Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = cerium bromide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12579 KiB  
Article
Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range
by Vasileios Ntoupis, Christos Michail, Nektarios Kalyvas, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Ioannis Valais
Inorganics 2024, 12(8), 230; https://doi.org/10.3390/inorganics12080230 - 22 Aug 2024
Cited by 3 | Viewed by 1437
Abstract
The aim of this study was to experimentally assess the luminescence efficiency of a cerium fluoride (CeF3) inorganic scintillator in crystal form as a possible alternative to high-luminescence but hygroscopic cerium bromide (CeBr3). The experiments were performed under typical [...] Read more.
The aim of this study was to experimentally assess the luminescence efficiency of a cerium fluoride (CeF3) inorganic scintillator in crystal form as a possible alternative to high-luminescence but hygroscopic cerium bromide (CeBr3). The experiments were performed under typical diagnostic radiology X-rays (50–140 kVp). Parameters such as the crystal’s absolute luminescence efficiency (AE) and the spectral matching with a series of optical detectors were examined. The replacement of bromine with fluorine appeared to drastically reduce the AE of CeF3 compared to CeBr3 and other commercially available inorganic scintillators such as bismuth germanate (Bi4Ge3O12-BGO). CeF3 reaches a maximum luminescence efficiency value of only 0.8334 efficiency units (EUs) at 140 kVp, whereas the corresponding values for CeBr3 and BGO were 29.49 and 3.41, respectively. Furthermore, the emission maximum (at around 313 nm) moved towards the lower part of the visible spectrum, making CeF3 suitable for spectral coupling with various photocathodes and photomultipliers applied in nuclear medicine detectors, but completely unsuitable for spectral matching with CCDs and CMOS. The obtained luminescence efficiency results denote that CeF3 cannot be applied in medical imaging applications covering the range 50–140 kVp; however, examination of its luminescence output in the nuclear medicine energy range (~70 to 511 keV) could reveal possible applicability in these modalities. Full article
Show Figures

Figure 1

29 pages, 12504 KiB  
Article
Ground-Based Characterisation of a Compact Instrument for Gamma-ray Burst Detection on a CubeSat Platform
by Rachel Dunwoody, David Murphy, Alexey Uliyanov, Joseph Mangan, Maeve Doyle, Joseph Thompson, Cuan de Barra, Lorraine Hanlon, David McKeown, Brian Shortt and Sheila McBreen
Aerospace 2024, 11(7), 578; https://doi.org/10.3390/aerospace11070578 - 15 Jul 2024
Viewed by 1648
Abstract
Gamma-ray bursts (GRBs) are intense and short-lived cosmic explosions. Miniaturised CubeSat-compatible instruments for the study of GRBs are being developed to help bridge the gap in large missions and assist in achieving full sky coverage. CubeSats are small, compact satellites conforming to a [...] Read more.
Gamma-ray bursts (GRBs) are intense and short-lived cosmic explosions. Miniaturised CubeSat-compatible instruments for the study of GRBs are being developed to help bridge the gap in large missions and assist in achieving full sky coverage. CubeSats are small, compact satellites conforming to a design standard and have transformed the space industry. They are relatively low-cost and are developed on fast timescales, which has provided unparalleled access to space. This paper focuses on GMOD, the gamma-ray module, onboard the 2U CubeSat EIRSAT-1, launched on December 1st 2023. GMOD is a scintillation-based instrument with a cerium bromide crystal coupled to an array of sixteen silicon photomultipliers, designed for the detection of GRBs. The characterisation of GMOD in the spacecraft, along with the validation of an updated spacecraft MEGAlib model is presented and this approach can be followed by other CubeSats with similar science goals. The energy resolution of the flight model is 7.07% at 662 keV and the effective area peaks in the tens to hundreds of keV, making it a suitable instrument for the detection of GRBs. An investigation into the instrument’s angular response is also detailed. The results from this characterisation campaign are a benchmark for the instrument’s performance pre-launch and will be used to compare with the detector’s performance in orbit. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

