Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,576)

Search Parameters:
Keywords = chain mediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2610 KiB  
Article
Quorum-Sensing C12-HSL Drives Antibiotic Resistance Plasmid Transfer via Membrane Remodeling, Oxidative Stress, and RpoS-RMF Crosstalk
by Yang Yang, Ziyan Wu, Li’e Zhu, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microorganisms 2025, 13(8), 1837; https://doi.org/10.3390/microorganisms13081837 - 6 Aug 2025
Abstract
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200μM [...] Read more.
Antibiotic misuse accelerates resistance dissemination via plasmid conjugation, but quorum sensing (QS) regulatory mechanisms remain undefined. Using Escherichia coli (E. coli) MG1655 conjugation models (RP4-7/EC600 plasmids), we demonstrate that long-chain acyl-homoserine lactones (C10/C12-HSL) enhance transfer frequency by up to 7.7-fold (200μM C12-HSL; p < 0.001), while quorum-quenching by sub-inhibitory vanillin suppressed this effect by 95% (p < 0.0001). C12-HSL compromised membrane integrity via ompF upregulation (4-fold; p < 0.01) and conjugative pore assembly (trbBp upregulated by 1.38-fold; p < 0.05), coinciding with ROS accumulation (1.5-fold; p < 0.0001) and SOS response activation (recA upregulated by 1.68-fold; p < 0.001). Crucially, rpoS and rmf deletion mutants reduced conjugation by 65.5% and 55.8%, respectively (p < 0.001), exhibiting attenuated membrane permeability (≤65.5% reduced NPN influx; p < 0.0001), suppressed ROS (≤54% downregulated; p < 0.0001), and abolished transcriptional induction of conjugation/stress genes. Reciprocal RpoS–RMF (ribosomal hibernation factor) crosstalk was essential for AHL responsiveness, with deletions mutually suppressing expression (≤65.9% downregulated; p < 0.05). We establish a hierarchical mechanism wherein long-chain AHLs drive resistance dissemination through integrated membrane restructuring, stress adaptation, and RpoS–RMF-mediated genetic plasticity, positioning QS signaling as a viable target for curbing resistance spread. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
23 pages, 1841 KiB  
Review
B Cell-Derived and Non-B Cell-Derived Free Light Chains: From Generation to Biological and Pathophysiological Roles
by Linyang Li, Huining Gu, Xiaoyan Qiu and Jing Huang
Int. J. Mol. Sci. 2025, 26(15), 7607; https://doi.org/10.3390/ijms26157607 - 6 Aug 2025
Abstract
Immunoglobulin light chains are essential components of intact immunoglobulins, traditionally believed to be produced exclusively by B cells. Physiologically, excess light chains not assembled into intact antibodies exist as free light chains (FLCs). Increasingly recognized as important biomarkers for diseases such as multiple [...] Read more.
Immunoglobulin light chains are essential components of intact immunoglobulins, traditionally believed to be produced exclusively by B cells. Physiologically, excess light chains not assembled into intact antibodies exist as free light chains (FLCs). Increasingly recognized as important biomarkers for diseases such as multiple myeloma, systemic amyloidosis, and light chain-related renal injuries, FLCs have also been shown in recent decades to originate from non-B cell sources, including epithelial and carcinoma cells. This review primarily focuses on novel non-B cell-derived FLCs, which challenge the conventional paradigms. It systematically compares B cell-derived and non-B cell-derived FLCs, analyzing differences in genetic features, physicochemical properties, and functional roles in both health and disease. By elucidating the distinctions and similarities in their nature as immune regulators and disease mediators, we highlight the significant clinical potential of FLCs, particularly non-B cell-derived FLCs, for novel diagnostic and therapeutic strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Molecular Links Between Metabolism and Mental Health: Integrative Pathways from GDF15-Mediated Stress Signaling to Brain Energy Homeostasis
by Minju Seo, Seung Yeon Pyeon and Man S. Kim
Int. J. Mol. Sci. 2025, 26(15), 7611; https://doi.org/10.3390/ijms26157611 - 6 Aug 2025
Abstract
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact [...] Read more.
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact to influence both metabolic and psychiatric conditions. Evidence suggests that these pathways converge to regulate brain energy homeostasis through feedback mechanisms involving the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. GDF15 emerges as a key stress-responsive biomarker that links peripheral metabolism with brainstem GDNF family receptor alpha-like (GFRAL)-mediated anxiety circuits. Meanwhile, ceramides impair hippocampal mitochondrial function via membrane incorporation and disruption of the respiratory chain. These disruptions may contribute to sustained pathological states such as depression, anxiety, and cognitive dysfunction. Although direct mechanistic data are limited, integrating these pathways provides a conceptual framework for understanding metabolic–psychiatric comorbidities. Furthermore, differences in age, sex, and genetics may influence these systems, highlighting the need for personalized interventions. Targeting mitochondrial function, GDF15-GFRAL signaling, and gut microbiota composition may offer new therapeutic strategies. This integrative perspective helps conceptualize how metabolic and psychiatric mechanisms interact for understanding the pathophysiology of metabolic and psychiatric comorbidities and highlights therapeutic targets for precision medicine. Full article
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Salvianolic Acid A Activates Nrf2-Related Signaling Pathways to Inhibit Ferroptosis to Improve Ischemic Stroke
by Yu-Fu Shang, Wan-Di Feng, Dong-Ni Liu, Wen-Fang Zhang, Shuang Xu, Dan-Hong Feng, Guan-Hua Du and Yue-Hua Wang
Molecules 2025, 30(15), 3266; https://doi.org/10.3390/molecules30153266 - 4 Aug 2025
Abstract
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, [...] Read more.
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, which possesses diverse pharmacological activities. This study aims to investigate the effect and mechanisms of SAL-A in inhibiting ferroptosis to improve ischemic stroke. Brain injury, oxidative stress and ferroptosis-related analysis were performed to evaluate the effect of SAL-A on ischemic stroke in photochemical induction of stroke (PTS) in mice. Lipid peroxidation levels, antioxidant protein levels, tissue iron content, nuclear factor erythroid 2-related factor 2 (Nrf2), and mitochondrial morphology changes were detected to explore its mechanism. SAL-A significantly attenuated brain injury, reduced malondialdehyde (MDA) and long-chain acyl-CoA synthase 4 (ACSL4) levels. In addition, SAL-A also amplified the antioxidative properties of glutathione (GSH) when under glutathione peroxidase 4 (GPX4), and the reduction in ferrous ion levels. In vitro, brain microvascular endothelial cells (b.End.3) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to investigate whether the anti-stroke mechanism of SAL-A is related to Nrf2. Following OGD/R, ML385 (Nrf2 inhibitor) prevents SAL-A from inhibiting oxidative stress, ferroptosis, and mitochondrial dysfunction in b.End.3 cells. In conclusion, SAL-A inhibits ferroptosis to ameliorate ischemic brain injury, and this effect is mediated through Nrf2. Full article
Show Figures

