Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = ceramic flat membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3518 KiB  
Article
Carbon-Doped TiO2 Nanofiltration Membranes Prepared by Interfacial Reaction of Glycerol with TiCl4 Vapor
by Wenjing Zhang, Jiangzhou Luo, Honglei Ling, Lei Huang and Song Xue
Membranes 2024, 14(11), 233; https://doi.org/10.3390/membranes14110233 - 7 Nov 2024
Viewed by 1487
Abstract
In the pursuit of developing advanced nanofiltration membranes with high permeation flux for organic solvents, a TiO2 nanofilm was synthesized via a vapor–liquid interfacial reaction on a flat-sheet α-Al2O3 ceramic support. This process involves the reaction of glycerol, an [...] Read more.
In the pursuit of developing advanced nanofiltration membranes with high permeation flux for organic solvents, a TiO2 nanofilm was synthesized via a vapor–liquid interfacial reaction on a flat-sheet α-Al2O3 ceramic support. This process involves the reaction of glycerol, an organic precursor with a structure featuring 1,2-diol and 1,3-diol groups, with TiCl4 vapor to form organometallic hybrid films. Subsequent calcination in air at 250 °C transforms these hybrid films into carbon-doped titanium oxide nanofilms. The unique structure of glycerol plays a crucial role in determining the properties of the resulting nanopores, which exhibit high solvent permeance and effective solute rejection. The synthesized carbon-doped TiO2 nanofiltration membranes demonstrated impressive performance, achieving a pure methanol permeability as high as 90.9 L·m−2·h −1·bar−1. Moreover, these membranes exhibited a rejection rate of 93.2% for Congo Red in a methanol solution, underscoring their efficacy in separating solutes from solvents. The rigidity of the nanopores within these nanofilms, when supported on ceramic materials, confers high chemical stability even in the presence of polar solvents. This robustness makes the carbon-doped TiO2 nanofilms suitable for applications in the purification and recovery of organic solvents. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

16 pages, 4018 KiB  
Article
An Integrated Process of Struvite Precipitation/Membrane Filtration Using Flat Ceramic Membranes Is an Effective Method for the Treatment of Liquid Fraction Digestate from a Municipal Biogas Plant
by Agnieszka Urbanowska and Izabela Polowczyk
Water 2024, 16(13), 1928; https://doi.org/10.3390/w16131928 - 6 Jul 2024
Viewed by 1374
Abstract
One method of processing municipal waste biogas plant digestate is to separate it into solid and liquid fractions. Since the digestate can be a potential source of water, it must undergo the appropriate treatment. Pressurised membrane processes preceded by struvite precipitation can be [...] Read more.
One method of processing municipal waste biogas plant digestate is to separate it into solid and liquid fractions. Since the digestate can be a potential source of water, it must undergo the appropriate treatment. Pressurised membrane processes preceded by struvite precipitation can be particularly useful in this regard. Experiments were conducted to determine the effectiveness of treating the digestate liquid fraction from a municipal waste biogas plant using an integrated process that combines struvite precipitation with membrane filtration, employing flat ceramic membranes with different cut-off values. The results confirm that this integrated process is effective for digestate treatment. A significantly increased improvement in the final quality of the test solution and a reduction in membrane fouling intensity were observed compared to those of these processes conducted separately. It is noteworthy that the purest solution was obtained when struvite precipitation and filtration through a flat ceramic membrane with a cut-off of 1 kDa were combined. This approach enabled the precipitation of struvite, a valuable fertiliser; the protection of the membranes from fouling; and a high degree of organic compound removal. The recovered water from the digestate (after dilution or removal of excess salts) can be used in agriculture or horticulture. Full article
Show Figures

Figure 1

15 pages, 21980 KiB  
Article
The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment
by Wenhui Yue, Yanlin Chen, Qianwen Sui, Libing Zheng, Tharindu Ritigala and Yuansong Wei
Membranes 2024, 14(6), 142; https://doi.org/10.3390/membranes14060142 - 18 Jun 2024
Cited by 1 | Viewed by 1487
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane [...] Read more.
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications. Full article
(This article belongs to the Special Issue Advances in Membrane Processes for Wastewater Treatment)
Show Figures