17 pages, 3330 KiB  
Article
Effect of Modified Bioceramic Mineral Trioxide Aggregate Cement with Mesoporous Nanoparticles on Human Gingival Fibroblasts
by Alexandra Kalash, Ioannis Tsamesidis, Georgia K. Pouroutzidou, Eleana Kontonasaki, Dimitrios Gkiliopoulos, Aristidis Arhakis, Konstantinos N. Arapostathis and Anna Theocharidou
Curr. Issues Mol. Biol. 2024, 46(4), 3005-3021; https://doi.org/10.3390/cimb46040188 - 30 Mar 2024
Cited by 1 | Viewed by 1646
Abstract
The ion doping of mesoporous silica nanoparticles (MSNs) has played an important role in revolutionizing several materials applied in medicine and dentistry by enhancing their antibacterial and regenerative properties. Mineral trioxide aggregate (MTA) is a dental material widely used in vital pulp therapies [...] Read more.
The ion doping of mesoporous silica nanoparticles (MSNs) has played an important role in revolutionizing several materials applied in medicine and dentistry by enhancing their antibacterial and regenerative properties. Mineral trioxide aggregate (MTA) is a dental material widely used in vital pulp therapies with high success rates. The aim of this study was to investigate the effect of the modification of MTA with cerium (Ce)- or calcium (Ca)-doped MSNs on the biological behavior of human gingival fibroblasts (hGFs). MSNs were synthesized via sol–gel, doped with Ce and Ca ions, and mixed with MTA at three ratios each. Powder specimens were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Biocompatibility was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay following hGFs’ incubation in serial dilutions of material eluates. Antioxidant status was evaluated using Cayman’s antioxidant assay after incubating hGFs with material disc specimens, and cell attachment following dehydration fixation was observed through SEM. Material characterization confirmed the presence of mesoporous structures. Biological behavior and antioxidant capacity were enhanced in all cases with a statistically significant increase in CeMTA 50.50. The application of modified MTA with cerium-doped MSNs offers a promising strategy for vital pulp therapies. Full article
Show Figures

Figure 1

17 pages, 7613 KiB  
Article
Voltammetric Sensor Based on the Combination of Tin and Cerium Dioxide Nanoparticles with Surfactants for Quantification of Sunset Yellow FCF
by Liliya Gimadutdinova, Guzel Ziyatdinova and Rustam Davletshin
Sensors 2024, 24(3), 930; https://doi.org/10.3390/s24030930 - 31 Jan 2024
Cited by 8 | Viewed by 1864
Abstract
Sunset Yellow FCF (SY FCF) is one of the widely used synthetic azo dyes in the food industry whose content has to be controlled for safety reasons. Electrochemical sensors are a promising tool for this type of task. A voltammetric sensor based on [...] Read more.
Sunset Yellow FCF (SY FCF) is one of the widely used synthetic azo dyes in the food industry whose content has to be controlled for safety reasons. Electrochemical sensors are a promising tool for this type of task. A voltammetric sensor based on a combination of tin and cerium dioxide nanoparticles (SnO2–CeO2 NPs) with surfactants has been developed for SY FCF determination. The synergetic effect of both types of NPs has been confirmed. Surfactants of various natures (sodium lauryl sulfate (SLS), Brij® 35, and hexadecylpyridinium bromide (HDPB)) have been tested as dispersive media. The best effects, i.e., the highest oxidation currents of SY FCF, have been observed in the case of HDPB. The sensor demonstrates a 4.5-fold-higher electroactive surface area and a 38-fold-higher electron transfer rate compared to the bare glassy carbon electrode (GCE). The electrooxidation of SY FCF is an irreversible, two-electron, diffusion-driven process involving proton transfer. In differential pulse mode in Britton–Robinson buffer (BRB) pH 2.0, the sensor gives a linear response to SY FCF from 0.010 to 1.0 μM and from 1.0 to 100 μM with an 8.0 nM detection limit. The absence of an interferent effect from other typical food components and colorants has been shown. The sensor has been tested on soft drinks and validated with the standard chromatographic method. Full article
(This article belongs to the Special Issue Recent Trends in Advanced Materials for Sensing)
Show Figures

