Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Linardatos, D.; Michail, C.; Kalyvas, N.; Ninos, K.; Bakas, A.; Valais, I.; Fountos, G.; Kandarakis, I. Luminescence Efficiency of Cerium Bromide Single Crystal under X-ray Radiation. Crystals 2022, 12, 909. [Google Scholar] [CrossRef]
- Zou, Z.; Weng, J.; Liu, C.; Lin, Y.; Zhu, J.; Sun, Y.; Huang, J.; Gong, G.; Wen, H. Crystal Growth, Photoluminescence and Radioluminescence Properties of Ce3+-Doped Ba3Y(PO4)3 Crystal. Crystals 2024, 14, 431. [Google Scholar] [CrossRef]
- Ciomaga Hatnean, V.C.; Pui, A.; Simonov, A.; Ciomaga Hatnean, M. Crystal Growth of the R2SiO5 Compounds (R = Dy, Ho, and Er) by the Floating Zone Method Using a Laser-Diode-Heated Furnace. Crystals 2023, 13, 1687. [Google Scholar] [CrossRef]
- Sahani, R.M.; Pandya, A. Novel Epoxy-bPBD-BisMSB Composite Plastic Scintillator for Alpha, Beta and Gamma Radiation Detection. Sci. Rep. 2024, 14, 6531. [Google Scholar] [CrossRef] [PubMed]
- Pagano, F.; Král, J.; Děcká, K.; Pizzichemi, M.; Mihóková, E.; Čuba, V.; Auffray, E. Nanocrystalline Lead Halide Perovskites to Boost Time-of-Flight Performance of Medical Imaging Detectors. Adv. Mater. Interfaces 2024, 11, 2300659. [Google Scholar] [CrossRef]
- Lai, Z.; Wang, W.; Liu, F.; Liu, Z.; Wang, S.; Lai, J.; Chen, J.; Zhang, H.; Xu, R.; Wang, L. High-Quality CsI(Tl) Single-Crystal Flake Scintillators Grown by the Space-Confined Solution Method. Opt. Mater. 2024, 151, 115333. [Google Scholar] [CrossRef]
- Mahato, S.; Makowski, M.; Bose, S.; Kowal, D.; Kuddus Sheikh, M.A.; Braueninger-Wemer, P.; Witkowski, M.E.; Ray, S.K.; Drozdowski, W.; Birowosuto, M.D. Improvement of Light Output of MAPbBr3 Single Crystal for Ultrafast and Bright Cryogenic Scintillator. J. Phys. Chem. Lett. 2024, 15, 3713–3720. [Google Scholar] [CrossRef]
- Glodo, J.; van Loef, E.; Wang, Y.; Bhattacharya, P.; Pandian, L.S.; Shirwadkar, U.; Hubble, I.; Schott, J.; Muller, M. Novel High-Stopping Power Scintillators for Medical Applications. In Proceedings of the Medical Imaging 2024: Physics of Medical Imaging, SPIE, San Diego, CA, USA, 1 April 2024; Volume 12925, pp. 585–595. [Google Scholar]
- Nazarov, M.; Tsukerblat, B. Optical Lines in Europium and Terbium-Activated Yttrium Tantalate Phosphor: Combined Experimental and Group-Theoretical Analysis. Optics 2023, 4, 510–524. [Google Scholar] [CrossRef]
- Komendo, I.; Mechinsky, V.; Fedorov, A.; Dosovitskiy, G.; Schukin, V.; Kuznetsova, D.; Zykova, M.; Velikodny, Y.; Korjik, M. Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection. Inorganics 2022, 10, 127. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, Y.; Yu, G. N-S-Co-Doped Carbon Dot Blue Fluorescence Preparation and Baicalein Detection. Inorganics 2024, 12, 154. [Google Scholar] [CrossRef]
- Higgins, W.M.; Churilov, A.; van Loef, E.; Glodo, J.; Squillante, M.; Shah, K. Crystal Growth of Large Diameter LaBr3:Ce and CeBr3. J. Cryst. Growth 2008, 310, 2085–2089. [Google Scholar] [CrossRef]
- Wei, H.; Martin, V.; Lindsey, A.; Zhuravleva, M.; Melcher, C.L. The Scintillation Properties of CeBr3−xClx Single Crystals. J. Lumin. 2014, 156, 175–179. [Google Scholar] [CrossRef]
- Loyd, M.; Stand, L.; Rutstrom, D.; Wu, Y.; Glodo, J.; Shah, K.; Koschan, M.; Melcher, C.L.; Zhuravleva, M. Investigation of CeBr3−xIx Scintillators. J. Cryst. Growth 2020, 531, 125365. [Google Scholar] [CrossRef]
