Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,391)

Search Parameters:
Keywords = chain observer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 715 KiB  
Article
One Health Approach to Trypanosoma cruzi: Serological and Molecular Detection in Owners and Dogs Living on Oceanic Islands and Seashore Mainland of Southern Brazil
by Júlia Iracema Moura Pacheco, Louise Bach Kmetiuk, Melissa Farias, Gustavo Gonçalves, Aaronson Ramathan Freitas, Leandro Meneguelli Biondo, Cristielin Alves de Paula, Ruana Renostro Delai, Cláudia Turra Pimpão, João Henrique Perotta, Rogério Giuffrida, Vamilton Alvares Santarém, Helio Langoni, Fabiano Borges Figueiredo, Alexander Welker Biondo and Ivan Roque de Barros Filho
Trop. Med. Infect. Dis. 2025, 10(8), 220; https://doi.org/10.3390/tropicalmed10080220 (registering DOI) - 2 Aug 2025
Abstract
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to [...] Read more.
Via a One Health approach, this study concomitantly assessed the susceptibility of humans and dogs to Trypanosoma cruzi infections on three islands and in two mainland seashore areas of southern Brazil. Human serum samples were tested using an enzyme-linked immunosorbent assay (ELISA) to detect anti-T. cruzi antibodies, while dog serum samples were tested using indirect fluorescent antibodies in an immunofluorescence assay (IFA). Seropositive human and dog individuals were also tested using quantitative polymerase chain reaction (qPCR) in corresponding blood samples. Overall, 2/304 (0.6%) human and 1/292 dog samples tested seropositive for T. cruzi by ELISA and IFA, respectively, and these cases were also molecularly positive for T. cruzi by qPCR. Although a relatively low positivity rate was observed herein, these cases were likely autochthonous, and the individuals may have been infected as a consequence of isolated events of disturbance in the natural peridomicile areas nearby. Such a disturbance could come in the form of a fire or deforestation event, which can cause stress and parasitemia in wild reservoirs and, consequently, lead to positive triatomines. In conclusion, T. cruzi monitoring should always be conducted in suspicious areas to ensure a Chagas disease-free status over time. Further studies should also consider entomological and wildlife surveillance to fully capture the transmission and spread of T. cruzi on islands and in seashore mainland areas of Brazil and other endemic countries. Full article
(This article belongs to the Section One Health)
Show Figures

Figure 1

15 pages, 3447 KiB  
Article
Effects of Post-Curing on Mechanical Strength and Cytotoxicity of Stereolithographic Methacrylate Resins
by Alfredo Rondinella, Matteo Zanocco, Alex Lanzutti, Wenliang Zhu, Enrico Greco and Elia Marin
Polymers 2025, 17(15), 2132; https://doi.org/10.3390/polym17152132 (registering DOI) - 2 Aug 2025
Abstract
This study investigated the influence of curing temperature and time on both the mechanical properties and cytotoxicity of stereolithographic polymethyl methacrylate (PMMA) resin. After printing using stereolithographic equipment, the resin was cured at 45 °C, 60 °C, and 75 °C for up to [...] Read more.
This study investigated the influence of curing temperature and time on both the mechanical properties and cytotoxicity of stereolithographic polymethyl methacrylate (PMMA) resin. After printing using stereolithographic equipment, the resin was cured at 45 °C, 60 °C, and 75 °C for up to 120 min. Our results reveal that the mechanical properties achieved a peak after approximately 30 min of curing at the two highest temperatures, followed by a subsequent decrease, while curing at 45 °C resulted in a constant increase in mechanical properties up to 120 min. Testing with S. epidermidis and E. coli exhibited a bland antibacterial effect, with the number of living bacteria increasing with both the time and temperature of curing. To assess potential cytotoxicity, the materials were also tested with human fibroblasts, and the trends observed were similar to what was previously seen for both bacteria strains. Interestingly, an association was observed between the intensity ratio of two Raman bands (around 2920 and 2945 cm−1), indicative of long-PMMA-chain formation and cytotoxicity. This finding suggests that Raman spectroscopy has the potential to serve as a viable method for estimating the cytotoxicity of 3D printed PMMA objects. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

