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Abstract: Multilayer ceramic membranes to be used for bacteria removal by filtration were prepared
from ceramic materials. They consist of a macro-porous carrier, an intermediate layer and a thin
separation layer at the top. Tubular and flat disc supports were prepared from silica sand and
calcite (natural raw materials), using extrusion and uniaxial pressing methods, respectively. Making
use of the slip casting technique, the silica sand intermediate layer and the zircon top-layer were
deposited on the supports, in this order. The particle size and the sintering temperature for each
layer were optimized to achieve a suitable pore size for the deposition of the next layer. Morphology,
microstructures, pore characteristics, strength and permeability were also studied. Filtration tests
were conducted to optimize the permeation performance of the membrane. Experimental results
show that the total porosity and average pore size of the porous ceramic supports sintered at
different temperatures within the range (1150–1300 ◦C), and lie in the ranges of 44–52% and 5–30 µm,
respectively. For the ZrSiO4 top-layer, after firing at 1190 ◦C, a typical average pore size of about
0.3 µm and a thickness of about 70 µm were measured, while water permeability is estimated to a
value of 440 lh−1m−2bar−1. Finally, the optimized membranes were tested in the sterilization of a
culture medium. Filtration results show the efficiency of the zircon-deposited membranes for bacteria
removal; indeed, the growth medium was found to be free of all microorganisms.

Keywords: ceramic membrane; support; microfiltration; bacteria removal; zircon

1. Introduction

Membranes have important applications in the food [1], biotechnology, chemical,
petrochemical [2,3] and pharmaceutical industries [4,5]. Recent studies have shown that
membrane filtration is a viable option for removing contaminants from aqueous solutions.
Without being exhaustive, membrane separation applications include the removal of oil
from water [6], toxic heavy metal ions [7–10], and dissolved salts [11] and the separation
of components from solutions such as proteins and macromolecules [12], dyes, bacteria,
viruses [13,14], enzymes, antibodies, hormones, and blood proteins [15].

In various fields, such as the food, microbiology and pharmaceutical industries, it
is becoming very important to sterilize solutions media to reduce the risk of contamina-
tion [16]. Membranes are a good tool with which to do that. An example application is
the proposed case of the sterilization of plant tissue culture media (also known as growth
media; this was the subject of a previous work [14]). Today, specific cell types derived
from plants can be cultured in synthetic media. The latter is highly suitable for most of the
contaminants to thrive and flourish in a short time; this is because the growth medium con-
tains all the substances required for the growth of microorganisms such as bacteria [17–20].
The presence of these microbes in the medium could result in increased tissue culture
decay [21]. For this reason, it is necessary to sterilize the nutrient media in order to protect
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them from any sources of contamination. To achieve this goal, several techniques have been
developed. They include autoclaving, radiation (UV, microwaves and X-rays) and chemical
methods [22–24], as well as ethylene oxide and plasma treatments. Autoclaving is the most
common technique, because of its low cost and ease of use [24]. However, sterilization at
high temperatures can lead to the degradation of organic substances and may result in un-
desirable reactions [25–28]. As an example, many proteins, and vitamins are thermo-labile
and may decompose during autoclaving. As a sterilization technique, membrane filtration
is potentially efficient at removing microbial contamination without altering the physico-
chemical properties [16] or affecting the functionalities of the culture medium components.
Consequently, the preparation of membranes intended for this application has received
increasing attention, especially those made of ceramics. Indeed, they are very effective
for liquids filtration, as they exhibit a narrow pore size distribution, a high porosity, and
a high permeability; they also have outstanding mechanical durability and great thermal
and chemical stability. Furthermore, ceramic membranes can be cleaned even with harsh
chemicals which can guarantee a longer service life [29]. Moreover, ceramic membranes
are less susceptible to microbial attacks and biological degradation [30]. Therefore, devel-
oping membranes with the appropriate technical characteristics for the concentration or
separation of microorganisms, such as spores and bacteria, is an emerging trend. Presently,
the inorganic membranes for microfiltration (MF) are usually made of silica, alumina, zirco-
nium or titanium. Studies in this field are widely reported in literature [31–35]. In this study,
the peculiar properties of zircon were exploited for the development of MF membranes
with a top layer made of zirconium silicate. It must be noted that little research has focused
on the use of zircon in the fabrication of ceramic membranes. The ceramic filters are usually
constituted of a thick support (2 mm) and one or multiple thin membranes. The thin top
layer is responsible for separating components; the porous ceramic support provides the
necessary mechanical strength to the membrane top layer to withstand the stress induced
by the pressure difference applied over the entire membrane, offering, at the same time,
a low resistance to the filtrate flow. The most common supports fabrication processes
used for membrane systems include extrusion [36,37], tape casting [38], dry pressing, slip
casting [39], and centrifugal casting [40–43]. Amongst them, slip casting, centrifugal casting,
and dry pressing methods are widely used in laboratories, while the preferred method in
industry is extrusion. Extrusion is a technological process for the production of ceramic
tubes. It is also a very common method for ceramic support preparation. In addition, this
method is rather inexpensive compared to others, and is therefore economically viable
for tubes manufacture. In the extrusion process, a stiff paste is compacted and shaped
by forcing it through a nozzle. In general, the manufacturing process of tubular ceramic
supports using this method includes the following steps: (i) mixing various materials
such as raw materials, organic additives and other extrusion aid materials to form a paste;
(ii) passing the paste through an extruder to form a tubular support; (iii) drying and firing
the samples.

