Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (497)

Search Parameters:
Keywords = ceramic–polymer composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2142 KB  
Article
Impact of Thermal Cycling on the Vickers Microhardness of Dental CAD/CAM Materials: Greater Retention in Polymer-Infiltrated Ceramic Networks (PICNs) Compared to Nano-Filled Resin Composites
by Jorge I. Fajardo, César A. Paltán, Marco León, Annie Y. Matute, Ana Armas-Vega, Rommel H. Puratambi, Bolívar A. Delgado-Gaete, Silvio Requena and Alejandro Benalcazar
Ceramics 2025, 8(4), 125; https://doi.org/10.3390/ceramics8040125 - 4 Oct 2025
Viewed by 259
Abstract
We synthesized the current evidence from the literature and conducted a 2 × 3 factorial experiment to quantify the impact of thermocycling on the Vickers microhardness (HV) of dental CAD/CAM materials: VITA ENAMIC (VE, polymer-infiltrated ceramic network) and CERASMART (CS, nanofilled resin-matrix). Sixty [...] Read more.
We synthesized the current evidence from the literature and conducted a 2 × 3 factorial experiment to quantify the impact of thermocycling on the Vickers microhardness (HV) of dental CAD/CAM materials: VITA ENAMIC (VE, polymer-infiltrated ceramic network) and CERASMART (CS, nanofilled resin-matrix). Sixty polished specimens (n = 10 per Material × Cycles cell; 12 × 2 × 2 mm) were thermocycled at 5–55 °C (0, 10,000, 20,000 cycles; 30 s dwell, ≈10 s transfer) and tested as HV0.3/10 (300 gf, 10 s; five indentations/specimen with standard spacing). Assumptions regarding the model residuals were met (Shapiro–Wilk W ≈ 0.98, p ≈ 0.36; Levene F(5,54) ≈ 1.12, p ≈ 0.36), so a two-way ANOVA (Type II) with Tukey’s HSD post hoc (α = 0.05) was applied. VE maintained consistently higher HV than CS at all cycle levels and showed a smaller drop from baseline: VE (mean ± SD): 200.2 ± 10.8 (0), 192.4 ± 13.9 (10,000), and 196.7 ± 9.3 (20,000); CS: 60.8 ± 6.1 (0), 53.4 ± 4.7 (10,000), and 62.1 ± 3.8 (20,000). ANOVA revealed significant main effects from the material (η2p = 0.972) and cycles (η2p = 0.316), plus a Material × Cycles interaction (η2p = 0.201). Results: Thermocycling produced material-dependent changes in microhardness. Relative to baseline, VE varied by −3.9% (10,000) and −1.7% (20,000), while CS varied by −12.2% (10,000) and +2.1% (20,000); from 10,000→20,000 cycles, microhardness recovered by +2.2% (VE) and +16.3% (CS). Pairwise comparisons were consistent with these trends (CS decreased at 10,000 vs. 0 and recovered at 20,000; VE only showed a modest change). Conclusions: Thermocycling effects were material-dependent, with smaller losses and better retention in VE (PICN) than in CS. These results align with the literature (resin-matrix/hybrids are more sensitive to thermal aging; polished finishes mitigate losses). While HV is only one facet of performance, the superior retention observed in PICN under thermal challenge suggests the improved preservation of superficial integrity; standardized reporting of aging parameters and integration with wear, fatigue, and adhesion outcomes are recommended to inform indications and longevity. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