Figure 1

18 pages, 3921 KiB  
Article
Performance Assessment of a New Flat Sepiolite Clay-Based Ultrafiltration Membrane for the Removal of Paracetamol and Indigo Blue Dyes from Two Synthetic Aqueous Solutions
by Mohamed Romdhani, Wala Aloulou, Hajer Aloulou, Joelle Duplay, Catherine Charcosset and Raja Ben Amar
Sustainability 2024, 16(5), 1860; https://doi.org/10.3390/su16051860 - 23 Feb 2024
Cited by 5 | Viewed by 1828
Abstract
In the last decade, the development of a new generation of membranes based on low-cost materials has been widely studied. These membranes demonstrate significantly higher performance than the conventional ceramic membranes currently used in membrane separation technology. This work is focused on the [...] Read more.
In the last decade, the development of a new generation of membranes based on low-cost materials has been widely studied. These membranes demonstrate significantly higher performance than the conventional ceramic membranes currently used in membrane separation technology. This work is focused on the development of a low-cost flat UF ceramic membrane composed completely of sepiolite using a uniaxial pressing method with dimensions of 5.5 cm of diameter and 3 mm of thickness. The sintering temperatures used were from 650 to 800 °C. Several properties, such as morphology, porosity, permeability, mechanical strength, and chemical resistance, are investigated. The results show that the mean pore diameter is increased from 40 to 150 nm when the sintering temperature increases from 650 °C to 800 °C. At these temperatures, excellent mechanical strength of 18 MPa to 22 MPa and high chemical resistance were achieved. SEM results revealed a crack-free structure with a uniformly smooth surface. Permeability tests were conducted using dead-end filtration. The sepiolite membrane demonstrated an improvement in its water permeability from 18 to 41 L·m−2·h−1·bar−1 when the sintering temperature increased from 650 °C to 750 °C. The efficiency of the sepiolite membranes sintered at 650 °C and 700 °C were evaluated with the application of the removal of paracetamol (PCT) and indigo blue (IB) dye separately from two synthetic aqueous solutions representing the pharmaceutical and textile sectors. Excellent removal efficiency of almost 100% for both contaminants was observed at ambient temperature and a pressure of 3 bars. Membrane regeneration was achieved through simple rinsing with deionized water. According to this finding, the UF sepiolite membrane demonstrated reversible fouling, which is consistent with the fouling coefficient “FRR” value higher than 90%. Full article
(This article belongs to the Special Issue Advances on Sustainable Treatments for Sewage Sludge and Wastewater)
Show Figures

Figure 1

17 pages, 10819 KiB  
Article
Development of Synthesis Strategy of Ferric and Clayey Flat Ceramic Membranes
by Rania Chihi, Antonio Comite, Lamjed Mansour, Sana Hraiech and Fadhila Ayari
ChemEngineering 2023, 7(6), 109; https://doi.org/10.3390/chemengineering7060109 - 10 Nov 2023
Viewed by 1982
Abstract
Ceramic membranes prepared with flat sheet configuration using local materials, iron ore and bentonite, are reported in this investigation. The feedstocks used were fully characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and laser [...] Read more.
Ceramic membranes prepared with flat sheet configuration using local materials, iron ore and bentonite, are reported in this investigation. The feedstocks used were fully characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) and laser diffraction/light scattering. In order to optimize the preparation conditions, the effect of sintering temperature on the microstructure of ferric and clayey membranes was assessed. Results obtained with SEM, confirmed by optical microscopy, indicate that the optimized sintering temperature was in the vicinity of 900 °C. The properties of the fabricated membranes were characterized in terms of mass and thickness loss throughout a determined period of time. The experimental results present a negligible variation in the rate of mass change, which suggested the stability of the synthesized membranes. Both the ferric and clayey membranes exhibit a prevalence of mesopores in their pore distribution. These results suggest that these specific membranes could be employed as cost-effective and environmentally friendly materials. Furthermore, they hold promise for potential applications in gas treatment processes. Full article
Show Figures