- Kandarakis, I. Luminescence in Medical Image Science. J. Lumin. 2016, 169, 553–558. [Google Scholar] [CrossRef]
- Madej, A.; Witkowski, M.E.; Wojtowicz, A.J.; Zych, E. Photo- and Radioluminescent Properties of Undoped and Bi-Doped Lu2WO6 Powders at 10–300K. J. Lumin. 2015, 160, 50–56. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, X.; Zhang, Y.; Ying, G.; Huang, Q.; Xu, J.; Peng, Q. Evaluation of Various Scintillator Materials in Radiation Detector Design for Positron Emission Tomography (PET). Crystals 2020, 10, 869. [Google Scholar] [CrossRef]
- Koppert, W.J.C.; Dietze, M.M.A.; Velden, S.; Steenbergen, J.H.L.; Jong, H.W.A.M. A Comparative Study of NaI(Tl), CeBr3 and CZT for Use in a Real-Time Simultaneous Nuclear and Fluoroscopic Dual-Layer Detector. Phys. Med. Biol. 2019, 64, 135012. [Google Scholar] [CrossRef] [PubMed]
- Lecoq, P. Development of New Scintillators for Medical Applications. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2016, 809, 130–139. [Google Scholar] [CrossRef]
- Kim, K.J.; Furuya, Y.; Kamada, K.; Murakami, R.; Kochurikhin, V.V.; Yoshino, M.; Chiba, H.; Kurosawa, S.; Yamaji, A.; Shoji, Y.; et al. Growth and Scintillation Properties of Directionally Solidified Ce:LaBr3/AEBr2 (AE = Mg, Ca, Sr, Ba) Eutectic System. Crystals 2020, 10, 584. [Google Scholar] [CrossRef]
- Carone, D.; Klepov, V.V.; Misture, S.T.; Schaeperkoetter, J.C.; Jacobsohn, L.G.; Aziziha, M.; Schorne-Pinto, J.; Thomson, S.A.J.; Hines, A.T.; Besmann, T.M.; et al. Luminescence and Scintillation in the Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb. Inorganics 2022, 10, 83. [Google Scholar] [CrossRef]
- Linardatos, D.; Ntoupis, V.; Tseremoglou, S.; Valais, I.; Ninos, K.; Bakas, A.; Lavdas, E.; Kandarakis, I.; Kalyvas, N.; Fountos, G.; et al. Light Output Dependence of CeBr3 Hygroscopic Scintillator upon Temperature. Procedia Struct. Integr. 2023, 47, 80–86. [Google Scholar] [CrossRef]
- Li, P.; Gridin, S.; Ucer, K.B.; Williams, R.T.; Menge, P.R. Picosecond Absorption Spectroscopy of Self-Trapped Excitons and Ce Excited States in CeBr3 and La1−xCexBr3. Phys. Rev. B 2019, 99, 104301. [Google Scholar] [CrossRef]
- Lecoq, P.; Gektin, A.; Korzhik, M. Scintillation and Inorganic Scintillators. In Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering; Lecoq, P., Gektin, A., Korzhik, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–41. ISBN 978-3-319-45522-8. [Google Scholar]
- Kochan, O.; Chornodolskyy, Y.; Selech, J.; Karnaushenko, V.; Przystupa, К.; Kotlov, A.; Demkiv, T.; Vistovskyy, V.; Stryhanyuk, H.; Rodnyi, P.; et al. Energy Structure and Luminescence of CeF3 Crystals. Materials 2021, 14, 4243. [Google Scholar] [CrossRef]
- Przystupa, K.; Chornodolskyy, Y.M.; Selech, J.; Karnaushenko, V.O.; Demkiv, T.M.; Kochan, O.; Syrotyuk, S.V.; Voloshinovskii, A.S. The Influence of Halide Ion Substitution on Energy Structure and Luminescence Efficiency in CeBr2I and CeBrI2 Crystals. Materials 2023, 16, 5085. [Google Scholar] [CrossRef]
- Chornodolskyy, Y.M.; Karnaushenko, V.O.; Vistovskyy, V.V.; Syrotyuk, S.V.; Gektin, A.V.; Voloshinovskii, A.S. Energy Band Structure Peculiarities and Luminescent Parameters of CeX3 (X = Cl, Br, I) Crystals. J. Lumin. 2021, 237, 118147. [Google Scholar] [CrossRef]