14 pages, 2398 KB  
Article
Synthesis and Characterization of YSZ/Si(B)CN Ceramic Matrix Composites in Hydrogen Combustion Environment
by Yiting Wang, Chiranjit Maiti, Fahim Faysal, Jayanta Bhusan Deb and Jihua Gou
J. Compos. Sci. 2025, 9(10), 537; https://doi.org/10.3390/jcs9100537 - 2 Oct 2025
Viewed by 236
Abstract
Hydrogen energy offers high energy density and carbon-free combustion, making it a promising fuel for next-generation propulsion and power generation systems. Hydrogen offers approximately three times more energy per unit mass than natural gas, and its combustion yields only water as a byproduct, [...] Read more.
Hydrogen energy offers high energy density and carbon-free combustion, making it a promising fuel for next-generation propulsion and power generation systems. Hydrogen offers approximately three times more energy per unit mass than natural gas, and its combustion yields only water as a byproduct, making it an exceptionally clean and efficient energy source. Materials used in hydrogen-fueled combustion engines must exhibit high thermal stability as well as resistance to corrosion caused by high-temperature water vapor. This study introduces a novel ceramic matrix composite (CMC) designed for such harsh environments. The composite is made of yttria-stabilized zirconia (YSZ) fiber-reinforced silicoboron carbonitride [Si(B)CN]. CMCs were fabricated via the polymer infiltration and pyrolysis (PIP) method. Multiple PIP cycles, which help to reduce the porosity of the composite and enhance its properties, were utilized for CMC fabrication. The Si(B)CN precursor formed an amorphous ceramic matrix, where the presence of boron effectively suppressed crystallization and enhanced oxidation resistance, offering superior performance than their counter part. Thermogravimetric analysis (TGA) confirmed negligible mass loss (≤3%) after 30 min at 1350 °C. The real-time ablation performance of the CMC sample was assessed using a hydrogen torch test. The material withstood a constant heat flux of 185 W/cm2 for 10 min, resulting in a front-surface temperature of ~1400 °C and a rear-surface temperature near 700 °C. No delamination, burn-through, or erosion was observed. A temperature gradient of more than 700 °C between the front and back surfaces confirmed the material’s effective thermal insulation performance during the hydrogen torch test. Post-hydrogen torch test X-ray diffraction indicated enhanced crystallinity, suggesting a synergistic effect of the oxidation-resistant amorphous Si(B)CN matrix and the thermally stable crystalline YSZ fibers. These results highlight the potential of YSZ/Si(B)CN composites as high-performance materials for hydrogen combustion environments and aerospace thermal protection systems. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Viewed by 375
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

15 pages, 23278 KB  
Article
Assessing the Influence of Inorganic Nanoparticles on the Mechanical and Tribological Performance of PPS-Based Composites: A Comparative Study
by Jixiang Li, Mei Liang, Xiaowen Zhao, Shengtai Zhou and Huawei Zou
Polymers 2025, 17(19), 2573; https://doi.org/10.3390/polym17192573 - 23 Sep 2025
Viewed by 268
Abstract
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene [...] Read more.
In this work, γ-irradiated poly(tetrafluoroethylene) (i-PTFE) and short carbon fibre (SCF) along with different types of ceramic inorganic nanoparticles (i.e., SiC, SiO2, ZnO, TiO2, and CaCO3) were employed to improve the mechanical and tribological performance of polyphenylene sulphide (PPS) composites. The results showed that the flexural strength and modulus of PPS composites increased with the addition of inorganic nanoparticles. Moreover, the inorganic nanoparticles not only exhibited a ‘micro-bearing’ effect during friction tests, but also promoted the formation of high-quality transfer film on the surface of a friction pair, significantly improving the self-lubricating performance of PPS composites. XPS analysis confirmed the occurrence of friction-induced chemical reactions during the friction process in nanoparticle-containing PPS/i-PTFE/SCF composites, which was helpful in improving the tribological performance. PPS/i-PTFE/SCF/SiC composite demonstrated an average friction coefficient of 0.083 and specific wear rate of 9.04 × 10−6 mm3/Nm, which was the best among the studied systems. This work provided valuable insights for developing high-performance self-lubricating polymer composites that can be applied in high-end engineering sectors. Full article
Show Figures

Graphical abstract

28 pages, 16645 KB  
Article
Effects of Apple Vinegar, Mouthwashes, and Bleaching on Color Stability and Surface Properties of Fiber-Reinforced and Non-Reinforced Restorative Materials
by Kerem Yılmaz, Tuğçe Odabaş Hajiyev, Gökçe Özcan Altınsoy and Mehmet Mustafa Özarslan
Polymers 2025, 17(18), 2552; https://doi.org/10.3390/polym17182552 - 21 Sep 2025
Viewed by 487
Abstract
The aim of this study was to investigate the effects of apple cider vinegar (ACV), various mouthwashes and bleaching on the color and surface roughness of fiber strip-reinforced and unreinforced restorative materials. The materials were resin composite (RC), resin-nanoceramic (RNC), and polymer-infiltrated ceramic [...] Read more.
The aim of this study was to investigate the effects of apple cider vinegar (ACV), various mouthwashes and bleaching on the color and surface roughness of fiber strip-reinforced and unreinforced restorative materials. The materials were resin composite (RC), resin-nanoceramic (RNC), and polymer-infiltrated ceramic network (PICN); the mouthwashes were chlorhexidine with alcohol (CXA), chlorhexidine without alcohol (CX), herbal with alcohol (HRA), and herbal without alcohol (HR). Measurements were performed at T0 (baseline), T1 (1 day), T2 (2.5 days) and T3 (after bleaching). Analysis of variance (ANOVA) and Bonferroni analyses revealed that roughness from T0–T3 was highest for RNC and lowest for PICN. Regarding the solutions, the highest increase was in ACV and lowest in artificial saliva (p < 0.001). At T0–T2, color change (ΔE00) and whiteness index change (ΔWID) were highest in CXA and lowest in HR. At T2–T3, ΔE00 was highest in ACV, while ΔWID was highest in CXA (p < 0.001). Although the roughness exceeded the bacterial adhesion threshold, the effect of bleaching was not considerable. Color and whiteness changes generally did not exceed the acceptability threshold. Fiber strip position did not affect roughness. However, a strip in the middle layer had higher impact on color and whiteness than the one in the top layer. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