Figure 1

18 pages, 4450 KiB  
Article
Preparation and Characterization of New and Low-Cost Ceramic Flat Membranes Based on Zeolite-Clay for the Removal of Indigo Blue Dye Molecules
by Yassine Khmiri, Afef Attia, Hajer Aloulou, Lasâad Dammak, Lassaad Baklouti and Raja Ben Amar
Membranes 2023, 13(11), 865; https://doi.org/10.3390/membranes13110865 - 31 Oct 2023
Cited by 10 | Viewed by 2744
Abstract
Composite flat membranes were prepared using a dry uniaxial pressing process. The effect of the sintering temperature (850–950 °C) and smectite proportion (10–50 wt.%) on membrane properties, such as microstructure, mechanical strength, water permeability, and treatment performances, was explored. It was observed that [...] Read more.
Composite flat membranes were prepared using a dry uniaxial pressing process. The effect of the sintering temperature (850–950 °C) and smectite proportion (10–50 wt.%) on membrane properties, such as microstructure, mechanical strength, water permeability, and treatment performances, was explored. It was observed that increasing the sintering temperature and adding higher amounts of smectite increased the mechanical strength and shrinkage. Therefore, 850 °C was chosen as the optimum sintering temperature because the composite membranes had a very low shrinkage that did not exceed 5% with high mechanical strength, above 23 MPa. The study of smectite addition (10–50 wt.%) showed that the pore size and water permeability were significantly reduced from 0.98 to 0.75 µm and from 623 to 371 L·h−1·m−2·bar−1, respectively. Furthermore, the application of the used membranes in the treatment of indigo blue (IB) solutions exhibited an almost total turbidity removal. While the removal of color and COD decreased from 95% to 76%, respectively, they decreased from 95% to 52% when the amount of smectite increased. To verify the treated water’s low toxicity, a germination test was performed. It has been shown that the total germination of linseed grains irrigated by MS10-Z90 membrane permeate was identical to that irrigated with distilled water. Finally, based on its promising properties, its excellent separation efficiency, and its low energy consumption, the MS10-Z90 (10 wt.% smectite and 90 wt.% zeolite) sintered at 850 °C could be recommended for the treatment of colored industrial wastewater. Full article
Show Figures

Figure 1

15 pages, 5005 KiB  
Article
Reactive Ceramic Membrane for Efficient Micropollutant Purification with High Flux by LED Visible-Light Photocatalysis: Device Level Attempts
by Shuo Li, Xuan Zhang, Rui Fang, Zhiliang Cheng, Qian Xu, Shu Ma, Jie Xiong, Peng Chen and Guangjie Feng
Crystals 2023, 13(4), 651; https://doi.org/10.3390/cryst13040651 - 10 Apr 2023
Cited by 1 | Viewed by 2101
Abstract
Micropollutants (MPs) are widely occurring in surface water all over the world with extremely low concentrations, and their treatment requires high energy consumption and efficiency. In this study, a large-sized planar photocatalytic reactive ceramic membrane (PRCM) was prepared using the facile dip-coating method [...] Read more.
Micropollutants (MPs) are widely occurring in surface water all over the world with extremely low concentrations, and their treatment requires high energy consumption and efficiency. In this study, a large-sized planar photocatalytic reactive ceramic membrane (PRCM) was prepared using the facile dip-coating method with nitrogen-doped TiO2 (N-TiO2-CM) for the purification of tetracycline hydrochloride (TC) as a model MP. The N-TiO2 nanoparticles and the as-prepared N-TiO2-CM were characterized by SEM/EDS, TEM, XPS, UV–Vis DRS, and FT-IR. A fixed bed reactor integrated N-TiO2-CM, and visible LED light was fabricated for the new PRCM water treatment system for the removal of TC with a comprehensive consideration of the degradation rate and permeate flux. The SEM/EDS results indicated that the N-TiO2 was uniformly and tightly loaded onto the flat CM, and the pure water flux could reach over 2000 L/(m2 × h) under a trans-membrane pressure (TMP) of −92 kPa. The fixed bed PRCM water treatment system is extremely suited for MP purification, and the removal efficiency of TC was as high as 92% with 270 min even though its initial concentration was as low as 20 mg/L. The degradation rate and permeate flux of N-TiO2-CM was 2.57 and 2.30 times as high as that of the CM, indicating its good self-cleaning characteristics. The quenching experiments illustrated that the reactive radicals involved in the PRCM process, •OH and •O2, were responsible for TC degradation. This research also provides a utilization proposal for a scale-up N-TiO2-CM system for water and wastewater treatment. Full article
Show Figures