There are several methods for preparing top layers depending on the application
requirements, the desired membrane structure, and the specific materials. The most
common manufacturing processes are slip casting, spin coating, dip coating or more
sophisticated techniques such as a centrifugal process. However, there have been many
studies on the preparation and characterization of membranes produced by the slip casting
method [44–46]. A deflocculated slip is usually prepared through the mixing of powder,
aqueous solution, and water. The deposition of the slip on the support is performed by the
slip casting method [45]. In the case of the tubular membranes, the tube is closed at one
end and filled with the solution. The coating is carried out by capillary suction. The thin
layer thickness is determined by the capillary pressure and is dependent on the support
porosity, the coating time, and the suspension viscosity [46]. After being dried at room
temperature, the layer is sintered at an appropriate temperature. This method has the
advantages of shaping complex geometries and also it allows the achievement of good
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quality membrane layers in terms of homogeneity and smooth surface, which are crucial
properties for potential filtration applications.

In our investigation, composite ceramic membranes were prepared in three main steps:
fabrication of supports manufactured from natural materials such as silica sand (SiO2) and
(CaCO3); the realization of an intermediate layer made from silica powder; and finally, the
preparation of a selective top layer made of zircon. Secondly, structural characteristics and
the mechanical and chemical stability of the prepared membranes were examined, and
their performance was assessed (in terms of water permeability). Finally, the separation
capability of the prepared zircon ceramic membrane was evaluated using MF tests on a
culture medium solution.

2. Materials and Methods
2.1. Materials

Zircon (ZrSiO4), natural silica sand (SiO2),and calcite (CaCO3) were used as starting
materials for the fabrication of ceramic membranes. Silica sand (SS) and calcite (CC) raw
materials originating from two sites in east Algeria were used for the preparation of the
supports. CC has a double role—it helps reduce the sintering temperature and acts as
a pore forming agent. The organic additive, methylcellulose (from Sigma-Aldrich 3050
Spruce Street, Saint Louis, MO 63103 USA), was used (4 wt.% of the ceramic powder)
as a binder, in order to improve the rheological properties of the paste that makes the
supports. Commercially available zirconium silicate (ZrSiO4) (purchased from Helmut
Kreutz GmbH Company, Postfach 1242. Haiger, Germany) was used as a powder to prepare
the membrane toplayer. Hydroxyethyl cellulose (from Merck Schuchardt OHG. Str 85662
Hohenbrunn Germany) was used as the organic binder in top layer preparation, helping
with tuning the sol viscosity and protecting the thin layer from cracking.

A culture medium was prepared for the validation of the sterilization process. It
was basically an aqueous solution where all the needed nutrients had been added; it con-
tained simple sugar as a carbon and energy source, various mineral salts (macro-elements,
microelements), and growth factors (purified amino acids, vitamins, and pyrimidines).