- Russell-Webster, B.; Abboud, K.A.; Christou, G. Molecular Nanoparticles of Cerium Dioxide: Structure-Directing Effect of Halide Ions. Chem. Commun. 2020, 56, 5382–5385. [Google Scholar] [CrossRef]
- Chipaux, R.; Faure, J.-L.; Rebourgeard, P.; Dauphin, G.; Safieh, J. Behaviour of CeF3 Scintillator in an LHC-like Environment. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1994, 345, 440–444. [Google Scholar] [CrossRef]
- Schneegans, M.A. Cerium Fluoride Crystals for Calorimetry at LHC. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1994, 344, 47–56. [Google Scholar] [CrossRef]
- Ferrere, D.; Lebeau, M.; Schneegans, M.; Vivargent, M.; Lecoq, P. High Resolution Crystal Calorimetry at LHC. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1992, 315, 332–336. [Google Scholar] [CrossRef]
- Auffray, E.; Beckers, T.; Bourotte, J.; Chipaux, R.; Commichau, V.; Dafinei, I.; Depasse, P.; Djambazov, L.; Dydak, U.; El Mamouni, H.; et al. Performance of a Cerium Fluoride Crystal Matrix Measured in High-Energy Particle Beams. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1996, 378, 171–178. [Google Scholar] [CrossRef]
- Nikl, M.; Mares, J.A.; Dusek, M.; Lecoq, P.; Dafinei, I.; Auffray, E.; Pazzi, G.P.; Fabeni, P.; Jindra, J.; Skoda, Z. Decay Kinetics of Ce3+ Ions under Gamma and KrF Excimer Laser Excitation in CeF3 Single Crystals. J. Phys. Condens. Matter 1995, 7, 6355. [Google Scholar] [CrossRef]
- Auffray, E.; Beckers, T.; Chipaux, R.; Dafinei, I.; Depasse, P.; El Mamouni, H.; Faure, J.L.; Fay, J.; Hillemanns, H.; Ille, B.; et al. First Results on Large Cerium Fluoride Crystals in A Test Beam. MRS Online Proc. Libr. 1994, 348, 117–122. [Google Scholar] [CrossRef]
- Pedrini, C.; Moine, B.; Bouttet, D.; Belsky, A.N.; Mikhailin, V.V.; Vasil’ev, A.N.; Zinin, E.I. Time-Resolved Luminescence of CeF3 Crystals Excited by X-ray Synchrotron Radiation. Chem. Phys. Lett. 1993, 206, 470–474. [Google Scholar] [CrossRef]
- Auffray, E.; Baccaro, S.; Beckers, T.; Benhammou, Y.; Belsky, A.N.; Borgia, B.; Boutet, D.; Chipaux, R.; Dafinei, I.; de Notaristefani, F.; et al. Extensive Studies on CeF3 Crystals, a Good Candidate for Electromagnetic Calorimetry at Future Accelerators. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1996, 383, 367–390. [Google Scholar] [CrossRef]
- Inagaki, T.; Yoshimura, Y.; Kanda, Y.; Matsumoto, Y.; Minami, K. Development of CeF3 Crystal for High-Energy Electromagnetic Calorimetry. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2000, 443, 126–135. [Google Scholar] [CrossRef]
- Bianchini, L.; Dissertori, G.; Donegà, M.; Lustermann, W.; Marini, A.; Micheli, F.; Nessi-Tedaldi, F.; Pandolfi, F.; Peruzzi, M.; Schonenberger, M.; et al. High-Energy Electron Test Results of a Calorimeter Prototype Based on CeF3 for HL-LHC Applications. In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 31 October–7 November 2015; pp. 1–2. [Google Scholar]
- Karimov, D.N.; Lisovenko, D.S.; Ivanova, A.G.; Grebenev, V.V.; Popov, P.A.; Sizova, N.L. Bridgman Growth and Physical Properties Anisotropy of CeF3 Single Crystals. Crystals 2021, 11, 793. [Google Scholar] [CrossRef]
- Víllora, E.G.; Yuan, D.; Shimamura, K. CeF3 Single Crystals for UV-VIS-IR Optical Isolators. Int. J. Appl. Ceram. Technol. 2023, 20, 2047–2054. [Google Scholar] [CrossRef]