Figure 1

7 pages, 4076 KiB  
Proceeding Paper
Novel Dispersion of CeO2 Nanofiller in PEO/PMMA Blended Nanocomposite Solid Polymer Electrolytes
by Amudha Subramanian, Rajalakshmi Kumaraiah and Mohammed Tasleem Tahira
Eng. Proc. 2023, 56(1), 231; https://doi.org/10.3390/ASEC2023-16354 - 17 Nov 2023
Viewed by 716
Abstract
The present study focuses on the electrochemical performance of polyethylene oxide (PEO)-polymethyl methacrylate (PMMA) blended plasticized nanocomposite solid polymer electrolytes (BPNSPEs) amid cadmium bromide (CdBr2) as a dopant salt along with a cerium oxide (CeO2) nanofiller. Incredibly thin nanofilms [...] Read more.
The present study focuses on the electrochemical performance of polyethylene oxide (PEO)-polymethyl methacrylate (PMMA) blended plasticized nanocomposite solid polymer electrolytes (BPNSPEs) amid cadmium bromide (CdBr2) as a dopant salt along with a cerium oxide (CeO2) nanofiller. Incredibly thin nanofilms of BPNSPE were signalized through distinct methods of working in characterization studies, such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy and scanning electron micrography (SEM). The X-ray diffractograms (XRDs) confirmed the formation of the polymer electrolyte (PE) as well as a decrease in the degree of crystalline characteristics in the BPNSPE sample, and the particle dimension was calculated via the Debye–Scherer equation. The structural changes and formation of complexes were inspected by Fourier-transform infrared spectroscopy (FT-IR), and ocular absorbance scrutiny was accomplished by ultraviolet visible spectroscopy, whereas the morphological structure was interpreted by scanning electron microg-graphical images. The existing work is intended to increase the awareness of the significance of CeO2 nanofillers with the BPNSPE arrangement, which is suitable for batteries and ionic devices. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 3015 KiB  
Article
Performance Improvement of Solar Desalination System Based on CeO2-MWCNT Hybrid Nanofluid
by Ajay Kumar Kaviti, Siva Ram Akkala, Mohd Affan Ali, Pulagam Anusha and Vineet Singh Sikarwar
Sustainability 2023, 15(5), 4268; https://doi.org/10.3390/su15054268 - 27 Feb 2023
Cited by 25 | Viewed by 2480
Abstract
There is a scarcity of freshwater resources and their quality is deteriorating. As a result, meeting human needs is getting more and more challenging. Additionally, significant health problems are brought on by a shortage of freshwater. Therefore, finding a sustainable alternative technique for [...] Read more.
There is a scarcity of freshwater resources and their quality is deteriorating. As a result, meeting human needs is getting more and more challenging. Additionally, significant health problems are brought on by a shortage of freshwater. Therefore, finding a sustainable alternative technique for producing clean water is necessary. Solar distillation is one of the methods that can be implemented to enhance the overall production of pure water. In this work, a hybrid nanofluid was prepared using a two-step method with cerium oxide (CeO2) nanoparticles and multi-walled carbon nanotubes (MWCNTs) in a ratio of 80:20. The concentrations of hybrid nanofluids investigated were 0.02%, 0.04%, and 0.06%. The surfactant cetyltrimethylammonium bromide (CTAB) was used to keep the hybrid nanofluid stable. The studies were carried out over three days in both conventional and modified stills at a constant depth of 1 cm of hybrid nanofluid. The modified still (MS) achieved a maximum production of 1430 mL compared to the conventional still’s (CS) maximum output of 920 mL. The CPL (Cost per liter) for MS was USD 0.039, and for CS, it was USD 0.045. The levels of TDS in the MS and CS were 96.38% and 92.55% lower than those in saline water. The fluoride ion level of saline water was 0.635 mg/L, whereas the distilled water of MS and CS are 0.339 mg/L and 0.414 mg/L, respectively. Full article
Show Figures