Graphical abstract

19 pages, 3259 KiB  
Article
Examining the Impact of National Planning on Rural Residents’ Disposable Income in China—The Case of Functional Zoning
by Junrong Ma, Chen Liu and Li Tian
Land 2025, 14(8), 1587; https://doi.org/10.3390/land14081587 - 3 Aug 2025
Viewed by 226
Abstract
The growth of rural residents’ disposable income is essential for narrowing the income gap between urban and rural areas and promoting integrated development. This study explores how China’s National Main Functional Zoning Plan influences rural household income through its regulatory impact on construction [...] Read more.
The growth of rural residents’ disposable income is essential for narrowing the income gap between urban and rural areas and promoting integrated development. This study explores how China’s National Main Functional Zoning Plan influences rural household income through its regulatory impact on construction land expansion. Using data from county−level administrative units across China, the research identified the construction land regulation index as a key mediating variable linking zoning policy to changes in household income. By shifting the analytical perspective from a traditional urban–rural classification to a framework aligned with the National Main Functional Zoning Plan, the study reveals how spatial planning tools, particularly differentiated land quota allocations, influence household income. The empirical results confirm a structured causal chain in which zoning policy affects land development intensity, which in turn drives rural income growth. This relationship varies across different functional zones. In key development zones, strict land control limits income potential by constraining land supply. In main agricultural production zones, moderate regulatory control enhances land use efficiency and contributes to higher income levels. In key ecological function zones, ecological constraints require diverse approaches to value realization. The investigation contributes both theoretical and practical insights by elucidating the microeconomic effects of national spatial planning policies and offering actionable guidance for optimizing land use regulation to support income growth tailored to regional functions. Full article
Show Figures