2.2. Production of the Supports

Usually, ceramic MF membranes are obtained in three stages. First, the tubular or flat
discs porous ceramic supports are prepared, followed by the application of an inter-layer
at the second stage, concluding with the deposition of the MF membrane in the third stage.

The supports samples were prepared as follows: the first step was the preparation
of a paste by mixing 75 g of SS as a major raw material with 25 g of CC powders and 4 g
of organic additive (methyl cellulose) as a binder. Water was added to obtain a plastic
paste with a good homogeneity and to facilitate the shaping, which was the next step in the
sample formation process. In the present work, we used the following shapes:

- Tubular and flat rectangular supports were made by pressing the paste in a die, using
a hydraulic press. The extruded tubes were placed on rotating rollers to cause the
support to rotate so that they dried up and stayed straight. Tubular supports had
the following dimensions: 6 mm (I.D.) and 10 mm (O.D.) for the inner and outer
diameters, respectively, while the length of the supports was chosen according to our
needs. They were used to study membrane features.

- Rectangular samples (with 40 × 8 × 6 mm) were prepared using the extrusion tech-
nique. These samples were used to estimate mechanical properties.

- Flat disc samples (with a diameter of 50 mm and a thickness of 2 mm) were prepared
by hydrostatic pressure. They were used in the filtration tests.

Finally, after drying, the samples were fired at different temperatures in the range
(1150–1300 ◦C) for 1 h, with a heating rate of about 5 ◦C/min, from 25 ◦C to T (◦C). A
picture of the obtained samples is presented as Figure 1a.



Membranes 2023, 13, 399 4 of 20

Membranes 2023, 13, x FOR PEER REVIEW 4 of 20 
 

 

Finally, after drying, the samples were fired at different temperatures in the range 
(1150–1300 °C) for 1 h, with a heating rate of about 5 °C/min, from 25 °C to T (°C). A 
picture of the obtained samples is presented as Figure 1a. 

 
Figure 1. (a) A photograph of prepared samples: tube, flat disc, and flat rectangular. (b)A photo-
graph of the experimental installation used in frontal MF. 

2.3. Membranes Preparation 
The slip casting method was selected in order to obtain a porous ceramic membrane 

with a smooth surface and a uniform pore-size distribution. This technology includes 
preparation of the slip, casting, drying, and sintering. 

An inter-layer was applied using a deflocculated suspension. The preparation pro-
cess consisted of the following steps: 
• Crushing of the powder and calibration at 40 μm by sieving; 
• Dispersing the mineral powder (20 g) in distilled water (50 mL); 
• Adding an aqueous solution of hydroxyethyl cellulose (30 g); 
• Homogenizing by magnetic stirring followed by the deposition on a silica layer by 

using the slip casting method (the time of deposition is about 5 min); 
• Drying followed by sintering at 1200 °C for 1 h at a heating rate of 5 °C/min. 

The slip for the top layer was obtained by mixing 20 wt.% zircon powder (particle 
size < 5 μm), 30 wt.% aqueous solution of hydroxyethyl cellulose, and 50 wt.% of distilled 
water (DW). Afterwards, it was deposited on a silica layer using the slip casting method. 
The time of deposition was about 5 min. Then, after drying at room temperature, the 

Figure 1. (a) A photograph of prepared samples: tube, flat disc, and flat rectangular. (b)A photograph
of the experimental installation used in frontal MF.

2.3. Membranes Preparation

The slip casting method was selected in order to obtain a porous ceramic membrane
with a smooth surface and a uniform pore-size distribution. This technology includes
preparation of the slip, casting, drying, and sintering.

An inter-layer was applied using a deflocculated suspension. The preparation process
consisted of the following steps:

• Crushing of the powder and calibration at 40 µm by sieving;
• Dispersing the mineral powder (20 g) in distilled water (50 mL);
• Adding an aqueous solution of hydroxyethyl cellulose (30 g);
• Homogenizing by magnetic stirring followed by the deposition on a silica layer by

using the slip casting method (the time of deposition is about 5 min);
• Drying followed by sintering at 1200 ◦C for 1 h at a heating rate of 5 ◦C/min.

