Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = chemical footprint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1995 KiB  
Article
Life Cycle Carbon Costs of Fibreboard, Pulp and Bioenergy Produced from Improved Oil Camellia (Camellia oleifera spp.) Forest Management Operations in China
by Tongyu Yao, Jingsong Wang, Meifang Zhao, Tao Xiong, Liang Lu and Yingying Xia
Sustainability 2025, 17(16), 7379; https://doi.org/10.3390/su17167379 - 15 Aug 2025
Viewed by 175
Abstract
Oil camellia (Camellia oleifera) residues from low-yield forests offer significant potential for carbon emission reductions across multiple product pathways—fibreboard, pulp, and bioelectricity. Life cycle assessments (LCAs) were conducted for these three products, revealing distinct carbon footprints driven by energy use, chemical [...] Read more.
Oil camellia (Camellia oleifera) residues from low-yield forests offer significant potential for carbon emission reductions across multiple product pathways—fibreboard, pulp, and bioelectricity. Life cycle assessments (LCAs) were conducted for these three products, revealing distinct carbon footprints driven by energy use, chemical inputs, and combustion processes. Fibreboard production showed a carbon footprint of 244.314 kg CO2e/m3, primarily due to diesel use and electricity consumption. Pulp production exhibited the highest carbon intensity at 481.626 kg CO2e/t, largely driven by chemical consumption and fossil fuels. Bioelectricity, with the lowest carbon footprint of 41.750 g CO2e/kWh, demonstrated sensitivity to transportation logistics and fuel types. Substitution and scenario analysis showed that emission reductions can be achieved by optimizing energy structure, substituting high-carbon chemicals, and improving transportation efficiency. The findings highlight the substantial reduction potential when oil camellia residues replace conventional feedstocks in these industries, contributing to the development of low-carbon strategies within the bioeconomy. These results also inform the design of targeted mitigation policies, enhancing carbon accounting frameworks and aligning with China’s dual-carbon goals. Full article
(This article belongs to the Special Issue Carbon Footprints: Consumption and Environmental Sustainability)
Show Figures

Figure 1

23 pages, 1534 KiB  
Review
Decarbonisation Prospects of the Chemical and Petrochemical Industry in Italy
by Giuseppina Di Lorenzo, Aldo Bischi and Umberto Desideri
Energies 2025, 18(16), 4346; https://doi.org/10.3390/en18164346 - 15 Aug 2025
Viewed by 216
Abstract
Although the chemical and petrochemical (C&P) industry is a cornerstone of the Italian and European economies, it is also an intensive energy consumer and a high emitter of greenhouse gases. Europe’s decarbonisation trajectory is often examined through the lens of individual countries, as [...] Read more.
Although the chemical and petrochemical (C&P) industry is a cornerstone of the Italian and European economies, it is also an intensive energy consumer and a high emitter of greenhouse gases. Europe’s decarbonisation trajectory is often examined through the lens of individual countries, as key factors such as industry status, structure and resource accessibility may differ across nations. This study specifically examines the Italian C&P industry, with an emphasis on the basic chemicals sector. It reviews the current status of the production processes, technologies, energy consumption and carbon footprint in the sector, along with advancements towards decarbonisation. Key decarbonisation technologies are reviewed, highlighting their current use or research and development status. The primary barriers to the adoption of prospective decarbonisation solutions (e.g., increased costs and need for additional renewable capacity and infrastructure development) are discussed. While the Italian C&P sector has adopted strategies to enhance energy efficiency and waste recovery and utilisation, it is uncertain whether the industry will be able to meet the 2050 carbon emissions targets by relying on these two decarbonisation approaches alone. A combination of additional decarbonisation technologies, including electrification, green hydrogen and carbon capture utilisation and storage, will likely be necessary. However, technical challenges exist due to the maturity level of these technologies and their applicability to highly integrated processes. Appropriate, timely policy support will be crucial to aiding the green transition of the Italian C&P sector while safeguarding its significant role in the Italian economy. Full article
(This article belongs to the Special Issue Decarbonization and Sustainability in Industrial and Tertiary Sectors)
Show Figures