38 pages, 6969 KB  
Review
Nanotechnology for Biomedical Applications: Synthesis and Properties of Ti-Based Nanocomposites
by Maciej Tulinski, Mieczyslawa U. Jurczyk, Katarzyna Arkusz, Marek Nowak and Mieczyslaw Jurczyk
Nanomaterials 2025, 15(18), 1417; https://doi.org/10.3390/nano15181417 - 15 Sep 2025
Viewed by 443
Abstract
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to [...] Read more.
Nanobiocomposites are a class of biomaterials that include at least one phase with constituents in the nanometer range. Nanobiocomposites, a new class of materials formed by combining natural and inorganic materials (metals, ceramics, polymers, and graphene) at the nanoscale dimension, are expected to revolutionize tissue engineering and bone implant applications because of their enhanced corrosion resistance, mechanical properties, biocompatibility, and antimicrobial activity. Titanium-based nanocomposites are gaining attention in biomedical applications due to their exceptional biocompatibility, corrosion resistance, and mechanical properties. These composites typically consist of a titanium or titanium alloy matrix that is embedded with nanoscale bioactive phases, such as hydroxyapatite, bioactive glass, polymers, or carbon-based nanomaterials. Common methods for synthesizing Ti-based nanobiocomposites and their parts, including bottom-up and top-down approaches, are presented and discussed. The synthesis conditions and appropriate functionalization influence the final properties of nanobiomaterials. By modifying the surface roughness at the nanoscale level, composite implants can be enhanced to improve tissue integration, leading to increased cell adhesion and protein adsorption. The objective of this review is to illustrate the most recent research on the synthesis and properties of Ti-based biocomposites and their scaffolds. Full article
(This article belongs to the Special Issue Nanobiocomposite Materials: Synthesis, Properties and Applications)
Show Figures

Figure 1

13 pages, 1756 KB  
Article
Methylcellulose-Encapsulated Magnesium-Substituted Biphasic Calcium Phosphate Granules for Local Drug Delivery in Bone Tissue Engineering: Modification for Prolonged Release and Antibacterial Behavior
by Daniil O. Golubchikov, Inna V. Fadeeva, Elena S. Trofimchuk, Katia Barbaro, Viktoriya G. Yankova, Iulian V. Antoniac, Valery I. Putlayev, Julietta V. Rau and Vicentiu Saceleanu
Polymers 2025, 17(17), 2422; https://doi.org/10.3390/polym17172422 - 7 Sep 2025
Viewed by 691
Abstract
Bone tissue restoration requires biomaterials, which combine osteoinductivity and the capability to prevent surgical site infections. Magnesium-substituted biphasic calcium phosphate (Mg-BCP) represents a promising solution, as magnesium substitution increases the biodegradation rate of calcium phosphate ceramics and provides inherent antibacterial properties. This study [...] Read more.
Bone tissue restoration requires biomaterials, which combine osteoinductivity and the capability to prevent surgical site infections. Magnesium-substituted biphasic calcium phosphate (Mg-BCP) represents a promising solution, as magnesium substitution increases the biodegradation rate of calcium phosphate ceramics and provides inherent antibacterial properties. This study aimed to achieve wet precipitation synthesis of magnesium-substituted (1–10 mol%) biphasic calcium phosphate and to evaluate its drug delivery potential and antibacterial performance. Porous Mg-BCP granules were fabricated via the gelation of Mg-BCP suspension in sodium alginate followed by polymer removal. Drug delivery potential was evaluated using methylene blue as a model compound, with methylcellulose encapsulation implemented to ensure prolonged release. Magnesium content directly ruled the phase composition: low concentrations (1%) favored hydroxyapatite phase prevalence, while higher concentrations led to the β-tricalcium phosphate formation. Further assessment of drug delivery potential revealed that direct drug loading resulted in burst release, whereas methylcellulose encapsulation successfully enabled prolonged drug delivery. Mg-5BCP formulation demonstrated significant antimicrobial activity with growth inhibition of 17.7 ± 4.1% against C. albicans, 20.8 ± 7.0% against E. faecalis, and 12.9 ± 7.5% against E. coli. Therefore, Mg-5BCP–methylcellulose composite granules present a versatile platform for antibacterial drug delivery for bone tissue engineering applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