14 pages, 5672 KiB  
Article
Multiplex Immunofluorescence Reveals Therapeutic Targets EGFR, EpCAM, Tissue Factor, and TROP2 in Triple-Negative Breast Cancer
by T. M. Mohiuddin, Wenjie Sheng, Chaoyu Zhang, Marwah Al-Rawe, Svetlana Tchaikovski, Felix Zeppernick, Ivo Meinhold-Heerlein and Ahmad Fawzi Hussain
Int. J. Mol. Sci. 2025, 26(15), 7430; https://doi.org/10.3390/ijms26157430 (registering DOI) - 1 Aug 2025
Abstract
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to [...] Read more.
Triple-negative breast cancer (TNBC) is a clinically and molecularly heterogeneous subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. In this study, tumor specimens from 104 TNBC patients were analyzed to characterize molecular and clinicopathological features and to assess the expression and therapeutic potential of four key surface markers: epidermal growth factor receptor (EGFR), epithelial cell adhesion molecule (EpCAM), tissue factor (TF), and trophoblast cell surface antigen (TROP2). Multiplex immunofluorescence (mIF) demonstrated elevated EGFR and TROP2 expression in the majority of samples. Significant positive correlations were observed between EGFR and TF, as well as between TROP2 and both TF and EpCAM. Expression analyses revealed increased EGFR and TF levels with advancing tumor stage, whereas EpCAM expression declined in advanced-stage tumors. TROP2 and TF expression were significantly elevated in higher-grade tumors. Additionally, EGFR and EpCAM levels were significantly higher in patients with elevated Ki-67 indices. Binding specificity assays using single-chain variable fragment (scFv-SNAP) fusion proteins confirmed robust targeting efficacy, particularly for EGFR and TROP2. These findings underscore the therapeutic relevance of EGFR and TROP2 as potential biomarkers and targets in TNBC. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 482 KiB  
Article
Branched-Chain Amino Acids Combined with Exercise Improves Physical Function and Quality of Life in Older Adults: Results from a Pilot Randomized Controlled Trial
by Ronna Robbins, Jason C. O’Connor, Tiffany M. Cortes and Monica C. Serra
Dietetics 2025, 4(3), 32; https://doi.org/10.3390/dietetics4030032 (registering DOI) - 1 Aug 2025
Abstract
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2 [...] Read more.
This pilot, randomized, double-blind, placebo-controlled trial investigated the effects of branched-chain amino acids (BCAAs)—provided in a 2:1:1 ratio of leucine:isoleucine:valine—combined with exercise on fatigue, physical performance, and quality of life in older adults. Twenty participants (63% female; BMI: 35 ± 2 kg/m2; age: 70.5 ± 1.2 years) were randomized to 8 weeks of either exercise + BCAAs (100 mg/kg body weight/d) or exercise + placebo. The program included moderate aerobic and resistance training three times weekly. Physical function was assessed using handgrip strength, chair stands, gait speed, VO2 max, and a 400 m walk. Psychological health was evaluated using the CES-D, Fatigue Assessment Scale (FAS), Insomnia Severity Index (ISI), and global pain, fatigue, and quality of life using a visual analog scale (VAS). Significant group x time interactions were found for handgrip strength (p = 0.03), chair stands (p < 0.01), and 400 m walk time (p < 0.01). Compared to exercise + placebo, exercise + BCAAs showed greater improvements in strength, mobility, and endurance, along with reductions in fatigue (−45% vs. +92%) and depressive symptoms (−29% vs. +5%). Time effects were also observed for ISI (−30%), FAS (−21%), and VAS quality of life (16%) following exercise + BCAA supplementation. These preliminary results suggest that BCAAs combined with exercise may be an effective way to improve physical performance and reduce fatigue and depressive symptoms in older adults. Full article
Show Figures