Figure 1

21 pages, 5517 KiB  
Article
Artificial Intelligence Disclosure in Cause-Related Marketing: A Persuasion Knowledge Perspective
by Xiaodong Qiu, Ya Wang, Yuruo Zeng and Rong Cong
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 193; https://doi.org/10.3390/jtaer20030193 - 2 Aug 2025
Viewed by 313
Abstract
Integrating artificial intelligence (AI) and cause-related marketing has reshaped corporate social responsibility practices while triggering a conflict between technological instrumental rationality and moral value transmission. Building on the Persuasion Knowledge Model (PKM) and AI aversion literature, this research employs two experiments to reveal [...] Read more.
Integrating artificial intelligence (AI) and cause-related marketing has reshaped corporate social responsibility practices while triggering a conflict between technological instrumental rationality and moral value transmission. Building on the Persuasion Knowledge Model (PKM) and AI aversion literature, this research employs two experiments to reveal that AI disclosure exerts a unique inhibitory effect on consumers’ purchase intentions in cause-related marketing contexts compared to non-cause-related marketing scenarios. Further analysis uncovers a chain mediation pathway through consumer skepticism and advertisement attitudes, explaining the psychological mechanism underlying AI disclosure’s impact on purchase intentions. The study also identifies the moderating role of AI aversion within this chain model. The findings provide a new theoretical perspective for integrating AI disclosure, consumer psychological responses, and marketing effectiveness while exposing the “value-instrumentality” conflict inherent in AI applications for cause-related marketing. This research advances the evolution of the PKM in the digital era and offers practical insights for cause-related marketing enterprises to balance AI technology application with optimized disclosure strategies. Full article
Show Figures

Figure 1

15 pages, 1194 KiB  
Article
DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
by Tianmei Dai, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan and Wanxue Liu
Int. J. Mol. Sci. 2025, 26(15), 7466; https://doi.org/10.3390/ijms26157466 - 1 Aug 2025
Viewed by 129
Abstract
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity [...] Read more.
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity of invasive species and environmental temperature variations. We assessed and interpreted the epigenetic mechanisms of invasive and indigenous species’ differential tolerance to thermal stress through the invasive species Bemisia tabaci Mediterranean (MED) and the indigenous species Bemisia tabaci AsiaII3. We examine their thermal tolerance following exposure to heat and cold stress. We found that MED exhibits higher thermal resistance than AsiaII3 under heat stress. The fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) results proved that the increased thermal tolerance in MED is closely related to DNA methylation changes, other than genetic variation. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis of DNA methyltransferases (Dnmts) suggested that increased expression of Dnmt3 regulates the higher thermal tolerance of female MED adults. A mechanism is revealed whereby DNA methylation enhances thermal tolerance in invasive species. Our results show that the Dnmt-mediated regulation mechanism is particularly significant for understanding invasive species’ successful invasion and rapid adaptation under global warming, providing new potential targets for controlling invasive species worldwide. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 178
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

18 pages, 2892 KiB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 - 1 Aug 2025
Viewed by 155
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the ki value estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
Show Figures