Figure 1

21 pages, 2217 KiB  
Article
Recyclable Wind Turbine Blades: A Life Cycle Analysis
by Navid Farazmandnia and Adrian Ilinca
Materials 2025, 18(16), 3762; https://doi.org/10.3390/ma18163762 - 11 Aug 2025
Viewed by 305
Abstract
The shift towards renewable energy has highlighted the importance of sustainable practices in wind power development, particularly concerning the end-of-life (EoL) management of wind turbine blades. Conventional blades made from thermoset resins present significant recycling challenges due to their cross-linked structure, which often [...] Read more.
The shift towards renewable energy has highlighted the importance of sustainable practices in wind power development, particularly concerning the end-of-life (EoL) management of wind turbine blades. Conventional blades made from thermoset resins present significant recycling challenges due to their cross-linked structure, which often leads to landfill disposal or energy-intensive recycling processes. This study evaluates the environmental impacts of 45 m wind turbine blades using the Eco Audit approach across four primary life cycle stages: material production, manufacturing, transportation, and operation and maintenance. Six blade models with different fiber and resin configurations are assessed, focusing on a comparison between conventional thermoset resins and Elium, a newly developed liquid thermoplastic resin by Arkema. Elium offers promising recyclability options, including mechanical and chemical processes, which could substantially lower the environmental burden. Compared to composites made with thermoset resins, Elium-based blades demonstrate up to a 22.5% reduction in embodied energy and a 16% decrease in carbon footprint. Additionally, Elium’s compatibility with existing manufacturing processes, room-temperature curing capability, and lower processing energy contribute to its industrial feasibility. Notably, the analysis reveals that the material production phase significantly contributes to the total environmental impact, accounting for up to 98% of the embodied energy and carbon footprint in certain blade models, underscoring the importance of selecting a more sustainable resin, such as Elium, from the outset to reduce the overall environmental load. Full article
Show Figures

Figure 1

23 pages, 2739 KiB  
Review
Could Fostering Alternative Plant Feedstocks Improve the Sustainability of Leather Manufacturing? A Critical Review
by Valentina Beghetto, Vanessa Gatto and Silvia Conca
Materials 2025, 18(16), 3759; https://doi.org/10.3390/ma18163759 - 11 Aug 2025
Viewed by 331
Abstract
Vegetable tannins (VTs) are natural polyphenolic compounds widely used in leather tanning as sustainable alternatives to chrome-based processes. Traditionally, only a limited number of commercially available tannins, such as mimosa, quebracho, and chestnut, are employed globally, often requiring long-distance transportation with associated environmental [...] Read more.
Vegetable tannins (VTs) are natural polyphenolic compounds widely used in leather tanning as sustainable alternatives to chrome-based processes. Traditionally, only a limited number of commercially available tannins, such as mimosa, quebracho, and chestnut, are employed globally, often requiring long-distance transportation with associated environmental and economic costs. This review systematically explores recent advances (2015–2025) in the identification and evaluation of alternative VT sources derived from underutilized plant species in Africa and Asia. Chemical composition, extraction efficiency, and tanning performance, including hydrothermal stability, tensile strength (TS), elongation at break (EB%), and tear strength (Ts), are critically analyzed and compared with conventional agents. Particular focus is given to the tannin/non-tannin ratio (T/N), a key indicator of tanning potential. Promising results were found for extracts from Acacia xanthophloea, Cassia singueana, Solanum incanum, Pontederia crassipes, and Xylocarpus granatum. Preliminary environmental assessments (COD, BOD, TDS) also suggest comparable impacts to standard tannins. However, performance variability due to species, plant part, seasonality, and extraction conditions remains a challenge. This review underscores the potential of regionally sourced VTs to support proximity-based economies and reduce the environmental footprint of the leather industry, while highlighting the need for further studies to optimize extraction protocols and scale industrial application. Full article
(This article belongs to the Special Issue Advanced Leather and By-Product Processing for Sustainable Industry)
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Viewed by 331
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 - 2 Aug 2025
Viewed by 500
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 - 1 Aug 2025
Viewed by 443
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2645 KiB  
Article
Carbon Footprint and Uncertainties of Geopolymer Concrete Production: A Comprehensive Life Cycle Assessment (LCA)
by Quddus Tushar, Muhammed A. Bhuiyan, Ziyad Abunada, Charles Lemckert and Filippo Giustozzi
C 2025, 11(3), 55; https://doi.org/10.3390/c11030055 - 28 Jul 2025
Viewed by 1050
Abstract
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2 [...] Read more.
This study aims to estimate the carbon footprint and relative uncertainties for design components of conventional and geopolymer concrete. All the design components of alkaline-activated geopolymer concrete, such as fly ash, ground granulated blast furnace slag, sodium hydroxide (NaOH), sodium silicate (Na2SiO3), superplasticizer, and others, are assessed to reflect the actual scenarios of the carbon footprint. The conjugate application of the life cycle assessment (LCA) tool SimPro 9.4 and @RISK Monte Carlo simulation justifies the variations in carbon emissions rather than a specific determined value for concrete binders, precursors, and filler materials. A reduction of 43% in carbon emissions has been observed by replacing cement with alkali-activated binders. However, the associative uncertainties of chemical admixtures reveal that even a slight increase may cause significant environmental damage rather than its benefit. Pearson correlations of carbon footprint with three admixtures, namely sodium silicate (r = 0.80), sodium hydroxide (r = 0.52), and superplasticizer (r = 0.19), indicate that the shift from cement to alkaline activation needs additional precaution for excessive use. Therefore, a suitable method of manufacturing chemical activators utilizing renewable energy sources may ensure long-term sustainability. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