Figure 1

14 pages, 10176 KiB  
Article
Recrystallization During Annealing of Low-Density Polyethylene Non-Woven Fabric by Melt Electrospinning
by Yueming Ren, Changjin Li, Minqiao Ren, Dali Gao, Yujing Tang, Changjiang Wu, Liqiu Chu, Qi Zhang and Shijun Zhang
Polymers 2025, 17(15), 2121; https://doi.org/10.3390/polym17152121 - 31 Jul 2025
Abstract
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the [...] Read more.
The effect of annealing on the microstructure and tensile properties of low-density polyethylene (LDPE) non-woven fabric produced by melt electrospinning was systematically investigated using DSC, SAXS, SEM, etc. The results showed that, above an annealing temperature of 80 °C, both the main melting point and crystallinity of LDPE decreased compared to the original sample, as did the tensile strength of the non-woven fabric. Additionally, the lamellar distribution became broader at annealing temperatures above 80 °C. The recrystallization mechanism of molten lamellae (disordered chains) in LDPE was elucidated by fitting the data using a Gaussian function. It was found that secondary crystallization, forming thicker lamellae, and spontaneous crystallization, forming thinner lamellae, occurred simultaneously at rates dependent on the annealing temperature. Secondary crystallization dominated at temperatures ≤80 °C, whereas spontaneous crystallization prevailed at temperatures above 80 °C. These findings explain the observed changes in the microstructure and tensile properties of the LDPE non-woven fabric. Furthermore, a physical model describing the microstructural evolution of the LDPE non-woven fabric during annealing was proposed based on the experimental evidence. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

32 pages, 2291 KiB  
Article
Impact of Green Financial Reform on Urban Economic Resilience—A Quasi-Natural Experiment Based on Green Financial Reform and Innovation Pilot Zones
by Yahui Chen, Yi An, Zixun Nie, Yuanying Chi and Xinyue Jia
Sustainability 2025, 17(15), 6969; https://doi.org/10.3390/su17156969 (registering DOI) - 31 Jul 2025
Abstract
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and [...] Read more.
As a key engine driving China’s green financial transformation, the Green Financial Reform and Innovation Pilot Zones have demonstrated significant achievements in enhancing the capacity of financial services to support green real economies, preventing and mitigating green financial risks, and bolstering national and urban economic resilience. On this basis, a spatial Markov chain model is applied to further analyze the economic toughness of prefecture-level cities. This study treats the establishment of these pilot zones as a quasi-natural experiment, using panel data from 269 prefecture-level cities in China from 2013 to 2023 and employing a multi-period difference-in-differences (DID) model to empirically examine the impact of green financial reform on urban economic resilience and its underlying mechanisms. The results reveal that the establishment of these pilot zones significantly enhances urban economic resilience. Specifically, green financial reforms primarily improve urban economic resilience by increasing credit accessibility and capital allocation efficiency in the pilot cities. Furthermore, the policy effects are more pronounced in large cities and resource-dependent cities compared to small and medium-sized cities and non-resource-dependent cities, with stronger impacts observed in southern and coastal regions than in northern inland areas. Additionally, the policy effects are significantly greater in environmentally prioritized cities than in non-prioritized cities. By integrating green financial reforms and urban economic resilience into a unified analytical framework, this study provides valuable insights for policymakers to refine green financial strategies and design resilience-enhancing policies. Full article
Show Figures

Figure 1

21 pages, 799 KiB  
Review
The Molecular Diagnosis of Invasive Fungal Diseases with a Focus on PCR
by Lottie Brown, Mario Cruciani, Charles Oliver Morton, Alexandre Alanio, Rosemary A. Barnes, J. Peter Donnelly, Ferry Hagen, Rebecca Gorton, Michaela Lackner, Juergen Loeffler, Laurence Millon, Riina Rautemaa-Richardson and P. Lewis White
Diagnostics 2025, 15(15), 1909; https://doi.org/10.3390/diagnostics15151909 - 30 Jul 2025
Viewed by 310
Abstract
Background: Polymerase chain reaction (PCR) is highly sensitive and specific for the rapid diagnosis of invasive fungal disease (IFD) but is not yet widely implemented due to concerns regarding limited standardisation between assays, the lack of commercial options and the absence of [...] Read more.
Background: Polymerase chain reaction (PCR) is highly sensitive and specific for the rapid diagnosis of invasive fungal disease (IFD) but is not yet widely implemented due to concerns regarding limited standardisation between assays, the lack of commercial options and the absence of clear guidance on interpreting results. Objectives and Methods: This review provides an update on technical and clinical aspects of PCR for the diagnosis of the most pertinent fungal pathogens, including Aspergillus, Candida, Pneumocystis jirovecii, Mucorales spp., and endemic mycoses. Summary: Recent meta-analyses have demonstrated that quantitative PCR (qPCR) offers high sensitivity for diagnosing IFD, surpassing conventional microscopy, culture and most serological tests. The reported specificity of qPCR is likely underestimated due to comparison with imperfect reference standards with variable sensitivity. Although the very low limit of detection of qPCR can generate false positive results due to procedural contamination or patient colonisation (particularly in pulmonary specimens), the rates are comparable to those observed for biomarker testing. When interpreting qPCR results, it is essential to consider the pre-test probability, determined by the patient population, host factors, clinical presentation and risk factors. For patients with low to moderate pre-test probability, the use of sensitive molecular tests, often in conjunction with serological testing or biomarkers, can effectively exclude IFD when all tests return negative results, reducing the need for empirical antifungal therapy. Conversely, for patients with high pre-test probability and clinical features of IFD, qPCR testing on invasive specimens from the site of infection (such as tissue or bronchoalveolar lavage fluid) can confidently rule in the disease. The development of next-generation sequencing methods to detect fungal infection has the potential to enhance the diagnosis of IFD, but standardisation and optimisation are essential, with improved accessibility underpinning clinical utility. Full article
Show Figures