Figure 1

26 pages, 5480 KiB  
Article
Development and Characterization of Electrospun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopapers Containing Cerium Oxide Nanoparticles for Active Food Packaging Applications
by Kelly J. Figueroa-Lopez, Cristina Prieto, Maria Pardo-Figuerez, Luis Cabedo and Jose M. Lagaron
Nanomaterials 2023, 13(5), 823; https://doi.org/10.3390/nano13050823 - 23 Feb 2023
Cited by 14 | Viewed by 3016
Abstract
Food quality is mainly affected by oxygen through oxidative reactions and the proliferation of microorganisms, generating changes in its taste, odor, and color. The work presented here describes the generation and further characterization of films with active oxygen scavenging properties made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [...] Read more.
Food quality is mainly affected by oxygen through oxidative reactions and the proliferation of microorganisms, generating changes in its taste, odor, and color. The work presented here describes the generation and further characterization of films with active oxygen scavenging properties made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) loaded with cerium oxide nanoparticles (CeO2NPs) obtained by electrospinning coupled to a subsequent annealing process, which could be used as coating or interlayer in a multilayer concept for food packaging applications. The aim of this work is to explore the capacities of these novel biopolymeric composites in terms of O2 scavenging capacity, as well as antioxidant, antimicrobial, barrier, thermal, and mechanical properties. To obtain such biopapers, different ratios of CeO2NPs were incorporated into a PHBV solution with hexadecyltrimethylammonium bromide (CTAB) as a surfactant. The produced films were analyzed in terms of antioxidant, thermal, antioxidant, antimicrobial, optical, morphological and barrier properties, and oxygen scavenging activity. According to the results, the nanofiller showed some reduction of the thermal stability of the biopolyester but exhibited antimicrobial and antioxidant properties. In terms of passive barrier properties, the CeO2NPs decreased the permeability to water vapor but increased the limonene and oxygen permeability of the biopolymer matrix slightly. Nevertheless, the oxygen scavenging activity of the nanocomposites showed significant results and improved further by incorporating the surfactant CTAB. The PHBV nanocomposite biopapers developed in this study appear as very interesting constituents for the potential design of new active organic recyclable packaging materials. Full article
Show Figures

Figure 1

14 pages, 5224 KiB  
Article
Cerium Oxide/Graphene Oxide Hybrid: Synthesis, Characterization, and Evaluation of Anticancer Activity in a Breast Cancer Cell Line (MCF-7)
by J. Saranya, P. Saminathan, Seshadri Reddy Ankireddy, Mohammed Rafi Shaik, Mujeeb Khan, Merajuddin Khan and Baji Shaik
Biomedicines 2023, 11(2), 531; https://doi.org/10.3390/biomedicines11020531 - 12 Feb 2023
Cited by 15 | Viewed by 3234
Abstract
In the present study, we used a simple ultrasonic approach to develop a Cerium oxide/Graphene oxide hybrid (CeO2/GO hybrid) nanocomposite system. Particle size analysis, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) have been used to [...] Read more.
In the present study, we used a simple ultrasonic approach to develop a Cerium oxide/Graphene oxide hybrid (CeO2/GO hybrid) nanocomposite system. Particle size analysis, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) have been used to analyze the physio-chemical characteristics of the developed nanocomposite. The synthesized hybrid system has also been examined to assess its anticancer capability against MCF-7 cell lines and normal cell lines at different sample concentrations, pH values, and incubation intervals using an antiproliferative assay test. The test results demonstrate that as sample concentration rises, the apoptotic behavior of the CeO2/GO hybrid in the MCF-7 cell line also rises. The IC50 was 62.5 µg/mL after 72 h of incubation. Cytotoxicity of cisplatin bound CeO2/GO hybrid was also tested in MCF-7 cell lines. To identify apoptosis-associated alterations of cell membranes during the process of apoptosis, a dual acridine orange/ethidium bromide (AO/EB) fluorescence staining was carried out at three specified doses (i.e., 1000 µg/mL, 250 µg/mL, and 62.5 µg/mL of CeO2/GO hybrid). The color variations from both live (green) and dead (red) cells were examined using fluorescence microscopy under in vitro conditions. The quantitative analysis was performed using flow cytometry to identify the cell cycle at which the maximum number of MCF-7 cells had been destroyed as a result of interaction with the developed CeO2/GO hybrid (FACS study). According to the results of the FACS investigation, the majority of cancer cells were inhibited at the R3 (G2/M) phase. Therefore, the CeO2/GO hybrid has successfully showed enhanced anticancer efficacy against the MCF-7 cell line at the IC50 concentration. According to the current study, the CeO2/GO platform can be used as a therapeutic platform for breast cancer. The synergetic effects of the developed CeO2/GO hybrid with the MCF-7 cell line are presented. Full article
(This article belongs to the Special Issue Nanomedicine in Cancer: Therapy and Drug Discovery)
Show Figures