Figure 1

20 pages, 37156 KiB  
Article
Fabrication of a Zircon Microfiltration Membrane for Culture Medium Sterilization
by Zineb Khebli, Ferhat Bouzerara, Nourddine Brihi, Alberto Figoli, Francesca Russo, Francesco Galiano and Sadek Chahredine
Membranes 2023, 13(4), 399; https://doi.org/10.3390/membranes13040399 - 31 Mar 2023
Cited by 6 | Viewed by 2532
Abstract
Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin separation layer at the top. Tubular and flat disc supports were prepared from silica sand [...] Read more.
Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin separation layer at the top. Tubular and flat disc supports were prepared from silica sand and calcite (natural raw materials), using extrusion and uniaxial pressing methods, respectively. Making use of the slip casting technique, the silica sand intermediate layer and the zircon top-layer were deposited on the supports, in this order. The particle size and the sintering temperature for each layer were optimized to achieve a suitable pore size for the deposition of the next layer. Morphology, microstructures, pore characteristics, strength and permeability were also studied. Filtration tests were conducted to optimize the permeation performance of the membrane. Experimental results show that the total porosity and average pore size of the porous ceramic supports sintered at different temperatures within the range (1150–1300 °C), and lie in the ranges of 44–52% and 5–30 μm, respectively. For the ZrSiO4 top-layer, after firing at 1190 °C, a typical average pore size of about 0.3 μm and a thickness of about 70 μm were measured, while water permeability is estimated to a value of 440 lh−1m−2bar−1. Finally, the optimized membranes were tested in the sterilization of a culture medium. Filtration results show the efficiency of the zircon-deposited membranes for bacteria removal; indeed, the growth medium was found to be free of all microorganisms. Full article
Show Figures

Figure 1

10 pages, 1321 KiB  
Article
Efficient Recovery of Organic Matter from Municipal Wastewater by a High-Rate Membrane Bioreactor Equipped with Flat-Sheet Ceramic Membranes
by Michael Joseph Rocco, Akira Hafuka, Toru Tsuchiya and Katsuki Kimura
Membranes 2023, 13(3), 300; https://doi.org/10.3390/membranes13030300 - 3 Mar 2023
Cited by 6 | Viewed by 2536
Abstract
High-rate processes have been investigated for the recovery of organic matter from municipal wastewater. High-rate membrane bioreactors (HR-MBRs) may simultaneously achieve the increased recovery of carbon and high effluent quality, although control of membrane fouling is extremely difficult. To address the severe fouling [...] Read more.
High-rate processes have been investigated for the recovery of organic matter from municipal wastewater. High-rate membrane bioreactors (HR-MBRs) may simultaneously achieve the increased recovery of carbon and high effluent quality, although control of membrane fouling is extremely difficult. To address the severe fouling in HR-MBRs, the combination of granular scouring and frequent chemically enhanced backwashing was examined. The use of robust flat-sheet ceramic membranes enabled the application of those cleaning strategies. Experiments were carried out at an existing wastewater treatment plant. To operate as a high-rate system, the bioreactor solid residence time and hydraulic residence time were set at 0.5 days and 1.6 h, respectively. Although a relatively high flux of 20 L m−2 h−1 was applied, the proposed HR-MBR exhibited a very low fouling rate of 1.3 kPa/day. The system could recover >70% of the carbon from raw wastewater, whereas the concentration of chemical oxygen demand in the effluent was lowered to <20 mg/L. The performance of the proposed HR-MBR observed in this study was clearly superior to those reported in previous related studies. Full article
(This article belongs to the Special Issue Green Membrane Technology)
Show Figures