13 pages, 635 KB  
Article
Evaluating a Novel 3D-Printed Resin for Dental Restorations: Fracture Resistance of Restorations Fabricated by Digital Press Stereolithography
by Cristian Abad-Coronel, Cinthya Freire Bonilla, Sebastián Vidal, Fabián Rosero, Carolina Encalada Abad, Nancy Mena Córdova, César A. Paltán, Jorge I. Fajardo and Paulina Aliaga
Polymers 2025, 17(17), 2322; https://doi.org/10.3390/polym17172322 - 27 Aug 2025
Viewed by 926
Abstract
An in vitro study evaluated the fracture resistance of four CAD/CAM restorative materials: lithium disilicate ceramic (IPS e.max CAD, EM), hybrid ceramic (Vita Enamic, VE), a polymer-based composite (Cerasmart, CS), and a novel 3D-printed resin (Ceramic Crown, CC) fabricated using digital press stereolithography [...] Read more.
An in vitro study evaluated the fracture resistance of four CAD/CAM restorative materials: lithium disilicate ceramic (IPS e.max CAD, EM), hybrid ceramic (Vita Enamic, VE), a polymer-based composite (Cerasmart, CS), and a novel 3D-printed resin (Ceramic Crown, CC) fabricated using digital press stereolithography (DPS) technology. Standardized full-coverage crowns were designed and manufactured for each material. All specimens underwent thermocycling and fracture testing using a universal testing machine. EM exhibited the highest fracture resistance (mean: 440.49 N), while VE showed the lowest (173.82 N). CS (265.49 N) and CC (306.76 N) presented intermediate values without statistically significant differences between them. Stereomicroscopic analysis revealed differences in fracture patterns, with IPS e.max CAD showing smooth, brittle fractures, while hybrid and polymer-based materials exhibited tortuous fracture surfaces. These results suggest that DPS technology achieves mechanical performance for Ceramic Crown comparable to that of milled polymer-based composites, while offering production advantages in terms of time efficiency. As one of the first studies to evaluate Ceramic Crown and DPS technology, these findings provide initial insights into their mechanical behavior. However, further studies are required to validate their clinical performance before widespread use can be recommended. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

21 pages, 8401 KB  
Article
Computational Study of Stress Distribution in Polyethylene Elements Due to Metal Components of Knee and Hip Implants Made from Different Metal Alloys
by Michał Sobociński and Marcin Nabrdalik
Materials 2025, 18(16), 3924; https://doi.org/10.3390/ma18163924 - 21 Aug 2025
Viewed by 622
Abstract
The complexity of the processes occurring in both natural and artificial joints necessitates carrying out the analysis on a 3D model based on already existing mathematical models. All the presented numerical calculations define qualitative conclusions about the influence of certain parameters of endoprostheses [...] Read more.
The complexity of the processes occurring in both natural and artificial joints necessitates carrying out the analysis on a 3D model based on already existing mathematical models. All the presented numerical calculations define qualitative conclusions about the influence of certain parameters of endoprostheses on the values of stresses and strains arising in polyethylene parts of hip and knee endoprostheses. The obtained results make it possible to reveal “weak points” in the studied models and thus counteract the later effects resulting from premature wear of the endoprosthesis components. The study included a numerical analysis of the stress and strain distribution of polyethylene components of hip and knee endoprostheses working with the most commonly used material associations in this type of solution. The most common are metal alloys and ceramics. The analyses were carried out using ADINA and Autodesk Simulation Mechanical software. Geometric models were designed based on current solutions used by leading endoprosthesis manufacturers. The load models adopted are based on models commonly used in musculoskeletal biomechanics. Particular attention was paid to modeling the resistance due to friction at the hip endoprosthesis node. To build the hip endoprosthesis model, eight-node 3D solid elements were used. Due to the axisymmetric geometry of the model, the resulting discrete model consisted of 10,000 cubic elements described by 10,292 nodes. In the case of the knee endoprosthesis, a finite element mesh was adopted for the calculations, which was built with 3600 3D solid cubic elements and 4312 nodes. The accuracy of the adopted numerical model did not differ from the generally used solutions in this field. Full article
Show Figures