- Yang, W.; Kong, X.; Fu, B.; Yang, Y.; Chen, R.; Zuo, C.; Liu, H.; Yu, Y.; Zeng, F.; Li, C. Optical Properties of CeF3 Crystal at High Temperature or Pressure by First Principles and Its Application in Isolators. Opt. Mater. 2024, 154, 115758. [Google Scholar] [CrossRef]
- Yuan, D.; Víllora, E.G.; Shimamura, K. Regular Hexagonal-Prism Microvoids in CeF3 Single Crystals. J. Cryst. Growth 2021, 558, 126024. [Google Scholar] [CrossRef]
- Chylii, M.; Loghina, L.; Kaderavkova, A.; Slang, S.; Rodriguez-Pereira, J.; Frumarova, B.; Vlcek, M. Morphology and Optical Properties of CeF3 and CeF3:Tb Nanocrystals: The Dominant Role of the Reaction Thermal Mode. Mater. Chem. Phys. 2021, 260, 124161. [Google Scholar] [CrossRef]
- Zhu, L.; Li, Q.; Liu, X.; Li, J.; Zhang, Y.; Meng, J.; Cao, X. Morphological Control and Luminescent Properties of CeF3 Nanocrystals. J. Phys. Chem. C 2007, 111, 5898–5903. [Google Scholar] [CrossRef]
- Sizova, N.L.; Karimov, D.N.; Kosova, T.B.; Lisovenko, D.S. Mechanical Properties of CeF3 Single Crystals. Crystallogr. Rep. 2019, 64, 942–946. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Chen, J.; Dai, Y.; Su, L.; Li, X.; Kalashnikova, A.M.; Wu, A. Bridgman Growth and Magneto-Optical Properties of CeF3 Crystal as Faraday Rotator. Opt. Mater. 2020, 100, 109675. [Google Scholar] [CrossRef]
- Kamenskikh, I.; Tishchenko, E.; Kirm, M.; Omelkov, S.; Belsky, A.; Vasil’ev, A. Decay Kinetics of CeF3 under VUV and X-ray Synchrotron Radiation. Symmetry 2020, 12, 914. [Google Scholar] [CrossRef]
- Klamra, W.; Sibczynski, P.; Moszynski, M.; Czarnacki, W.; Kozlov, V. Extensive Studies on Light Yield Non-Proportional Response of Undoped CeF3 at Room and Liquid Nitrogen Temperatures. J. Instrum. 2013, 8, P06003. [Google Scholar] [CrossRef]
- Thongpool, V.; Phunpueok, A.; Jaiyen, S.; Choosakul, N.; Aphairaj, D.; Thongchai, P.; Singhaseree, C. Preparation of CeF3 Nanoparticles Loaded PPO/PVT Composites for Radiation Detection. Dig. J. Nanomater. Biostructures 2022, 16, 621–625. [Google Scholar] [CrossRef]
- Lacy, J.H.; Patenotte, G.E.; Kinney, A.C.; Majumder, P.K. Broadband High-Precision Faraday Rotation Spectroscopy with Uniaxial Single Crystal CeF3 Modulator. Photonics 2024, 11, 304. [Google Scholar] [CrossRef]
- Starobor, A.; Mironov, E.; Palashov, O. High-Power Faraday Isolator on a Uniaxial CeF3 Crystal. Opt. Lett. 2019, 44, 1297–1299. [Google Scholar] [CrossRef]
- Vojna, D.; Slezák, O.; Yasuhara, R.; Furuse, H.; Lucianetti, A.; Mocek, T. Faraday Rotation of Dy2O3, CeF3 and Y3Fe5O12 at the Mid-Infrared Wavelengths. Materials 2020, 13, 5324. [Google Scholar] [CrossRef]
- Lecoq, P. How High Energy Physics Is Driving the Development of New Scintillators. In Proceedings of the Fifth International Conference on Inorganic Scintillators and Their Applications, Moscow, Russia, 16–20 August 1999; CERN: Moscow, Russia, 1999. [Google Scholar]
- Grynyov, B.; Ryzhikov, V.; Kim, J.K.; Jae, M. Scintillator Crystals, Radiation Detectors & Instruments on Their Base; V. Ryzhikov: Kharkiv, Ukraine, 2004; ISBN 966-02-3314-0. [Google Scholar]
- Michail, C.; Liaparinos, P.; Kalyvas, N.; Kandarakis, I.; Fountos, G.; Valais, I. Phosphors and Scintillators in Biomedical Imaging. Crystals 2024, 14, 169. [Google Scholar] [CrossRef]