Graphical abstract

14 pages, 2735 KiB  
Article
Development of Fouling-Control Strategy for Ceramic Membrane Bioreactor Applied in Partial Nitrification Process
by Bingxin Li, Ruochen Wang, Weiwei Zuo, Yi Peng, Dong An, Liang Zhang and Zheng Ge
Water 2023, 15(3), 444; https://doi.org/10.3390/w15030444 - 22 Jan 2023
Viewed by 2647
Abstract
A lab-scale ceramic membrane bioreactor (MBR) with active membrane-fouling control system was developed for the partial nitrification (PN) process. The in situ membrane cleaning method was applied to remove the contaminants on the surface of the membrane with no interruption of the wastewater [...] Read more.
A lab-scale ceramic membrane bioreactor (MBR) with active membrane-fouling control system was developed for the partial nitrification (PN) process. The in situ membrane cleaning method was applied to remove the contaminants on the surface of the membrane with no interruption of the wastewater treatment. The results showed that the device increased critical flux and reduced gel layer resistance (Rg) and internal resistance (Ri) of the flat-sheet ceramic membrane by inhibiting the formation of the cake layer. In long-term experiments, nitrite oxidizing bacteria (NOB) was successfully suppressed, and nitrite accumulation rate (NAR) was achieved at a high level, up to 90.09%; the effluent NO2-N/NH4+-N was maintained in balance dynamically with an average ratio of ~1.30, which would be beneficial to the proliferation of Anammox bacteria and the following autotrophic nitrogen removal (ANR) process. Moreover, with the assistance of in situ cleaning, energy input from aeration was significantly reduced, while over aeration was avoided for more stable PN performance. Full article
(This article belongs to the Special Issue Biological Treatment of Sewage and Resource Utilization of Sludge)
Show Figures

Graphical abstract

13 pages, 3003 KiB  
Article
Mitigation Mechanism of Membrane Fouling in MnFeOx Functionalized Ceramic Membrane Catalyzed Ozonation Process for Treating Natural Surface Water
by Hui Guo, Yanxiao Chi, Yifan Jia, Manman Li, Yuxuan Yang, Haiyong Yao, Kunlun Yang, Zengshuai Zhang, Xueli Ren, Peng Gu and Hengfeng Miao
Separations 2022, 9(11), 372; https://doi.org/10.3390/separations9110372 - 15 Nov 2022
Cited by 5 | Viewed by 1896
Abstract
In order to efficiently remove NOMs in natural surface water and alleviate membrane pollution at the same time, a flat microfiltration ceramic membrane (CM) was modified with MnFeOX (Mn-Fe-CM), and a coagulation–precipitation–sand filtration pretreatment coupled with an in situ ozonation-ceramic membrane filtration [...] Read more.
In order to efficiently remove NOMs in natural surface water and alleviate membrane pollution at the same time, a flat microfiltration ceramic membrane (CM) was modified with MnFeOX (Mn-Fe-CM), and a coagulation–precipitation–sand filtration pretreatment coupled with an in situ ozonation-ceramic membrane filtration system (Pretreatment/O3/Mn-Fe-CM) was constructed for this study. The results show that the removal rates of dissolved organic carbon (DOC), specific ultraviolet absorption (SUVA) and NH4+-N by the Pretreatment/O3/Mn-Fe-CM system were 51.1%, 67.9% and 65.71%, respectively. Macromolecular organic compounds such as aromatic proteins and soluble microbial products (SMPs) were also effectively removed. The working time of the membrane was about twice that in the Pretreatment/CM system without the in situ ozone oxidation, which was measured by the change in transmembrane pressure, proving that membrane fouling was significantly reduced. Finally, based on the SEM, AFM and other characterization results, it was concluded that the main mitigation mechanisms of membrane fouling in the Pretreatment/O3/Mn-Fe-CM system was as follows: (1) pretreatment could remove part of DOC and SUVA to reduce their subsequent entrapment on a membrane surface; (2) a certain amount of shear force generated by O3 aeration can reduce the adhesion of pollutants; (3) the loaded MnFeOX with a higher catalytic ability produced a smoother active layer on the surface of the ceramic membrane, which was conducive in reducing the contact among Mn-Fe-CM, O3 and pollutants, thus increasing the proportion of reversible pollution and further reducing the adhesion of pollutants; (4) Mn-Fe-CM catalyzed O3 to produce ·OH to degrade the pollutants adsorbed on the membrane surface into smaller molecular organic matter, which enabled them pass through the membrane pores, reducing their accumulation on the membrane surface. Full article
Show Figures