Figure 1

25 pages, 4742 KB  
Article
Design and Evaluation of LLDPE/Epoxy Composite Tiles with YOLOv8-Based Defect Detection for Flooring Applications
by I. Infanta Mary Priya, Siddharth Anand, Aravindan R. Bishwakarma, M. Uma, Sethuramalingam Prabhu and M. M. Reddy
Processes 2025, 13(8), 2568; https://doi.org/10.3390/pr13082568 - 14 Aug 2025
Viewed by 412
Abstract
With the increasing demand for sustainable and cost-effective alternatives in the construction industry, polymer composites have emerged as a promising solution. This study focuses on the development of innovative composite tiles using Linear Low-Density Polyethylene (LLDPE) powder blended with epoxy resin and a [...] Read more.
With the increasing demand for sustainable and cost-effective alternatives in the construction industry, polymer composites have emerged as a promising solution. This study focuses on the development of innovative composite tiles using Linear Low-Density Polyethylene (LLDPE) powder blended with epoxy resin and a hardener as a green substitute for conventional ceramic and cement tiles. LLDPE is recognized for its flexibility, durability, and chemical resistance, making it an effective filler within the epoxy matrix. To optimize its material properties, composite samples were fabricated using three different LLDPE-to-epoxy ratios: 30:70, 40:60, and 50:50. Flexural strength testing revealed that while the 50:50 blend achieved the highest maximum value (29.887 MPa), it also exhibited significant variability, reducing its reliability for practical applications. In contrast, the 40:60 ratio demonstrated more consistent and repeatable flexural strength, ranging from 16 to 20 MPa, which is ideal for flooring applications where mechanical performance under repeated loading is critical. Scanning Electron Microscopy (SEM) images confirmed uniform filler dispersion in the 40:60 mix, further supporting its mechanical consistency. The 30:70 composition showed irregular and erratic behaviour, with values ranging from 11.596 to 25.765 MPa, indicating poor dispersion and increased brittleness. To complement the development of the materials, deep learning techniques were employed for real-time defect detection in the manufactured tiles. Utilizing the YOLOv8 (You Only Look Once version 8) algorithm, this study implemented an automated, vision-based surface monitoring system capable of identifying surface deterioration and defects. A dataset comprising over 100 annotated images was prepared, featuring various surface defects such as cracks, craters, glaze detachment, and tile lacunae, alongside defect-free samples. The integration of machine learning not only enhances quality control in the production process but also offers a scalable solution for defect detection in large-scale manufacturing environments. This research demonstrates a dual approach to material innovation and intelligent defect detection to improve the performance and quality assurance of composite tiles, contributing to sustainable construction practices. Full article
Show Figures

Figure 1

43 pages, 6412 KB  
Review
Thermal Stability of Lithium-Ion Batteries: A Review of Materials and Strategies
by Aimei Yu, Jinjie Feng and Jun Pang
Energies 2025, 18(16), 4240; https://doi.org/10.3390/en18164240 - 9 Aug 2025
Viewed by 1270
Abstract
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and [...] Read more.
Rising incidents of critical lithium-ion battery (LIB) accidents highlight the pressing demand for safety enhancements that do not degrade the electrochemical performance parameters. This article provides a comprehensive overview of thermal failure mechanisms and thermal stability strategies, including their cathode, anode, separator, and electrolyte. The analysis covers the current thermal failure mechanisms of each component, including structural changes and boundary reactions, such as Mn dissolution in the cathode, solid–electrolyte interface decomposition in the anode, the melting–shrinkage–perforation of the separator, as well as decomposition–combustion–gas generation in the electrolyte. Furthermore, the article reviews thermal stability improvement methods for each component, including element doping and surface coating of the electrode, high-temperature resistance, flame retardancy, and porosity strategies of the separator, flame retardant, non-flammable solvent, and solid electrolyte strategies of the electrolyte. The findings highlight that incorporating diverse elements into the crystal lattice enhances the thermal stability and extends the service life of electrode materials, while applying surface coatings effectively suppresses the boundary reactions and structural degradation responsible for thermal failure. Furthermore, by using solid electrolytes such as polymer electrolytes, and combining innovative ceramic-polymer composite separators, it is possible to effectively reduce the flammability of these components and enhance their thermal stability. As a result, the overall thermal safety of LIBs is improved. These strategies collectively contribute to the overall thermal safety performance of LIBs. Full article
Show Figures