Figure 1

18 pages, 12631 KiB  
Article
Evaluation of Cerium-Doped Lanthanum Bromide (LaBr3:Ce) Single-Crystal Scintillator’s Luminescence Properties under X-ray Radiographic Conditions
by Stavros Tseremoglou, Christos Michail, Ioannis Valais, Konstantinos Ninos, Athanasios Bakas, Ioannis Kandarakis, George Fountos and Nektarios Kalyvas
Appl. Sci. 2023, 13(1), 419; https://doi.org/10.3390/app13010419 - 28 Dec 2022
Cited by 5 | Viewed by 2671
Abstract
In the present study, the response of the crystalline scintillator LaBr3:Ce when excited with X-rays at tube voltages from 50 kVp to 150 kVp was investigated, for possible use in hybrid medical-imaging systems. A single crystal (10 × 10 × 10 [...] Read more.
In the present study, the response of the crystalline scintillator LaBr3:Ce when excited with X-rays at tube voltages from 50 kVp to 150 kVp was investigated, for possible use in hybrid medical-imaging systems. A single crystal (10 × 10 × 10 mm3) was irradiated by X-rays within the aforementioned tube-voltage range, and the absolute efficiency (AE), as well as the detective quantum efficiency for zero spatial-frequency (DQE(0)), were measured. The energy-absorption efficiency (EAE), the quantum-detection efficiency (QDE) and the spectral compatibility with various optical photodetectors were also calculated. The results were compared with the published data for the LaCl3:Ce, Bi4Ge3O12 (BGO), Lu2SiO5:Ce (LSO), and CdWO4 single crystals of equal dimensions. The AE values of the examined crystal were found to be higher than those of the compared crystals across the whole X-ray tube-voltage range. Regarding the EAE, LaBr3:Ce demonstrated a comparatively better performance than the LaCl3:Ce crystal. The emitted-light spectrum of LaBr3:Ce was found to be compatible with various types of photocathodes and silicon photomultipliers. Moreover, the LaBr3:Ce crystal exhibited excellent performance concerning its DQE(0). Considering these properties, the LaBr3:Ce crystal could be considered as a radiation-detector option for hybrid medical-imaging modalities, such as PET/CT and SPECT/CT. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

11 pages, 3999 KiB  
Article
Luminescence Efficiency of Cerium Bromide Single Crystal under X-ray Radiation
by Dionysios Linardatos, Christos Michail, Nektarios Kalyvas, Konstantinos Ninos, Athanasios Bakas, Ioannis Valais, George Fountos and Ioannis Kandarakis
Crystals 2022, 12(7), 909; https://doi.org/10.3390/cryst12070909 - 25 Jun 2022
Cited by 6 | Viewed by 2220
Abstract
A rare-earth trihalide scintillator, CeBr3, in 1 cm edge cubic monocrystal form, is examined with regard to its principal luminescence and scintillation properties, as a candidate for radiation imaging applications. This relatively new material exhibits attractive properties, including short decay time, [...] Read more.
A rare-earth trihalide scintillator, CeBr3, in 1 cm edge cubic monocrystal form, is examined with regard to its principal luminescence and scintillation properties, as a candidate for radiation imaging applications. This relatively new material exhibits attractive properties, including short decay time, negligible afterglow, high stopping power and emission spectrum compatible with several commercial optical sensors. In a setting typical for X-ray radiology (medical X-ray tube, spectra in the range 50–140 kVp, human chest equivalent filtering), the crystal’s light energy flux, absolute efficiency (AE) and X-ray luminescence efficiency (XLE) were determined. Light energy flux results are superior in comparison to other four materials broadly used in modern medical imaging (slope of the linear no-threshold fit was 29.5). The AE is superior from 90 kVp onwards and reaches a value of 29.5 EU at 140 kVp. The same is true for the XLE that, following a flat response, reaches 9 × 10−3 at 90 kVp. Moreover, the spectral matching factors and the respective effective efficiencies (EE) are calculated for a variety of optical sensors. The material exhibits full compatibility with all the flat-panel arrays and most of the photocathodes and Si PMs considered in this work, a factor that proves its suitability for use in state-of-the-art medical imaging applications, such as CT detectors and planar arrays for projection imaging. Full article
(This article belongs to the Special Issue Novel Scintillator Crystals)
Show Figures