- Valais, I.; Michail, C.; David, S.; Nomicos, C.D.; Panayiotakis, G.S.; Kandarakis, I. A Comparative Study of the Luminescence Properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO Single Crystal Scintillators for Use in Medical X-ray Imaging. Phys. Med. 2008, 24, 122–125. [Google Scholar] [CrossRef] [PubMed]
- van Eijk, C.W.E. Inorganic Scintillators in Medical Imaging. Phys. Med. Biol. 2002, 47, R85–R106. [Google Scholar] [CrossRef]
- Balcerzyk, M.; Moszynski, M.; Kapusta, M.; Wolski, D.; Pawelke, J.; Melcher, C.L. YSO, LSO, GSO and LGSO. A Study of Energy Resolution and Nonproportionality. IEEE Trans. Nucl. Sci. 2000, 47, 1319–1323. [Google Scholar] [CrossRef]
- Kozma, P.; Kozma, P. Radiation Sensitivity of GSO and LSO Scintillation Detectors. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2005, 539, 132–136. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A Measurement of the Light Yield of Common Inorganic Scintillators. IEEE Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Passeri, A.; Formiconi, A.R. SPECT and Planar Imaging in Nuclear Medicine. In Ionizing Radiation Detectors for Medical Imaging; World Scientific: Singapore, 2004; pp. 235–285. ISBN 978-981-238-674-8. [Google Scholar]
- Christian, J. Advances in CMOS SSPM Detectors. In Biological and Medical Sensor Technologies; Iniewski, K., Ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 327. ISBN 978-1-138-07321-0. [Google Scholar]
- Stolberg-Rohr, T.; Hawkins, G.J. Spectral Design of Temperature-Invariant Narrow Bandpass Filters for the Mid-Infrared. Opt. Express 2015, 23, 580. [Google Scholar] [CrossRef]
- Rodnyj, P.A. Interaction of Ionizing Radiation with Scintillators. In Physical Processes in Inorganic Scintillators; The CRC Press Laser and Optical Science and Technology Series; CRC Press: Boca Raton, FL, USA, 1997; p. 17. ISBN 978-0-8493-3788-8. [Google Scholar]
- Kawaguchi, N.; Kimura, H.; Nakauchi, D.; Kato, T.; Yanagida, T. Inorganic Fluoride Scintillators. In Phosphors for Radiation Detectors; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 91–120. ISBN 978-1-119-58336-3. [Google Scholar]
- van Loef, E.V.; Shah, K.S. Advances in Scintillators for Medical Imaging Applications. In Proceedings of the SPIE, San Diego, CA, USA, 12 September 2014; Barber, H.B., Furenlid, L.R., Roehrig, H.N., Eds.; p. 92140A. [Google Scholar]
- Drozdowski, W.; Dorenbos, P.; Bos, A.J.J.; Owens, A.; Richaud, D. Gamma Radiation Hardness of Ø1″ × 1″ LaBr3:Ce, LaCl3:Ce, and CeBr3 Scintillators. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 2856–2858. [Google Scholar]
- CeF3—Cerium Fluoride Scintillator Crystal|Advatech UK. Available online: https://www.advatech-uk.co.uk/cef3.html (accessed on 2 May 2024).
- CeBr3—Cerium Bromide Scintillator Crystal|Advatech UK. Available online: https://www.advatech-uk.co.uk/cebr3.html (accessed on 2 May 2024).
- Shen, H.; Xu, J.Y.; Ping, W.J.; He, Q.B.; Zhang, Y.; Jin, M.; Jiang, G.J. Growth, Mechanical and Thermal Properties of Bi4Si3O12 Single Crystals. Chin. Phys. Lett. 2012, 29, 076501. [Google Scholar] [CrossRef]
- Cerium Fluoride Crystal CeF3 Scintillation Crystal–MSE Supplies LLC. Available online: https://www.msesupplies.com/products/cerium-fluoride-cef3-crystal?variant=40204171444282 (accessed on 7 June 2024).