20 pages, 3407 KiB  
Article
Impact of Adverse Mobility Ratio on Oil Mobilization by Polymer Flooding
by Abdulmajeed Murad, Arne Skauge, Behruz Shaker Shiran, Tormod Skauge, Alexandra Klimenko, Enric Santanach-Carreras and Stephane Jouenne
Polymers 2025, 17(15), 2033; https://doi.org/10.3390/polym17152033 - 25 Jul 2025
Viewed by 272
Abstract
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental [...] Read more.
Polymer flooding is a widely used enhanced oil recovery (EOR) method for improving energy efficiency and reducing the carbon footprint of oil production. Optimizing polymer concentration is critical for maximizing recovery while minimizing economic and environmental costs. Here, we present a systematic experimental study which shows that even very low concentrations of polymers yield relatively high recovery rates at adverse mobility ratios (230 cP oil). A series of core flood experiments were conducted on Bentheimer sandstone rock, with polymer concentrations ranging from 40 ppm (1.35 cP) to 600 ppm (10.0 cP). Beyond a mobility ratio threshold, increasing polymer concentration did not significantly enhance recovery. This plateau in performance was attributed to the persistence of viscous fingering and oil crossflow into pre-established water channels. The study suggests that low concentrations of polymer may mobilize oil at high mobility ratios by making use of the pre-established water channels as transport paths for the oil and that the rheology of the polymer enhances this effect. These findings enable reductions in the polymer concentration in fields with adverse mobility ratios, leading to substantial reductions in chemical usage, energy consumption, and environmental impact of the extraction process. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

24 pages, 3016 KiB  
Article
Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy Transition
by Marta Pacheco, Adrien Brac de la Perrière, Patrícia Moura and Carla Silva
C 2025, 11(3), 54; https://doi.org/10.3390/c11030054 - 23 Jul 2025
Viewed by 628
Abstract
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and [...] Read more.
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

31 pages, 1386 KiB  
Review
RNAi in Pest Control: Critical Factors Affecting dsRNA Efficacy
by Maribel Mendoza-Alatorre, Brenda Julian-Chávez, Stephanie Solano-Ornelas, Tania Samanta Siqueiros-Cendón, Jorge Ariel Torres-Castillo, Sugey Ramona Sinagawa-García, María Jazmín Abraham-Juárez, Carmen Daniela González-Barriga, Quintín Rascón-Cruz, Luis Ignacio Siañez-Estrada and Edward Alexander Espinoza-Sánchez
Insects 2025, 16(7), 737; https://doi.org/10.3390/insects16070737 - 18 Jul 2025
Viewed by 1155
Abstract
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been [...] Read more.
In recent years, agricultural crops have increasingly been attacked by more destructive insect pests, forcing modern farming to depend mainly on chemical insecticides. Although valuable, their widespread and intensive misuse has raised serious concerns about environmental and public health impacts. RNAi has been proposed as a safer alternative due to its high specificity, adaptability, and low ecological footprint. So far, dsRNA has proven effective in controlling various pest species, either through topical application or via genetically modified plants. Despite advances, large-scale implementation of RNAi remains challenging due to technical and biological hurdles that contribute to inconsistent performance. Key aspects such as dsRNA design, delivery techniques, and cellular uptake mechanisms still require refinement. Additionally, ensuring environmental stability, addressing biosafety concerns, and developing cost-effective production methods are essential for its practical application. In this review, we explore recent advances in the design and implementation of dsRNA, as well as the strategies that could support the successful integration of RNAi technology into pest management programs. Full article
Show Figures