Figure 1

14 pages, 3352 KiB  
Article
Cerium Oxide Nanoparticles: Synthesis and Characterization for Biosafe Applications
by Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Babu R. Lamani, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall and Govindarajan T. Ramesh
Nanomanufacturing 2021, 1(3), 176-189; https://doi.org/10.3390/nanomanufacturing1030013 - 3 Dec 2021
Cited by 57 | Viewed by 14529
Abstract
Due to its excellent physicochemical properties, cerium oxide (CeO2) has attracted much attention in recent years. CeO2 nanomaterials (nanoceria) are widely being used, which has resulted in them getting released to the environment, and exposure to humans (mostly via inhalation) [...] Read more.
Due to its excellent physicochemical properties, cerium oxide (CeO2) has attracted much attention in recent years. CeO2 nanomaterials (nanoceria) are widely being used, which has resulted in them getting released to the environment, and exposure to humans (mostly via inhalation) is a major concern. In the present study, CeO2 nanoparticles were synthesized by hydroxide-mediated method and were further characterized by Scanning Electron Microscopy (SEM), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction Spectroscopy (XRD). Human lung epithelial (Beas-2B) cells were used to assess the cytotoxicity and biocompatibility activity of CeO2 nanoparticles. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and Live/Dead assays were performed to determine the cytotoxicity and biocompatibility of CeO2 nanoparticles. Generation of reactive oxygen species (ROS) by cerium oxide nanoparticles was assessed by ROS assay. MTT assay and Live/Dead assays showed no significant induction of cell death even at higher concentrations (100 μg per 100 μL) upon exposure to Beas-2B cells. ROS assay revealed that CeO2 nanoparticles did not induce ROS that contribute to the oxidative stress and inflammation leading to various disease conditions. Thus, CeO2 nanoparticles could be used in various applications including biosensors, cancer therapy, catalytic converters, sunscreen, and drug delivery. Full article
Show Figures