- Li, H.; Ge, W.; Li, J.; Dai, Y.; Chen, J.; Su, L.; Jin, Z.; Ma, G.; Li, X.; Wu, A. Temperature-Dependent Terahertz Dielectric Modulation of a High-Performance Magneto-Optic CeF3 Crystal. Phys. B Condens. Matter 2020, 599, 412468. [Google Scholar] [CrossRef]
- Kobayashi, M.; Ishii, M.; Krivandina, E.A.; Litvinov, M.M.; Peresypkin, A.I.; Prokoshkin, Y.D.; Rykalin, V.I.; Sobolev, B.P.; Takamatsu, K.; Vasil’chenko, V.G. Cerium Fluoride, a Highly Radiation-Resistive Scintillator. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1991, 302, 443–446. [Google Scholar] [CrossRef]
- Kozma, P.; Kozma, P. Radiation Resistivity of BGO Crystals Due to Low-Energy Gamma-Rays. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2003, 501, 499–504. [Google Scholar] [CrossRef]
- Snigireva, O.A.; Solomonov, V.I. Role of the Ce2+ Ions in Cerium Fluoride Luminescence. Phys. Solid State 2005, 47, 1443–1445. [Google Scholar] [CrossRef]
- Yang, F.; Mao, R.; Zhang, L.; Zhu, R.-Y. A Study on Radiation Damage in BGO and PWO-II Crystals. J. Phys. Conf. Ser. 2012, 404, 012025. [Google Scholar] [CrossRef]
- Sasano, M.; Nishioka, H.; Okuyama, S.; Nakazawa, K.; Makishima, K.; Yamada, S.; Yuasa, T.; Okumura, A.; Kataoka, J.; Fukazawa, Y.; et al. Geometry Dependence of the Light Collection Efficiency of BGO Crystal Scintillators Read out by Avalanche Photo Diodes. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2013, 715, 105–111. [Google Scholar] [CrossRef]
- Chaiphaksa, W.; Limkitjaroenporn, P.; Kim, H.J.; Kaewkhao, J. Moh’s Hardness Scale and Micro Vicker’s Hardness Study of Bgo and Lyso Inorganic Scintillators. J. Phys. Conf. Ser. 2018, 970, 012005. [Google Scholar] [CrossRef]
- Kozma, P.; Bajgar, R.; Kozma, P. Radiation Resistivity of PbF2 Crystals. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2002, 484, 149–152. [Google Scholar] [CrossRef]
- Magnan, P. Detection of Visible Photons in CCD and CMOS: A Comparative View. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2003, 504, 199–212. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, L.; Quan, C.; Li, S.; Zhang, S.; Zhang, Y.; Fang, Q.; He, M.; Xu, M.; Hang, Y. Growth, Thermal, and Polarized Spectroscopic Properties of Nd:CeF3 Crystal for Dual-Wavelength Lasers. J. Lumin. 2020, 227, 117558. [Google Scholar] [CrossRef]
- Shimamura, K.; Víllora, E.G.; Nakakita, S.; Nikl, M.; Ichinose, N. Growth and Scintillation Characteristics of CeF3, PrF3 and NdF3 Single Crystals. J. Cryst. Growth 2004, 264, 208–215. [Google Scholar] [CrossRef]
- Schaber, J.; Xiang, R.; Gaponik, N. Review of Photocathodes for Electron Beam Sources in Particle Accelerators. J. Mater. Chem. C 2023, 11, 3162–3179. [Google Scholar] [CrossRef]
- MA, L.; Chen, L.; Huang, G.; Hu, J.; Han, X.; Hua, Z.; Huang, X.; Jin, M.; Jiang, X.; Jin, Z.; et al. The Time Resolution Improvement of Cherenkov-Radiator-Window Photomultiplier Tube. J. Instrum. 2023, 18, C12020. [Google Scholar] [CrossRef]
- Ponti, E.D.; Crivellaro, C.; Morzenti, S.; Monaco, L.; Todde, S.; Landoni, C.; Elisei, F.; Musarra, M.; Guerra, L. Clinical Application of a High Sensitivity BGO PET/CT Scanner: Effects of Acquisition Protocols and Reconstruction Parameters on Lesions Quantification. Curr. Radiopharm. 2022, 15, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Sathiakumar, C.; Som, S.; Eberl, S.; Lin, P. NEMA NU 2-2001 Performance Testing of a Philips Gemini GXL PET/CT Scanner. Australas. Phys. Eng. Sci. Med. 2010, 33, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Surti, S.; Kuhn, A.; Werner, M.E.; Perkins, A.E.; Kolthammer, J.; Karp, J.S. Performance of Philips Gemini TF PET/CT Scanner with Special Consideration for Its Time-of-Flight Imaging Capabilities. J. Nucl. Med. 2007, 48, 471–480. [Google Scholar]