Figure 1

19 pages, 1974 KiB  
Review
Research Progress on the Mechanism of Action of Food-Derived ACE-Inhibitory Peptides
by Ting Li, Wanjia Du, Huiyan Huang, Luzhang Wan, Chenglong Shang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1219; https://doi.org/10.3390/life15081219 - 1 Aug 2025
Viewed by 251
Abstract
Hypertension is a major pathogenic contributor to cardiovascular diseases, primarily mediated through activation of the angiotensin-converting enzyme (ACE) system. Food-derived ACE-inhibitory peptides represent a promising alternative to synthetic drugs due to their favorable safety profile and minimal side effects. ACE-inhibitory peptides have been [...] Read more.
Hypertension is a major pathogenic contributor to cardiovascular diseases, primarily mediated through activation of the angiotensin-converting enzyme (ACE) system. Food-derived ACE-inhibitory peptides represent a promising alternative to synthetic drugs due to their favorable safety profile and minimal side effects. ACE-inhibitory peptides have been extensively identified from various foods, with their antihypertensive activity and molecular mechanisms comprehensively characterized through in vitro and in vivo studies. ACE-inhibitory peptides can be prepared by methods such as natural extraction, enzymatic hydrolysis, and fermentation. The production process significantly modulates structural characteristics of the polypeptides including peptide chain length, amino acid composition, and sequence, consequently determining their functional activity. To comprehensively elucidate the gastrointestinal stability and mechanisms action of ACE-inhibitory peptides, integrated experimental approaches combining both in vitro and in vivo methodologies are essential. This review systematically examines current advances in food-derived ACE-inhibitory peptides in terms of sources, production, structure, in vivo and in vitro activities, and bioavailability. Full article
Show Figures

Figure 1

25 pages, 2069 KiB  
Article
How Does Port Logistics Service Innovation Enhance Cross-Border e-Commerce Enterprise Performance? An Empirical Study in Ningbo-Zhoushan Port, China
by Weitao Jiang, Hongxu Lu, Zexin Wang and Ying Jing
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 188; https://doi.org/10.3390/jtaer20030188 - 1 Aug 2025
Viewed by 205
Abstract
The port logistics service innovation (PLSI) is closely associated with cross-border e-commerce (CBEC) enterprise performance, given that the port, as the spatial carrier and the joint point of goods, information, customs house affairs, etc., is essentially a key node of the CBEC logistics [...] Read more.
The port logistics service innovation (PLSI) is closely associated with cross-border e-commerce (CBEC) enterprise performance, given that the port, as the spatial carrier and the joint point of goods, information, customs house affairs, etc., is essentially a key node of the CBEC logistics chain. However, the influence mechanism of PLSI on CBEC enterprise performance has still not yet been elaborated by consensus. To fill this gap, this study aims to figure out the effect mechanism integrating the probe into two variables (i.e., information interaction and environmental upgrade) in a moderated mediation model. Specifically, this study collects questionnaire survey data of logistics enterprises and CBEC enterprises in the Ningbo-Zhoushan Port of China by the Bootstrap method in the software SPSS 26.0. The results show the following: (1) PLSI can positively affect the CBEC enterprise performance; (2) information interaction plays an intermediary role between PLSI and CBEC enterprise performance; and (3) environmental upgrade can not only positively regulate the relationship between information interaction and CBEC enterprise performance, but also enhance the mediating role of information interaction with a moderated intermediary effect. Full article
(This article belongs to the Topic Data Science and Intelligent Management)
Show Figures

Figure 1

23 pages, 40218 KiB  
Article
ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis
by Tingting Ren, Jia Shi, Lili Zhuang, Ruiting Su, Yimei Lai and Niansheng Yang
Biomolecules 2025, 15(8), 1106; https://doi.org/10.3390/biom15081106 - 31 Jul 2025
Viewed by 284
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid metabolic enzyme, as a critical mediator linking complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling to FMT via calcium signaling. In bleomycin (BLM)-induced pulmonary fibrosis of C57BL/6JGpt mice, and in C5a-stimulated primary lung fibroblasts, the expression of ACSL4 was markedly upregulated. Pharmacological inhibition of ACSL4 (PRGL493) or C5aR1 (PMX53) attenuated the deposition of ECM and suppressed the expression of fibrotic markers in vivo and in vitro. Mechanistically, the activation of C5a/C5aR1 signaling increased intracellular calcium levels and promoted the expression of ACSL4, while inhibition of calcium signaling (FK506) reversed the upregulation of ACSL4 and FMT-related changes, including the expression of α-smooth muscle actin (αSMA) and the migration of fibroblasts. Notably, inhibition of ACSL4 did not affect the proliferation of fibroblasts, suggesting its specific role in phenotypic transition. These findings demonstrate that ACSL4 functions downstream of C5a/C5aR1-induced calcium signaling to promote FMT and the progression of pulmonary fibrosis. Targeting ACSL4 may therefore offer a novel therapeutic strategy for IPF. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