The slip for the top layer was obtained by mixing 20 wt.% zircon powder (particle size
<5 µm), 30 wt.% aqueous solution of hydroxyethyl cellulose, and 50 wt.% of distilled water
(DW). Afterwards, it was deposited on a silica layer using the slip casting method. The
time of deposition was about 5 min. Then, after drying at room temperature, the membrane
was sintered at 1190 ◦C for 1 h. This temperature was selected because it resulted in good
characteristics and good adhesion between support and membrane.
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2.4. Culture Medium Preparation and Sterilization

In order to study the ability of the prepared membranes to perform the removal
of bacterial cells, a Murashige and Skoog medium (MS), i.e., a laboratory plant tissue
culture medium, was used. It consists of macronutrients (nitrogen, phosphorus, potassium,
calcium, magnesium and sulfur), micronutrients (iron, manganese, zinc, boron, copper,
cobalt and molybdenum) and also vitamins (glycine, thiamine (vitamin B1), nicotinic acid
(also known as niacin or vitamin B3), pyridoxine (vitamin B6), myo-inositol, and a carbon
resource (sucrose).

A standard medium solution was prepared, according to the method described in [14],
whereby 200 mL of mineral solution was sterilized at a temperature of 121 ◦C for 20 min.
Then, part of the organic non-sterile medium was filtered through the MF membrane
(Figure 1b). The remaining part was sterilized by autoclave and poured into a flask
containing the above sterilized mineral medium. It was then heated and solidified with
agar. The flasks were tightly closed to prevent any contamination by microorganisms. In
addition, flasks containing the same volume (100 mL) of sterilized mineral solution were
supplemented with an organic non-sterilized medium (without the use of membrane or
autoclave), to be used as a control test. After that, the flasks were placed in an incubator
at 25 ◦C for 30 days. Visual checks on any variation (color, form) on the surface of the
sterilized and non-sterilized media were made on a daily basis.

2.5. Characterization Techniques

Various characterization techniques were used to study the properties of the pre-
pared membranes. Chemical analysis was carried out by means of X-ray fluorescence
spectrometry (Zetium-Malvern Panalytical, Great Malvern, UK). Particle size distributions
of raw materials were obtained using a laser diffraction particle size analyzer (HORIBA-
LA-960, HORIBA, Kyoto, Japan). Thermal analysis (TGA/DSC) was performed using
an SDT Q600 TA instrument, from 30 to 1300 ◦C at a heating rate of 10 ◦C/min in an
air atmosphere.

The membranes were characterized by studying both their structure and functionality.
Open porosity, average pore size or diameter (APS), and pore size distribution (PSD) were
obtained using a mercury intrusion porosimetry technique (Micromeritics, Model Autopore
9220) for specimens sintered at different temperatures. The pore size was also evaluated
by using the wet-up/dry-up method with a capillary flow porometer (POROLUXTM
1000 Porometer, IB-FT GmbH, 12277 Berlin, Germany). Structural properties of the sam-
ples were analyzed by physical adsorption of N2 at 77K using a Micromeritics ASAP
2460 apparatus. Before each adsorption measurement, all samples were dried under vac-
uum at 423 K for 12 h. The specific surface area (SSA) was calculated according to the
Brunauer–Emmett–Teller (BET) method within a relative pressure range of 0.05–0.3.

The flexural strength of sintered samples was measured by mechanical experiments
consisting of the three-point bending test. The flexural strength presented in this work
was the average value resulting from five different samples. Phase analysis was conducted
by X-ray diffraction (XRD) via a diffractometer (BRUKER-AXS-D8) with CuKα radiation.
Microstructure and morphology were examined using scanning electron microscopy (SEM,
TESCAN VEGA3).