Figure 1

20 pages, 890 KiB  
Article
Enhancing Cultural Sustainability in Ethnographic Museums: A Multi-Dimensional Visitor Experience Framework Based on Analytic Hierarchy Process (AHP)
by Chao Ruan, Suhui Qiu and Hang Yao
Sustainability 2025, 17(15), 6915; https://doi.org/10.3390/su17156915 - 30 Jul 2025
Viewed by 237
Abstract
This study examines how a visitor-centered approach enhances engagement, participation, and intangible heritage transmission to support cultural sustainability in ethnographic museums. We conducted online and on-site behavioral observations, questionnaire surveys, and in-depth interviews at the She Ethnic Minority Museum to identify gaps in [...] Read more.
This study examines how a visitor-centered approach enhances engagement, participation, and intangible heritage transmission to support cultural sustainability in ethnographic museums. We conducted online and on-site behavioral observations, questionnaire surveys, and in-depth interviews at the She Ethnic Minority Museum to identify gaps in current visitor experience design. We combined the Analytic Hierarchy Process (AHP) with the Contextual Model of Learning (POE) and Emotional Experience Theory (EET) to develop a hierarchical evaluation model. The model comprises one goal layer, three criterion layers (Experience, Participation, Transmission), and twelve sub-criteria, each evaluated across People, Object, and Environment dimensions. Quantitative weighting revealed that participation exerts the greatest influence, followed by transmission and experience. Findings indicate that targeted interventions promoting active participation most effectively foster emotional resonance and heritage transmission, while strategies supporting intergenerational engagement and immersive experiences also play a significant role. We recommend prioritizing small-scale, low-cost participatory initiatives and integrating online and offline community engagement to establish a participatory chain where engagement leads to meaningful experiences and sustained cultural transmission. These insights offer practical guidance for museum practitioners and policymakers seeking to enhance visitor experiences and ensure the long-term preservation and vibrancy of ethnic minority cultural heritage. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

14 pages, 2837 KiB  
Article
A Starch Molecular Explanation for Effects of Ageing Temperature on Pasting Property, Digestibility, and Texture of Rice Grains
by Enpeng Li, Xue Xiao, Yifei Huang, Yi Ji, Changquan Zhang and Cheng Li
Foods 2025, 14(15), 2661; https://doi.org/10.3390/foods14152661 - 29 Jul 2025
Viewed by 169
Abstract
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A [...] Read more.
Alterations in rice qualities during ageing are related to changes in starch molecular structures. However, if and how storage temperature determines starch structure–function relations remain unknown. This study applied four storage temperatures to investigate the effects of ageing on starch structure–function relations. A small but significant variation was observed for starch chain lengths, and this variation depended on both rice varieties and storage temperatures. Rice grains aged at higher temperatures had much higher peak (~25% larger) and setback viscosities (~50% larger) compared to those stored at lower temperatures. The digestion rate constant was lowered (~10%) most significantly at 40 °C. However, the maximum starch digested percentage increased after ageing. All rice varieties showed the lowest hardness at 4 °C and the highest hardness at 40 °C (~20% larger) after ageing. The changes in starch molecular structures were consistent with altered rice properties according to the established structure–property correlations. These results could improve our understanding of the complex rice ageing process. Full article
(This article belongs to the Special Issue Starches: From Structure to Functional Properties)
Show Figures