Figure 1

16 pages, 2079 KiB  
Article
Biogas Production from Agave durangensis Mezcal Bagasse Pretreated Using Chemical Processes
by Refugio Hernández-López, Iván Moreno-Andrade, Blanca E. Barragán-Huerta, Edson B. Estrada-Arriaga and Marco A. Garzón-Zúñiga
Fermentation 2025, 11(7), 399; https://doi.org/10.3390/fermentation11070399 - 12 Jul 2025
Viewed by 517
Abstract
This study evaluated the viability of using the solid residues (bagasse) of the mezcal industry produced with Agave durangensis as a substrate for biogas production, using two chemical pretreatments, acid (HCl) and alkaline (KOH + Ca(OH)2), to enhance its biodegradability and [...] Read more.
This study evaluated the viability of using the solid residues (bagasse) of the mezcal industry produced with Agave durangensis as a substrate for biogas production, using two chemical pretreatments, acid (HCl) and alkaline (KOH + Ca(OH)2), to enhance its biodegradability and improve the anaerobic digestion (AD) process. The chemical composition of bagasse was analyzed before and after the chemical pretreatments and then AD experiments were conducted in anaerobic sequential batch reactors (A-SBR) to analyze the effect of pretreatments on biogas production performance. The results showed that acid pretreatment increased cellulose content to 0.606 g, which represented an increase of 34%, and significantly reduced hemicellulose. In contrast, alkaline pretreatment did not show significant changes in cellulose composition, although it caused a swelling of the Agave durangensis mezcal bagasse (Ad-MB) fibers. In terms of biogas production, Ad-MB pretreated with acid (Ad-MB-acid) increased cumulative production by 76% compared to the Agave durangensis mezcal bagasse that was not pretreated (Ad-MB-not pretreated) and by 135% compared to Agave durangensis mezcal bagasse pretreated with an alkaline solution (Ad-MB-alkaline). These results confirmed that Agave durangensis solid waste from the mezcal industry that receives acidic chemical pretreatment has the potential to generate biogas as a sustainable biofuel that can be used to reduce the ecological footprint of this industry. Full article
(This article belongs to the Special Issue Biofuels Production and Processing Technology, 3rd Edition)
Show Figures

Figure 1

17 pages, 2302 KiB  
Article
Experimental Evaluation of Pet Food Waste as Biomass Fuel: Corrosion, Emissions, and Energy Potential
by Harald Puratich-Fernández, Joaquin Aburto-Hole, Joaquin Díaz, Francisca Angerstein, Fernanda de Groote, Héctor Quinteros-Lama, Johan González and Diógenes Hernández
Appl. Sci. 2025, 15(14), 7792; https://doi.org/10.3390/app15147792 - 11 Jul 2025
Viewed by 410
Abstract
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food [...] Read more.
The pet food industry faces significant sustainability challenges, including reducing energy consumption, lowering emissions, and adopting circular economy practices. This study aimed to assess and propose energy efficiency measures to enhance sustainability within the sector. The research evaluated the use of unapproved food as biomass for boiler combustion. It analyzed its chemical composition, energy impact, and emissions of volatile organic compounds (VOCs) through TD-GC/MS, as well as the corrosion effects on boiler metals. An energy assessment of the production process and a combustion characterization of the waste were conducted to identify opportunities for improving energy efficiency and sustainability. The results demonstrated that the chemical composition of the waste and other biomass-related parameters were within acceptable economic and environmental ranges. A reduction of 0.015 Mg of CO2eq per Mg of produced pet food was achieved. Regarding VOCs, their environmental impact was minimal due to the molecular structure of the compounds. Additionally, the corrosion rate caused by waste incineration was comparable to that of domestic gas in the case of cat food, with a rate of 214.74 mpy, while the dog food yielded 55.42 mpy, which is near that of other types of biomass, such as wood chips and pellets. The use of residual biomass in pet food production is a viable alternative for reducing carbon footprint, promoting a circular economy, and improving the industry’s sustainability. Full article
Show Figures