Figure 1

21 pages, 14257 KiB  
Article
Cerium-Containing N-Acetyl-6-Aminohexanoic Acid Formulation Accelerates Wound Reparation in Diabetic Animals
by Ekaterina Blinova, Dmitry Pakhomov, Denis Shimanovsky, Marina Kilmyashkina, Yan Mazov, Tatiana Demura, Vladimir Drozdov, Dmitry Blinov, Olga Deryabina, Elena Samishina, Aleksandra Butenko, Sofia Skachilova, Alexey Sokolov, Olga Vasilkina, Bashar A. Alkhatatneh, Olga Vavilova, Andrey Sukhov, Daniil Shmatok, Ilya Sorokvasha, Oxana Tumutolova and Elena Lobanovaadd Show full author list remove Hide full author list
Biomolecules 2021, 11(6), 834; https://doi.org/10.3390/biom11060834 - 3 Jun 2021
Cited by 7 | Viewed by 4346
Abstract
Background: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals. Methods: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 [...] Read more.
Background: The main goal of our study was to explore the wound-healing property of a novel cerium-containing N-acethyl-6-aminohexanoate acid compound and determine key molecular targets of the compound mode of action in diabetic animals. Methods: Cerium N-acetyl-6-aminohexanoate (laboratory name LHT-8-17) as a 10 mg/mL aquatic spray was used as wound experimental topical therapy. LHT-8-17 toxicity was assessed in human skin epidermal cell culture using (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. A linear wound was reproduced in 18 outbred white rats with streptozotocin-induced (60 mg/kg i.p.) diabetes; planar cutaneous defect was modelled in 60 C57Bl6 mice with streptozotocin-induced (200 mg/kg i.p.) diabetes and 90 diabetic db/db mice. Firmness of the forming scar was assessed mechanically. Skin defect covering was histologically evaluated on days 5, 10, 15, and 20. Tissue TNF-α, IL-1β and IL-10 levels were determined by quantitative ELISA. Oxidative stress activity was detected by Fe-induced chemiluminescence. Ki-67 expression and CD34 cell positivity were assessed using immunohistochemistry. FGFR3 gene expression was detected by real-time PCR. LHT-8-17 anti-microbial potency was assessed in wound tissues contaminated by MRSA. Results: LHT-8-17 4 mg twice daily accelerated linear and planar wound healing in animals with type 1 and type 2 diabetes. The formulated topical application depressed tissue TNF-α, IL-1β, and oxidative reaction activity along with sustaining both the IL-10 concentration and antioxidant capacity. LHT-8-17 induced Ki-67 positivity of fibroblasts and pro-keratinocytes, upregulated FGFR3 gene expression, and increased tissue vascularization. The formulation possessed anti-microbial properties. Conclusions: The obtained results allow us to consider the formulation as a promising pharmacological agent for diabetic wound topical treatment. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Wound Healing)
Show Figures

Figure 1

13 pages, 1757 KiB  
Article
Cell Proliferation to Evaluate Preliminarily the Presence of Enduring Self-Regenerative Antioxidant Activity in Cerium Doped Bioactive Glasses
by Alexandre Anesi, Gianluca Malavasi, Luigi Chiarini, Roberta Salvatori and Gigliola Lusvardi
Materials 2020, 13(10), 2297; https://doi.org/10.3390/ma13102297 - 15 May 2020
Cited by 13 | Viewed by 2822
Abstract
(1) Background: a cell evaluation focused to verify the self-regenerative antioxidant activity is performed on cerium doped bioactive glasses. (2) Methods: the glasses based on 45S5 Bioglass®, are doped with 1.2 mol%, 3.6 mol% and 5.3 mol% of CeO2 and [...] Read more.
(1) Background: a cell evaluation focused to verify the self-regenerative antioxidant activity is performed on cerium doped bioactive glasses. (2) Methods: the glasses based on 45S5 Bioglass®, are doped with 1.2 mol%, 3.6 mol% and 5.3 mol% of CeO2 and possess a polyhedral shape (~500 µm2). Glasses with this composition inhibit oxidative stress by mimicking catalase enzyme (CAT) and superoxide dismutase (SOD) activities; moreover, our previous cytocompatibility tests (neutral red (NR), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Bromo-2-deoxyUridine (BrdU)) reveal that the presence of cerium promotes the absorption and vitality of the cells. The same cytocompatibility tests were performed and repeated, in two different periods (named first and second use), separated from each other by four months. (3) Results: in the first and second use, NR tests indicate that the presence of cerium promotes once again cell uptake and viability, especially after 72 h. A decrease in cell proliferation it is observed after MTT and BrdU tests only in the second use. These findings are supported by statistically significant results (4) Conclusions: these glasses show enhanced proliferation, both in the short and in the long term, and for the first time such large dimensions are studied for this kind of study. A future prospective is the implantation of these bioactive glasses as bone substitute in animal models. Full article
(This article belongs to the Special Issue Bioactive Glasses 2019)
Show Figures