- Jakoby, B.W.; Bercier, Y.; Watson, C.C.; Bendriem, B.; Townsend, D.W. Performance Characteristics of a New LSO PET/CT Scanner with Extended Axial Field-of-View and PSF Reconstruction. IEEE Trans. Nucl. Sci. 2009, 56, 633–639. [Google Scholar] [CrossRef]
- Valais, I.; David, S.; Michail, C.; Konstantinidis, A.; Kandarakis, I.; Panayiotakis, G.S. Investigation of Luminescent Properties of LSO:Ce, LYSO:Ce and GSO:Ce Crystal Scintillators under Low-Energy γ-Ray Excitation Used in Nuclear Imaging. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2007, 581, 99–102. [Google Scholar] [CrossRef]
- Storm, L.; Israel, H.I. Photon Cross Sections from 1 keV to 100 MeV for Elements Z = 1 to Z = 100. At. Data Nucl. Data Tables 1970, 7, 565–681. [Google Scholar] [CrossRef]
- Hubbell, J.H.; Seltzer, S.M. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients; NIST Standard Reference Database 126; National Institute of Standards and Technology-PL: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Boone, J. X-ray Production, Interaction, and Detection in Diagnostic Imaging. In Handbook of Medical Imaging. Volume 1: Physics and Psychophysics; Beutel, J., Kundel, H.L., Van Metter, R.L., Eds.; SPIE Press: Bellingham, WA, USA, 2000; Volume 1, pp. 36–57. ISBN 978-0-8194-7772-9. [Google Scholar]
Units | CeF3 | CeBr3 | BGO | |
---|---|---|---|---|
Wavelength of max emission | Nm | 340 (slow), 300–310 (fast) [40,68] | 380 [1,18] | 480 [19,74] |
Emission wavelength range | Nm | 250–425 [68] | 325–475 [1] | 375–650 [1] |
Decay times | Ns | 30 (slow), 8 (fast) [40] | 19 [1,18] | 300 [19,56] |
Light yield | photons/MeV | 4.4 × 103 [40] | 6 × 104 [1,18,26] | 8.9 × 103 [19] |
Photoelectron yield | % of NaI:Tl | 8 [68] | 122 [1] | 15–20 [74] |
Radiation length | Cm | 1.654 [68] | 1.96 [1] | 1.12 [76] |
Refractive index @ max nm | 1.62 @ 440 nm [40] | 2.09 @ 340 nm [1] | 2.15 @ 480 nm [77] | |
Density | g/cm³ | 6.16 [40] | 5.1 [1] | 7.13 [19] |
Melting point | °C | 1443–1450 [39,40,71] | 722 [1] | 1050 [74] |
Mechanical hardness | Mohs | 4.5–5 [39] | 5–6 [1] | 5 [78] |
Radiation hardness | Rad | >106 [73] | 2 × 103 [1] | 107 [79] |
Hygroscopic | No [40] | Yes [1,18] | No [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoupis, V.; Michail, C.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G.; Valais, I. Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range. Inorganics 2024, 12, 230. https://doi.org/10.3390/inorganics12080230
Ntoupis V, Michail C, Kalyvas N, Bakas A, Kandarakis I, Fountos G, Valais I. Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range. Inorganics. 2024; 12(8):230. https://doi.org/10.3390/inorganics12080230
Chicago/Turabian StyleNtoupis, Vasileios, Christos Michail, Nektarios Kalyvas, Athanasios Bakas, Ioannis Kandarakis, George Fountos, and Ioannis Valais. 2024. "Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range" Inorganics 12, no. 8: 230. https://doi.org/10.3390/inorganics12080230
APA StyleNtoupis, V., Michail, C., Kalyvas, N., Bakas, A., Kandarakis, I., Fountos, G., & Valais, I. (2024). Luminescence Efficiency and Spectral Compatibility of Cerium Fluoride (CeF3) Inorganic Scintillator with Various Optical Sensors in the Diagnostic Radiology X-ray Energy Range. Inorganics, 12(8), 230. https://doi.org/10.3390/inorganics12080230