Figure 1

10 pages, 10298 KiB  
Communication
Performance of Newly Developed Intermittent Aerator for Flat-Sheet Ceramic Membrane in Industrial MBR System
by Hiroshi Noguchi, Qiang Yin, Su Chin Lee, Tao Xia, Terutake Niwa, Winson Lay, Seng Chye Chua, Lei Yu, Yuke Jen Tay, Mohd Jamal Nassir, Guihe Tao, Shu Ting Ooi, Adil Dhalla and Chakravarthy Gudipati
Water 2022, 14(15), 2286; https://doi.org/10.3390/w14152286 - 22 Jul 2022
Cited by 1 | Viewed by 2626
Abstract
An intermittent aerator was newly developed to reduce energy costs in a flat-sheet ceramic membrane bioreactor (MBR) for industrial wastewater treatment. Large air bubbles were supplied over a short time interval by the improved aerator technology at the bottom of the flat-sheet membrane. [...] Read more.
An intermittent aerator was newly developed to reduce energy costs in a flat-sheet ceramic membrane bioreactor (MBR) for industrial wastewater treatment. Large air bubbles were supplied over a short time interval by the improved aerator technology at the bottom of the flat-sheet membrane. Performance tests for the intermittent aerator were carried out in a pilot system with two cassettes immersed in a membrane tank of the 1-MGD demonstration plant at Jurong Water Reclamation Plant (JWRP) in Singapore. Stable operation was achieved at an average flow of 19–22 LMH with every-2-days MC and peak flow of 27 to 33 LMH with daily MC with reduced air flow for membrane aeration. This indicates that energy costs for membrane aeration can be reduced by using the intermittent aerator. Stable MBR operation with a projected 43% reduction in the overall operating costs could be achieved with an improved aerator together with improved MC regime and membrane cassette. Full article
Show Figures

Figure 1

19 pages, 7189 KiB  
Article
Combining Ultraviolet Photolysis with In-Situ Electrochemical Oxidation for Degrading Sulfonamides in Wastewater
by Zhijie Zheng, Julin Yuan, Xinwei Jiang, Gang Han, Yufang Tao and Xiaogang Wu
Catalysts 2022, 12(7), 711; https://doi.org/10.3390/catal12070711 - 29 Jun 2022
Cited by 9 | Viewed by 2275
Abstract
Ultraviolet photolysis (UVC, 254 nm) was coupled with an electrochemical oxidation process to degrade three kinds of veterinary sulfonamide (sulfamethazine [SMZ] tablets, sulfamonomethoxine [SMM] tablets, and compound sulfamethoxazole [SMX] tablets). The treatment was applied using a flat ceramic microfiltration membrane to study the [...] Read more.
Ultraviolet photolysis (UVC, 254 nm) was coupled with an electrochemical oxidation process to degrade three kinds of veterinary sulfonamide (sulfamethazine [SMZ] tablets, sulfamonomethoxine [SMM] tablets, and compound sulfamethoxazole [SMX] tablets). The treatment was applied using a flat ceramic microfiltration membrane to study the effects of photocatalysts. The effectiveness of degradation of the three sulfonamides was evaluated under different conditions. Dissolved oxygen was provided via aeration, but this resulted in a large decrease in the degradation effectiveness due to the inhibition of free chlorine electrogeneration. The photocatalysts had no promotional effect on sulfonamide removal from wastewater due to reduced UV penetration. Because of the different distribution coefficients of sulfonamides, UV irradiation had different effects on different sulfonamide species. For SMZ and SMM, anionic species exhibited a higher degradation rate, whereas for SMX, degradation was most effective for neutral species. In addition, the free chlorine yield increased as the pH increased. Free chlorine conversion reactions occurred under UV irradiation, with the reactions possibly restrained by sulfonamides. Reactive chlorine species promoted SMM degradation. Compared to UV irradiation or electrochemical oxidation alone, the UV/in-situ electrochemical oxidation process was more effective and is suitable for treating real wastewater under various environmental pH levels. Full article
Show Figures

