGUHS J. Pharm. Sci. 2020, 10, 7–11. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Targowska-Duda, K.; Klimek, K.; Ginalska, G.; Jóźwiak, K.; Waksmundzka-Hajnos, M.; Cieśla, Ł. Volatile Terpenoids as Potential Drug Leads in Alzheimer’s Disease. Open Chem. 2017, 15, 332–343. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Wiśniewska, R. Interactions of Selected Monoterpenes with Iron and Copper Ions Based on Ferrozine and CUPRAC Methods—The Preliminary Studies. Chem. Biodivers. 2022, 19, e202200461. [Google Scholar] [CrossRef]
- Su, Y.-H.; Lin, J.-Y. Menthone Supplementation Protects from Allergic Inflammation in the Lungs of Asthmatic Mice. Eur. J. Pharmacol. 2022, 931, 175222. [Google Scholar] [CrossRef]
- Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa Officinalis: Composition, Pharmacological Effects and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [Google Scholar] [CrossRef]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Subhan, F.; Ahmed, J. Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants. Front. Aging Neurosci. 2017, 9, 168. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Duan, W.; Chen, N.; Lin, G.; Wang, X. Synthesis and Antitumor Evaluation of Menthone-Derived Pyrimidine-Urea Compounds as Potential PI3K/Akt/mTOR Signaling Pathway Inhibitor. Front. Chem. 2022, 9, 815531. [Google Scholar] [CrossRef]
- Nesterkina, M.; Barbalat, D.; Zheltvay, I.; Rakipov, I.; Atakay, M.; Salih, B.; Kravchenko, I. Novel Menthone Derivatives with Anticonvulsant Effect. In Proceedings of the 5th International Electronic Conference on Medicinal Chemistry, online, 1–30 November 2019; MDPI: Basel, Switzerland, 2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mołdoch, J.; Agacka-Mołdoch, M.; Jóźwiak, G.; Wojtunik-Kulesza, K. Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery. Molecules 2025, 30, 1480. https://doi.org/10.3390/molecules30071480
Mołdoch J, Agacka-Mołdoch M, Jóźwiak G, Wojtunik-Kulesza K. Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery. Molecules. 2025; 30(7):1480. https://doi.org/10.3390/molecules30071480
Chicago/Turabian StyleMołdoch, Jarosław, Monika Agacka-Mołdoch, Grzegorz Jóźwiak, and Karolina Wojtunik-Kulesza. 2025. "Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery" Molecules 30, no. 7: 1480. https://doi.org/10.3390/molecules30071480
APA StyleMołdoch, J., Agacka-Mołdoch, M., Jóźwiak, G., & Wojtunik-Kulesza, K. (2025). Biological Activity of Monoterpene-Based Scaffolds: A Natural Toolbox for Drug Discovery. Molecules, 30(7), 1480. https://doi.org/10.3390/molecules30071480