Figure 1

15 pages, 2296 KiB  
Review
A Review of the Effects and Influencing Factors of Vertical Greening Systems in Wastewater Treatment
by Wencong Zhu, Xiangyong Zheng, Min Zhao, Huijun Xiang, Suyang Zhang and Wenjuan Han
Sustainability 2025, 17(13), 6138; https://doi.org/10.3390/su17136138 - 4 Jul 2025
Viewed by 292
Abstract
Vertical greening systems (VGSs) serve as an advanced ecological wastewater treatment technology, offering advantages such as a small spatial footprint and increased green space coverage. VGSs have been widely applied to treat various types of wastewaters, including blackwater and greywater. However, a systematic [...] Read more.
Vertical greening systems (VGSs) serve as an advanced ecological wastewater treatment technology, offering advantages such as a small spatial footprint and increased green space coverage. VGSs have been widely applied to treat various types of wastewaters, including blackwater and greywater. However, a systematic review of the pollutant removal efficiency of VGSs in treating blackwater and greywater, as well as the influencing factors, remains lacking. This study compiles data on the removal efficiencies of chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), and ammonium nitrogen (NH4+-N) from greywater and blackwater using VGSs. Additionally, the effects of the hydraulic loading rate, substrate type, and the number of system layers on pollutant removal performance are assessed. When treating blackwater, the pollutant removal efficiency showed a positive correlation with hydraulic loading within the range of 85 L × (m2 × d)−1 to 200 L × (m2 × d)−1; substrates such as zeolite or vermiculite exhibited superior removal performance, and increasing the number of system layers enhanced the pollutant removal efficiency. When treating greywater, the hydraulic loading rate and system layers have limited influence on COD and TN removal, while excessive hydraulic loading or system layers may negatively affect TP removal. Substrate mixtures composed of perlite and coconut coir achieved a higher pollutant removal efficiency. In conclusion, optimizing key parameters such as the hydraulic loading rate, substrate composition, and the number of system layers can significantly enhance the pollutant removal efficiency of VGSs. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 2743 KiB  
Article
Optimization of the Organic Matter Content and Temperature in a Bioreactor to Enhance Carbon Monoxide Production During the Initial Phase of Food Waste Composting
by Karolina Sobieraj
Molecules 2025, 30(13), 2807; https://doi.org/10.3390/molecules30132807 - 30 Jun 2025
Viewed by 338
Abstract
Carbon monoxide (CO) is a key reactant in industries like chemicals, pharmaceuticals, and metallurgy, with a projected global market of $8.2 billion by 2032. A novel method of CO production is biowaste composting, but the impact of organic matter content (OMC) on CO [...] Read more.
Carbon monoxide (CO) is a key reactant in industries like chemicals, pharmaceuticals, and metallurgy, with a projected global market of $8.2 billion by 2032. A novel method of CO production is biowaste composting, but the impact of organic matter content (OMC) on CO yield remains unexplored. Since OMC affects composting costs, optimizing it is crucial for economic feasibility. This study aimed to identify the optimal OMC in bioreactors for CO production during food waste composting. A laboratory process was conducted in bioreactors with forced aeration. Food waste (FW) was mixed with gravelite (G) at ratios of 1:0, 1:1, and 1:2 (FW:G), corresponding to 95%, 40%, and 20% dry OMC. Bioreactors were incubated at 45 °C, 60 °C, and 70 °C with ~5% oxygen. The highest CO levels were at 70 °C for FW:G 1:2, with an average of 655 ppm and a maximum of 2000 ppm. Daily CO emissions were highest at 70 °C, reaching up to 1.25 mg. Therefore, the study demonstrated that even a low organic matter content allows for CO production during composting under thermophilic conditions (~70 °C) with limited oxygen. Industrial modeling estimated daily CO yield from 39.25 to 670.61 g, with a 7-day market value between USD 28.89 and USD 175.86. Further studies are needed for large-scale feasibility. Full article
(This article belongs to the Special Issue Innovative Chemical Pathways for CO2 Conversion)
Show Figures

Graphical abstract

Back to TopTop