Figure 1

21 pages, 7915 KiB  
Article
Unravelling the Potential Cytotoxic Effects of Metal Oxide Nanoparticles and Metal(Loid) Mixtures on A549 Human Cell Line
by Fernanda Rosário, Maria João Bessa, Fátima Brandão, Carla Costa, Cláudia B. Lopes, Ana C. Estrada, Daniela S. Tavares, João Paulo Teixeira and Ana Teresa Reis
Nanomaterials 2020, 10(3), 447; https://doi.org/10.3390/nano10030447 - 2 Mar 2020
Cited by 17 | Viewed by 3718
Abstract
Humans are typically exposed to environmental contaminants’ mixtures that result in different toxicity than exposure to the individual counterparts. Yet, the toxicology of chemical mixtures has been overlooked. This work aims at assessing and comparing viability and cell cycle of A549 cells after [...] Read more.
Humans are typically exposed to environmental contaminants’ mixtures that result in different toxicity than exposure to the individual counterparts. Yet, the toxicology of chemical mixtures has been overlooked. This work aims at assessing and comparing viability and cell cycle of A549 cells after exposure to single and binary mixtures of: titanium dioxide nanoparticles (TiO2NP) 0.75–75 mg/L; cerium oxide nanoparticles (CeO2NP) 0.75–10 μg/L; arsenic (As) 0.75–2.5 mg/L; and mercury (Hg) 5–100 mg/L. Viability was assessed through water-soluble tetrazolium (WST-1) and thiazolyl blue tetrazolium bromide (MTT) (24 h exposure) and clonogenic (seven-day exposure) assays. Cell cycle alterations were explored by flow cytometry. Viability was affected in a dose- and time-dependent manner. Prolonged exposure caused inhibition of cell proliferation even at low concentrations. Cell-cycle progression was affected by TiO2NP 75 mg/L, and As 0.75 and 2.5 μg/L, increasing the cell proportion at G0/G1 phase. Combined exposure of TiO2NP or CeO2NP mitigated As adverse effects, increasing the cell surviving factor, but cell cycle alterations were still observed. Only CeO2NP co-exposure reduced Hg toxicity, translated in a decrease of cells in Sub-G1. Toxicity was diminished for both NPs co-exposure compared to its toxicity alone, but a marked toxicity for the highest concentrations was observed for longer exposures. These findings prove that joint toxicity of contaminants must not be disregarded. Full article
Show Figures

Graphical abstract

17 pages, 7523 KiB  
Article
HKUST-1-Supported Cerium Catalysts for CO Oxidation
by Michalina Stawowy, Paulina Jagódka, Krzysztof Matus, Bogdan Samojeden, Joaquin Silvestre-Albero, Janusz Trawczyński and Agata Łamacz
Catalysts 2020, 10(1), 108; https://doi.org/10.3390/catal10010108 - 12 Jan 2020
Cited by 33 | Viewed by 6680
Abstract
The synthesis method of metal–organic frameworks (MOFs) has an important impact on their properties, including their performance in catalytic reactions. In this work we report on how the performance of [Cu3(TMA)2(H2O)3]n (HKUST-1) and Ce@HKUST-1 [...] Read more.
The synthesis method of metal–organic frameworks (MOFs) has an important impact on their properties, including their performance in catalytic reactions. In this work we report on how the performance of [Cu3(TMA)2(H2O)3]n (HKUST-1) and Ce@HKUST-1 in the reaction of CO oxidation depends on the synthesis method of HKUST-1 and the way the cerium active phase is introduced to it. The HKUST-1 is synthesised in two ways: via the conventional solvothermal method and in the presence of a cationic surfactant (hexadecyltrimethylammonium bromide (CTAB)). Obtained MOFs are used as supports for cerium oxide, which is deposited on their surfaces by applying wet and incipient wetness impregnation methods. To determine textural properties, structure, morphology, and thermal stability, the HKUST-1 supports and Ce@HKUST-1 catalysts are characterised using X-ray diffraction (XRD), N2 sorption, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). It is proven that the synthesis method of HKUST-1 has a significant impact on its morphology, surface area, and thermal stability. The synthesis method also influences the dispersion and the morphology of the deposited cerium oxide. Last but not least, the synthesis method affects the catalytic activity of the obtained material. Full article
Show Figures

Graphical abstract

Back to TopTop