3. Results and Discussion
3.1. Raw Materials Characterization

Chemical compositions of SS, CC and zircon were obtained by X-ray fluorescence
as shown in Table 1. SS is mainly composed of silica at around 85 wt.%, 6 wt.% Al2O3,
2 wt.% CaO, and some impurities. The quantitative analysis of calcium carbonates (CaCO3)
revealed that the purity of this material was about 99%. The chemical composition of zircon
powder consists of SiO2 and ZrO2 as the major components. However, traces of Fe2O3 and
TiO2 were also detected. Figure 2 presents the XRD spectra of SS, CC, and zircon. It shows
that they are crystallized and that all peaks in the XRD patterns are, indeed, related to
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these raw materials. The XRD pattern of the SS confirms that quartz is the main crystalline
mineral in this powder. The main phases detected in the zircon sample were quartz and
zircon oxide (ZrO2). The XRD pattern of the calcium carbonate powder shows that only
CaCO3 is present. The particle size distribution of used raw materials, measured by laser
scattering technique, is provided in Figure 3. It shows the following particles size ranges:
SS 2–60 µm; CC 1–10 µm; and zircon 0.1–5 µm. The estimated average particle size is of the
order of about 14 µm, 5 µm, and 0.6 µm for SS, CC, and zircon, respectively. In additions, it
is noticeable that SS powder presents an average grain size larger than that of zirconium
silicate or CC.
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Table 1. Chemical compositions of raw materials, expressed as weight percentage, for the different
oxides (obtained with the X-ray fluorescence technique).

SiO2 CaO Al2O3 K2O SO3 MgO ZrO2 Fe2O3 Na2O TiO2

Silica
sand 85.17 2.50 6.04 0.31 0.06 0.63 - 1.69 0.05 0.03

Calcite 0.06 55.95 0.06 0.01 0.04 0.33 - 0.02 0.06 -
Zircon 34.00 - - - - - 65.5 0.12 - 0.20
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Figure 4 shows the TGA and DSC results for CC and SS; the samples were heated at
10 ◦C/min, from room temperature to 1300 ◦C, in an air atmosphere. The DSC curve of
CC powder presents a broad endothermic peak in the temperature range of 600 to 850 ◦C,
caused by the decarbonation of CC—CaCO3 transforming to CaO and CO2. The TGA
curve shows that the endothermic process is accompanied by a decrease in mass. Indeed,
it decreased by about 44% during this process. This is the case mostly above 600 ◦C and
continues until about 850 ◦C.

The thermal analysis curves for SS are shown in Figure 4b. The DSC curve presents
a small endothermic peak at about 577 ◦C, indicating some structural rearrangement
at this temperature; the α-quartz, which has a trigonal symmetry, turns into hexagonal
β-quartz [47,48]. The TGA curve slightly decreased (1% in mass) up to 450 ◦C.