Graphical abstract

14 pages, 2761 KiB  
Article
Pilot Scale Application of a Ceramic Membrane Bioreactor for Treating High-Salinity Oil Production Wastewater
by Ronglin Sun and Yue Jin
Membranes 2022, 12(5), 473; https://doi.org/10.3390/membranes12050473 - 27 Apr 2022
Cited by 7 | Viewed by 3697
Abstract
The offshore oil extraction process generates copious amounts of high-salinity oil-bearing wastewater; at present, treating such wastewater in an efficient and low-consumption manner is a major challenge. In this study, a flat ceramic membrane bioreactor (C−MBR) process combining aerobic microbial treatment technology and [...] Read more.
The offshore oil extraction process generates copious amounts of high-salinity oil-bearing wastewater; at present, treating such wastewater in an efficient and low-consumption manner is a major challenge. In this study, a flat ceramic membrane bioreactor (C−MBR) process combining aerobic microbial treatment technology and ceramic membrane filtration technology was used to treat oil-bearing wastewater. The pilot test results demonstrated the remarkable performance of the combined sequential batch reactor (SBR) and C-MBR process, wherein the chemical oxygen demand (COD) and ammonia nitrogen (NH4+−N) removal rates reached 93% and 98.9%, respectively. Microbial analysis indicated that the symbiosis between Marinobacterium, Marinobacter, and Nitrosomonas might have contributed to simultaneously removing NH4+−N and reducing COD, and the increased enrichment of Nitrosomonas significantly improved the nitrogen removal efficiency. Cleaning ceramic membranes with NaClO solution reduces membrane contamination and membrane cleaning frequency. The combined SBR and C−MBR process is an economical and feasible solution for treating high-salinity oil-bearing wastewater. Based on the pilot application study, the capital expenditure for operating the full-scale combined SBR and C−MBR process was estimated to be 251,717 USD/year, and the unit wastewater treatment cost was 0.21 USD/m3, which saved 62.5% of the energy cost compared to the conventional MBR process. Full article
Show Figures

Figure 1

12 pages, 2100 KiB  
Article
The Use of Flat Ceramic Membranes for Purification of the Liquid Fraction of the Digestate from Municipal Waste Biogas Plants
by Agnieszka Urbanowska and Małgorzata Kabsch-Korbutowicz
Energies 2021, 14(13), 3947; https://doi.org/10.3390/en14133947 - 1 Jul 2021
Cited by 10 | Viewed by 2389
Abstract
Due to the rising water deficit in agriculture, digestate is increasingly being considered not only as an alternative fertiliser but also as a potential source of water. The use of recycled water for crop irrigation requires that it be treated in such a [...] Read more.
Due to the rising water deficit in agriculture, digestate is increasingly being considered not only as an alternative fertiliser but also as a potential source of water. The use of recycled water for crop irrigation requires that it be treated in such a way that contaminants from the fermented biomass are not returned to the environment. Membrane processes can provide promising results in this regard. This study seeks to achieve membrane filtration using flat ceramic membranes for effective digestate liquid fraction treatment from a municipal waste biogas plant. Membranes of 1, 5, 15, and 50 kDa, and 0.14 and 0.45 µm are examined. The results obtained show that the application of a sedimentation process, as a preliminary step in the purification of the digestate, allows for a significant reduction in the content of contaminants in the solution. By analysing the effectiveness of the liquid fraction of the digestate purification in the sedimentation-membrane filtration process using flat ceramic membranes, it can be stated that all the membranes tested can be applied in the digestate purification. With an increase in the cut-off value, a deterioration in the quality of the digestate can be observed. The use of the sedimentation process before the membrane process not only improves the final quality of the digestate but also reduces the intensity of membrane fouling. Full article
Show Figures

Figure 1

Back to TopTop