20 pages, 4050 KiB  
Article
LDLR H3K27ac in PBMCs: An Early Warning Biomarker for Hypercholesterolemia Susceptibility in Male Newborns Treated with Prenatal Dexamethasone
by Kexin Liu, Can Ai, Dan Xu, Wen Hu, Guanghui Chen, Jinzhi Zhang, Ning Zhang, Dongfang Wu and Hui Wang
Toxics 2025, 13(8), 651; https://doi.org/10.3390/toxics13080651 - 31 Jul 2025
Viewed by 197
Abstract
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats [...] Read more.
Dexamethasone, widely used as an exogenous glucocorticoid in clinical and animal practice, has recently been recognized as an environmental contaminant of concern. Existing evidence documents its ability to induce persistent dyslipidemia in adult offspring. In this study, plasma cholesterol levels in male rats exposed to dexamethasone prenatally (PDE) were increased. Meanwhile, developmental tracking revealed a reduction in hepatic low-density lipoprotein receptor (LDLR) promoter H3K27 acetylation (H3K27ac) and corresponding transcriptional activity across gestational-to-postnatal stages. Mechanistic investigations established glucocorticoid receptor/histone deacetylase2 (GR/HDAC2) axis-mediated epigenetic programming of LDLR through H3K27ac modulation in PDE offspring, potentiating susceptibility to hypercholesterolemia. Additionally, in peripheral blood mononuclear cells (PBMC) of PDE male adult offspring, LDLR H3K27ac level and expression were also decreased and positively correlated with those in the liver. Clinical studies further substantiated that male newborns prenatally treated with dexamethasone exhibited increased serum cholesterol levels and consistent reductions in LDLR H3K27ac levels and corresponding transcriptional activity in PBMC. This study establishes a complete evidence chain linking PDE with epigenetic programming and cholesterol metabolic dysfunction, proposing PBMC epigenetic biomarkers as a novel non-invasive monitoring tool for assessing the developmental toxicity of chemical exposures during pregnancy. This has significant implications for improving environmental health risk assessment systems. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
Show Figures

Graphical abstract

15 pages, 1360 KiB  
Systematic Review
Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis
by Abdulwhab Shremo Msdi, Elisabeth M. Wang and Kevin W. Garey
Nutrients 2025, 17(15), 2502; https://doi.org/10.3390/nu17152502 - 30 Jul 2025
Viewed by 389
Abstract
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence [...] Read more.
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence BP regulation by modulating gut microbial composition and enhancing short-chain fatty acid (SCFA) production. Methods: MEDLINE and EMBASE were systematically searched for interventional studies published between January 2014 and December 2024. Eligible studies assessed the effects of DFs or other prebiotics on systolic BP (SBP) and diastolic BP (DBP) in addition to changes in gut microbial or SCFA composition. Results: Of the 3010 records screened, nineteen studies met the inclusion criteria (seven human, twelve animal). A random-effects meta-analysis was conducted on six human trials reporting post-intervention BP values. Prebiotics were the primary intervention. In hypertensive cohorts, prebiotics significantly reduced SBP (−8.5 mmHg; 95% CI: −13.9, −3.1) and DBP (−5.2 mmHg; 95% CI: −8.5, −2.0). A pooled analysis of hypertensive and non-hypertensive patients showed non-significant reductions in SBP (−4.5 mmHg; 95% CI: −9.3, 0.3) and DBP (−2.5 mmHg; 95% CI: −5.4, 0.4). Animal studies consistently showed BP-lowering effects across diverse etiologies. Prebiotic interventions restored bacterial genera known to metabolize DFs to SCFAs (e.g., Bifidobacteria, Akkermansia, and Coprococcus) and increased SCFA levels. Mechanistically, SCFAs act along gut–organ axes to modulate immune, vascular, and neurohormonal pathways involved in BP regulation. Conclusions: Prebiotic supplementation is a promising strategy to reestablish BP homeostasis in hypertensive patients. Benefits are likely mediated through modulation of the gut microbiota and enhanced SCFA production. Full article
(This article belongs to the Special Issue Probiotics and Prebiotics: Past, Present and Future)
Show Figures

Graphical abstract

Back to TopTop