3.2. Supports Characterizations

In this investigation, tubular supports, prepared using an extrusion technique, were
used. The basic properties such as pore size, porosity, permeability and lifetime are crucial
for membranes applications. To enhance membrane support performance, the effect of
calcination temperatures on the properties of porous membranes supports was examined
for a range of temperatures from 1150 to 1300 ◦C. Figure 5 shows the porosity ratio and the
average pore size of ceramic supports as a function of the sintering temperature. As can
be seen, the APS increases with the temperature increase. The APS of supports sintered at
1300 ◦C (27.7 µm) is five and a half times higher than that of specimens sintered at 1150 ◦C
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(5.1 µm). The increase in average pore diameter may be attributed to pores coalescence.
In addition, experimental results (Figure 5) show that the porosity decreases with the
increasing temperature. When the firing temperature was increased from 1150 ◦C to
1200 ◦C, the open porosity significantly decreased from 53% to 46% above 1200 ◦C, before
it stabilized at a steady level. The sample calcined at 1150 ◦C exhibits the highest total
porosity of 53%, while the lowest total porosity of 44% was observed for the sample calcined
at 1300 ◦C. It can also be observed that the porosity reduction in the range 1150–1200 ◦C is
more important than for 1200 to 1300 ◦C. However, the range of sintering temperatures from
1200 ◦C to 1300 ◦C has no effect on the variation of porosity percentage; this is attributed to
the significant increase in pore size. Big pores are, in fact, more stable.
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Figure 6 shows the pore size distributions (PSD) curves of samples fired at different
temperatures. It was possible to affirm from the monomodal distributions patterns that
most of the pores are in the micro-size. Figure 6 suggests that pores in samples fired
at 1150 ◦C are between 1 and 10 µm. Nevertheless, while for the specimens sintered at
1200 and 1250 ◦C the majority of the pores have a diameter smaller than 30 µm (ranging
from 10 to 30 µm), for the specimens sintered at 1300 ◦C, the majority of the pores show a
diameter smaller than 40 µm (ranging from 20 to 40 µm). Furthermore, the average pore
diameters are 5.1, 15.3, 18.5, and 27.7 µm corresponding to the temperatures 1150, 1200,
1250, and 1300 ◦C, respectively. As can be seen in Figure 6, when the sintering temperature
rises from 1150 to 1300 ◦C, the PSD curve moves towards larger pore sizes, while the
volume percentage of pores smaller than 10 µm decreases. This may be attributed to the
growth of large pores at the expense of small pores. Furthermore, it can be noticed from
the SEM image in Figure 7 that the pores in the ceramic supports are micro-sized and
randomly shaped. The surface of membrane supports has a relatively uniform pore size
distribution, and some large pores are also observed. Furthermore, there is an increase in
the size of pores as the temperature increases to 1250 ◦C; this is consistent with the pore
size distribution shown in Figure 6. XRD patterns of supports sintered at 1150 ◦C and
1250 ◦C for 1 h are illustrated in Figure 8. The main phase identified in the membrane
supports sintered at 1150 ◦C is quartz (α-SiO2). However, after sintering at 1250 ◦C, two
new phases (cyclowollastonite CaSiO3 and cristobalite (SiO2)) are formed; this happens
when the quartz phase content decreases. The appearance of new lines and the change
in intensity of some lines for samples fired at 1250 ◦C suggests that a chemical reaction
between quartz and CC occurred, leading to the formation of cyclowollastonite.
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The flexural strength values were taken as the average of the measurements on five
rectangular shape samples, using the bending three points test. Results for samples sintered
at different temperatures are shown in Figure 9. There is a decrease in flexural strength
when the sintering temperature is increased. As examples, for a sintering temperature
of 1150 ◦C and 1 h heating, a flexural strength of 20 MPa, a porosity ratio ≈ 53%, and an
APS ≈ 5 µm were found. In the case of an increased temperature to 1300 ◦C, the following
values were found: flexural strength of 12 MPA, porosity ratio of 44%, and APS of 27 µm.
When the sintering temperature is raised from 1150 to 1300 ◦C, the supports exhibit a slight
increment in the bulk density and a sharp increase in pore size. Increasing the sintering
temperature of samples caused a decrease in the porosity, paradoxically; it has also been
associated with a decrease in the flexural strength of the samples, in fact, the mechanical
strength of ceramics is known to rise when porosity decreases. However, samples show
significant differences in pore size values. The presence of large pores leads to a decrease in
the mechanical strength of ceramics resulting from the link between the flexural strength
and the APS, which is sintering temperature-dependent. A comparison between supports
sintered at 1200, 1250, and 1300 ◦C reveals superior values of flexural strength for supports
at 1200 ◦C, but almost similar values of porosity ratio.
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Resistance to corrosion prolongs the lifetime of the supports. In order to assess this
property, mass loss measurements were carried out. These were performed after having
immersed the first sample into a basic solution of NaOH (pH ≈ 11.90), while for the second
sample, an acidic HCl (pH ≈ 2.0) solution was used at a room temperature. Measurements
were made as a function of immersion duration up to a maximum of 30 days. Figure 10
shows the results for these specimens, which were sintered at 1250 ◦C. It is possible to
notice that the first support presents a high chemical resistance in basic media since its
mass loss was much lower (around 0.1 wt.%) than for those subjected to acidic solution. On
the other hand, the mass loss in the second case rose to a value of ≈4.9 wt.% after 10 days
of immersion and remained stable at this value. Quality wise, this can be considered
acceptable. Therefore, it is possible to conclude that the developed supports showed a
satisfactory resistance to corrosion regardless of the acidic or basic nature of the medium.
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as a function of time.