Figure 1

23 pages, 1316 KiB  
Article
The Mobility and Distribution of Lead and Cadmium in the Ecosystems of Two Lakes in Poland and Their Effect on Humans and the Environment
by Monika Rajkowska-Myśliwiec, Mikołaj Protasowicki and Agata Witczak
Water 2025, 17(15), 2255; https://doi.org/10.3390/w17152255 - 29 Jul 2025
Viewed by 209
Abstract
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the [...] Read more.
The presence of lead (Pb) and cadmium (Cd) can have considerable effects on the environment and on humans. The present study examines their levels in two lakes with different trophic levels located in northwestern Poland; their concentrations were determined in water and the bottom sediments, in common reed and in the organs of pike, bream and roach. The work also evaluates Pb and Cd bioavailability in bottom sediments, their potential for biomagnification, their bioaccumulation in the food chain and risk to human consumers. Metal concentrations were determined by graphite furnace atomic absorption spectrometry (GFAAS). The geochemical fractions of the metals were isolated by sequential extraction. Both Pb and Cd demonstrated low bioavailability, with the carbonate fraction playing a key role in their bioconversion. The concentrations of Pb and Cd in some organs and tissue types of fish and reeds correlated with their levels in water and sediments. No biomagnification was observed between the studied fish species. Calculations based on BMDL, TWI and THQ concentrations found Pb and Cd levels in the edible parts of fish to be within permissible limits and not to pose any threat to consumer health. Full article
Show Figures

Figure 1

11 pages, 1809 KiB  
Brief Report
Fatty Acid Profile in the Liver of Mice with Early- and Late-Onset Forms of Huntington’s Disease
by Magdalena Gregorczyk, Adriana Mika, Tomasz Śledziński, Marta Tomczyk and Iwona Rybakowska
Int. J. Mol. Sci. 2025, 26(15), 7304; https://doi.org/10.3390/ijms26157304 - 28 Jul 2025
Viewed by 193
Abstract
Huntington’s disease (HD) is characterized by progressive neurodegeneration, but increasing evidence points to multisystemic involvement, including early hepatic steatosis in pediatric HD. Therefore, it is important to consider systemic alterations, particularly in liver lipid metabolism. In this study, we analyzed fatty acid (FA) [...] Read more.
Huntington’s disease (HD) is characterized by progressive neurodegeneration, but increasing evidence points to multisystemic involvement, including early hepatic steatosis in pediatric HD. Therefore, it is important to consider systemic alterations, particularly in liver lipid metabolism. In this study, we analyzed fatty acid (FA) profiles in two symptomatic HD mouse models: 2-month-old R6/2 mice representing early-onset HD and 22-month-old HdhQ150/Q150 (Hdh) mice representing late-onset HD, along with age-matched wild-type (WT) controls. FA composition in liver tissue was assessed by gas chromatography–mass spectrometry (GC–MS). In R6/2 mice, we observed increased levels of total iso-branched chain, monounsaturated, and n-6 polyunsaturated FAs compared to WT. In contrast, only a few FA species showed reduced concentrations in Hdh mice. Overall, our results indicate that R6/2 mice exhibit more pronounced alterations in hepatic FA profiles than Hdh mice, suggesting that early-onset HD may be associated with more severe peripheral metabolic dysregulation. Full article
(This article belongs to the Special Issue Lipid Metabolism and Biomarkers in Neural and Cardiometabolic Health)
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 151
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 1537 KiB  
Review
Milk Fatty Acids as Potential Biomarkers of Enteric Methane Emissions in Dairy Cattle: A Review
by Emily C. Youngmark and Jana Kraft
Animals 2025, 15(15), 2212; https://doi.org/10.3390/ani15152212 - 28 Jul 2025
Viewed by 307
Abstract
Measuring methane (CH4) emissions from dairy systems is crucial for advancing sustainable agricultural practices aimed at mitigating climate change. However, current CH4 measurement techniques are primarily designed for controlled research settings and are not readily scalable to diverse production environments. [...] Read more.
Measuring methane (CH4) emissions from dairy systems is crucial for advancing sustainable agricultural practices aimed at mitigating climate change. However, current CH4 measurement techniques are primarily designed for controlled research settings and are not readily scalable to diverse production environments. Thus, there is a need to develop accessible, production-level methods for estimating CH4 emissions. This review examines the relationship between enteric CH4 emissions and milk fatty acid (FA) composition, highlights key FA groups with potential as biomarkers for indirect CH4 estimation, and outlines critical factors of predictive model development. Several milk FAs exhibit strong and consistent correlations to CH4 emissions, supporting their utility as predictive biomarkers. Saturated and branched-chain FAs are generally positively associated with CH4 emissions, while unsaturated FAs, including linolenic acid, conjugated linoleic acids, and odd-chain FAs, are typically negatively associated. Variability in the strength and direction of correlations across studies is often attributable to differences in diet or lactation stage. Similarly, differences in experimental design, data processing, and model development contribute to much of the variation observed in predictive equations across studies. Future research should aim to (1) identify milk FAs that consistently correlate with CH4 emissions regardless of diet, (2) develop robust and standardized prediction models, and (3) prioritize the external validation of prediction models across herds and production systems. Full article
Show Figures