After structural and mechanical characterization, permeability measurements are also
of great importance since porous supports should have low resistance during filtration.
Tangential water filtration experiments were performed using a home-made pilot plant, for
the evaluation of their performance in terms of permeability. Figure 11 demonstrates the
water flux through the supports sintered at 1150, 1200, and 1250 ◦C, as a function of the
applied pressure. As can be seen from Figure 11, the flux increases linearly with the applied
pressure difference (from 0.3 to 1 bar) for all samples; the average permeability was about
4, 56, and 95 (m3/(H·m2·bar)) for supports sintered at 1150, 1200, and 1250 ◦C, respectively.
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This high permeability is a very important property for the membrane supports perfor-
mance. Furthermore, it is observed (Figure 11) that permeability increases with the firing
temperature. Clearly, for the supports sintered at 1250 ◦C, the flux is relatively high com-
pared to supports sintered at 1150 ◦C and 1200 ◦C. By looking at the trend of permeability,
taking into consideration Figures 5 and 7, it is clear that the increase in permeability with
the firing temperature is related to changes in the microstructure and corresponds to an
increase in pore size. This is because the flux (and hence permeability) is proportional to the
open porosity and APS squared as can be shown by the Hagen–Poiseuille equation [49,50].
For practical applications, both water flux and strength should be as high as possible.
On the basis of the obtained results, the best sintering temperature for a porous ceramic
support was found to be about 1250 ◦C.
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3.3. Membranes Characterization

The top layer is closely related to its support [11] and the quality of the support
is of crucial importance to the integrity of the membrane layers that are applied on the
top. The supports sintered at 1250 ◦C were selected as substrates. Because the surface of
these supports has a relatively uniform pore size distribution (Figure 6) with a relatively
large APS (18.5 µm), the interlayer was found to be an easy way to improve the surface
roughness of the ceramic membrane supports and, thus, gradually reduce the pore size. The
intermediate layer was made from SS (SiO2) powder (the same powder used for support
elaboration) sintered at 1200 ◦C.The role of this layer is to minimize the surface defects and
enhance surface roughness, as mentioned above. The outer layer was made of zircon.
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The sintered membranes were examined by SEM and mercury porosimetry. Figure 12
shows the microstructures of the top layer and support on SEM micrographs. It can
be seen that the intermediate and top layers present a smooth surface and a uniform
structure. Moreover, cracks and large pores could not be observed on the surface of the
interlayer, indicating that the surface quality of supports has improved. The membrane
cross-section (Figure 12c) shows that the zircon top layer and the support constitute an
asymmetrical structure. The zircon layer is dense, with a thickness of about 70 µm that
can be controllable by adjusting the deposition time (the coating time) and the particle
concentration in the slip.
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Figure 13 presents the analysis results obtained through the two methods used to
characterize the textural features of the membranes. Figure 13A shows the nitrogen ad-
sorption/desorption isotherms, acquired at 77K, of the studied samples. All the samples
show Type II isotherms with a Type H3 hysteresis loop, similar to those of powders
and aggregates. According to the IUPAC classification [51], these samples are classified
as mesoporous materials. The adsorption behavior in mesopores is determined by the
adsorbent–adsorptive and adsorptive–adsorptive interactions. This leads to the occurrence
of multilayer adsorption and capillary condensation, which are accompanied by a hys-
teresis curve whose shape is related to the texture of the adsorbent. H3 hysteresis is the
result of inter-particle capillary condensation. From the nitrogen adsorption isotherms, it
is evident that sample (c) has a relatively compact structure. Indeed, the specific surface
area (SSA) increases with the number of layers. The resulting SSA measurements are 0.087,
0.113 and 0.222 m2g−1, corresponding to the samples (support), (support + interlayer),
and (support + interlayer + top layer), respectively. The same behavior is observed for
the total pore volume (VT). The smallest value, VT = 47 × 10−5 cm3·g−1, corresponds to
sample (a), the median value, VT = 65 × 10−5 cm3·g−1, corresponds to sample (b), while
the maximum value, 117 × 10−5 cm3·g−1, was obtained for sample (c). Figure 13B presents
the pore size distributions of the as-prepared membrane. From this figure, the APS for
the SS inter-layer and zircon top layer were estimated as 6 µm and 0.3 µm, respectively.
The pore size distribution of the top layer is narrow, ranging from 0.1 to 0.6 µm; it is a
single (mono) distribution modal, confirming that the membrane has a uniform pore size
distribution and an APS equal to 0.3 µm (Figure 13B). This APS suggests that this kind of
membrane can be utilized in MF applications.
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Figure 13. (A) Isotherms from nitrogen sorption measurements for: (a) support (1250◦),
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layer system.