Figure 1

17 pages, 2909 KiB  
Article
T Cell Dynamics in COVID-19, Long COVID and Successful Recovery
by Zoia R. Korobova, Natalia A. Arsentieva, Anastasia A. Butenko, Igor V. Kudryavtsev, Artem A. Rubinstein, Anastasia S. Turenko, Yulia V. Ostankova, Ekaterina V. Boeva, Anastasia A. Knizhnikova, Anna O. Norka, Vadim V. Rassokhin, Nikolay A. Belyakov and Areg A. Totolian
Int. J. Mol. Sci. 2025, 26(15), 7258; https://doi.org/10.3390/ijms26157258 - 27 Jul 2025
Viewed by 1232
Abstract
Despite targeting mainly the respiratory tract, SARS-CoV-2 disrupts T cell homeostasis in ways that may explain both acute lethality and long-term immunological consequences. In this study, we aimed to evaluate the T-cell-mediated chain of immunity and formation of TCR via TREC assessment in [...] Read more.
Despite targeting mainly the respiratory tract, SARS-CoV-2 disrupts T cell homeostasis in ways that may explain both acute lethality and long-term immunological consequences. In this study, we aimed to evaluate the T-cell-mediated chain of immunity and formation of TCR via TREC assessment in COVID-19 and long COVID (LC). For this study, we collected 231 blood samples taken from patients with acute COVID-19 (n = 71), convalescents (n = 51), people diagnosed with LC (n = 63), and healthy volunteers (n = 46). With flow cytometry, we assessed levels of CD4+ and CD8+ minor T cell subpopulations (i.e., naïve, central and effector memory cells (CM and EM), Th1, Th2, Th17, Tfh, Tc1, Tc2, Tc17, Tc17.1, and subpopulations of effector cells (pE1, pE2, effector cells)). Additionally, we measured TREC levels. We found distinct changes in immune cell distribution—whilst distribution of major subpopulations of T cells was similar between cohorts, we noted that COVID-19 was associated with a decrease in naïve Th and CTLs, an increase in Th2/Tc2 lymphocyte polarization, an increase in CM cells, and a decrease in effector memory cells 1,3, and TEMRA cells. LC was associated with naïve CTL increase, polarization towards Th2 population, and a decrease in Tc1, Tc2, Em2, 3, 4 cells. We also noted TREC correlating with naïve cells subpopulations. Our findings suggest ongoing immune dysregulation, possibly driven by persistent antigen exposure or tissue migration of effector cells. The positive correlation between TREC levels and naïve T cells in LC patients points to residual thymic activity. The observed Th2/Th17 bias supports the hypothesis that LC involves autoimmune mechanisms, potentially driven by molecular mimicry or loss of immune tolerance. Full article
(This article belongs to the Special Issue Long-COVID and Its Complications)
Show Figures

Figure 1

Back to TopTop