Distilled water was used to characterize the permeability at room temperature. The
water flux through the membrane was measured as a function of time, at different trans-
membrane pressure (TMP) values. Figure 14 illustrates the obtained results. It is possible
to observe that the increases in flux are related to changes in the pressure [52] with a stable
flux that was reached after a few minutes. Moreover, a flux rate of 270 lh−1m−2 at 0.6 bar
pressure, which increases to 580 lh−1m−2 at 1.4 bar, was also measured. The flux rate
was found to increase with the increase in TMP. The permeability was estimated from the
different flux values for each working pressure. Figure 14b presents the flux as a function of
the applied pressures. It is observed that the flux increases linearly with the pressure; more
precisely, the flux-versus-pressure curve follows the Darcy law. The linear relationship
between the flux and the transmembrane pressure indicates that the driving force for fluid
permeation is the pressure difference [52,53]. The obtained curve is a straight line with a
slope equal to about 440; the permeability is estimated to be around 440 lh−1m−2bar−1,as
can be seen in Figure 14b.
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3.4. Efficient Sterilization by Membrane Filtration

The filtration performance of a medium by porous zircon membranes was evaluated
by following any changes to the medium over time. Figure 15 presents the photographs
of the non-filtered medium, the filtered medium using zircon ceramic membranes, and
the sterilized medium using autoclaving. According to this figure, it is possible to notice
significant effects of the membrane on the sterilization process. It is clear that significant
differences exist between the filtered and non-filtered media. Some variations in color were
observed on the surface of non-filtered medium after five days of incubation. The presence
of black and white spots is due to the bacterial growth; the development of a filamentous
structure is an indicator of the presence of fungi mycelium. No microbial growth was
detected on the surface of the filtered medium after one month of incubation. These results
indicate that the developed membrane can entirely remove the microorganisms from the
culture medium. Figure 15 shows also that the medium is satisfactorily clean. Therefore,
this membrane proved to be efficient for the elimination of bacterial contamination. Studies
on medium sterilization using zircon ceramic membranes are rare in the published literature.
Compared to the conventional standard sterilization methods such as heat (autoclaving),
the results of the present study indicate that it is possible to obtain a similar quality medium,
achievable by a single step via a zircon-based membrane filtration process. The bacteria
removal results of the prepared membrane are comparable to those of membranes prepared
from clays and zirconia [53–55].

Figure 15. Cont.
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Figure 15. Photographs showing medium contamination variations versus time: (a) 5 days,
(b) 15 days and (c) 30 days.

4. Conclusions

This work focused on the preparation and characterization of zircon porous ceramic
membranes for application in microbial sterilization processes. They consist of a macrop-
orous support system with an intermediate layer made of SS and a zircon microporous top
layer. Membrane supports in the form of single-channel tubular and flat discs were made
using SS (75 wt.%) and CC (25 wt.%) minerals. Flexural strength was found to depend
strongly on the APS. Moreover, porous ceramic supports with the smallest APS exhibited
the highest flexural strength. The porosity values ranged from 44 to 53%, the average
pore size from 3 µm to 27 µm, the mechanical strength between 12 MPa and 20 MPa, and
permeability was excellent, making them suitable for MF processes. Samples sintered at
1250 ◦C resulted in the best characteristics. Standard values of porosity, flexural strength,
and permeability of SS-based membrane supports sintered at 1250 ◦C are estimated to be
45%, 15 MPa, and 95 m3h−1m−2bar−1, respectively.

The zircon deposited membranes prepared by the slip casting method showed the
following characteristics:

• Average zircon layer thickness: 70 µm;
• Average pore size: 0.3 µm (suitable for MF application);
• Porous volume: 43%;
• Water permeability: 440 lh−1m−2bar−1;
• Good stability in aqueous solutions.

The efficiency of these membranes for bacteria removal was tested. Indeed, the obtained
results are very encouraging given the high rate (100%) of retentions found experimentally.

Furthermore, bacteria removal performance results confirm the efficiency of zircon
membranes for microfiltration, particularly for solutions sterilization; they are an alternative
sterilization method to autoclaving.
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