Figure 1

33 pages, 13337 KB  
Article
Machinability of Basalt and Glass Fiber Hybrid Composites in Dry Drilling Using TiN/TiAlN-Coated Drill Bits
by Mehmet İskender Özsoy, Satılmış Ürgün, Sinan Fidan, Eser Yarar, Erman Güleç and Mustafa Özgür Bora
Polymers 2025, 17(16), 2172; https://doi.org/10.3390/polym17162172 - 8 Aug 2025
Viewed by 646
Abstract
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm [...] Read more.
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B14), glass (G14) and their two sandwich type hybrids (B4G6B4, G4B6G4), with 6 mm twist drills at 1520 revolutions per minute and 0.10 mm rev−1 under dry running with an uncoated high-speed steel (HSS-R), grind-coated high-speed steel (HSS-G) or physical vapor deposition-coated (high-speed steel coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN)) drill bits. The hybrid sheets were deliberately incorporated to clarify how alternating basalt–glass architectures redistribute interlaminar stresses during drilling, while the hard, low-friction TiN and TiAlN ceramic coatings enhance cutting performance by forming a heat-resistant tribological barrier that lowers tool–workpiece adhesion, reduces interface temperature, and thereby suppresses thrust-induced delamination. Replacement of an uncoated, grind-coated, high-speed-steel drill (HSS-G) with the latter coats lowered the mechanical and thermal loads substantially: mean thrust fell from 79–94 N to 24–30 N, and peak workpiece temperatures from 112 °C to 74 °C. Accordingly, entry/exit oversize fell from 2.5–4.7% to under 0.6% and, from the surface, the SEM image displayed clean fiber severance rather than pull-out and matrix smear. By analysis of variance (ANOVA), 92.7% of the variance of thrust and 86.6% of that of temperature could be accounted for by the drill-bit factor, thus confirming that the coatings overwhelm the laminate structure and hybrid stacking simply redistribute, but cannot overcome, the former influence. Regression models and an artificial neural network optimized via meta-heuristic optimization foretold thrust, temperature and delamination with an R2 value of 0.94 or higher, providing an instant-screening device with which to explore industrial application. The work reveals TiAlN- and TiN-coated drills as financially competitive alternatives with which to achieve ±1% dimensional accuracy and minimum subsurface damage during multi-material composite machining. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

42 pages, 7458 KB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Cited by 1 | Viewed by 2054
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

22 pages, 4383 KB  
Article
High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
by Xia Zhang, Bo Xiao, Yongzhao Hou and Guangwu Wen
Materials 2025, 18(15), 3666; https://doi.org/10.3390/ma18153666 - 4 Aug 2025
Viewed by 474
Abstract
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize [...] Read more.
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize a branched siloxane via ring-opening polymerization. A subsequent hydrosilylation reaction led to the formation of polyvinylsiloxane with a three-dimensional crosslinked structure. The precursor exhibited excellent fluidity, adjustable viscosity, and superior thermosetting characteristics, enabling efficient impregnation and densification of reinforcements through the polymer infiltration and pyrolysis process. Upon pyrolysis, the polyvinylsiloxane gradually converted from an organic polymer to an amorphous inorganic ceramic phase, yielding silicon oxycarbide ceramics with a high ceramic yield of 81.3%. Elemental analysis indicated that the resulting ceramic mainly comprised silicon and oxygen, with a low carbon content. Furthermore, the material demonstrated a stable dielectric constant (~2.5) and low dielectric loss (<0.01), which are beneficial for enhanced thermal stability and dielectric performance. These findings offer a promising precursor system and process reference for the low-cost production of high-performance, multifunctional ceramic matrix composites with strong potential for engineering applications. Full article
(This article belongs to the Special Issue Processing and Microstructure Design of Advanced Ceramics)
Show Figures

Figure 1

5 pages, 195 KB  
Editorial
Functional Inorganic Biomaterials for Molecular Sensing and Biomedical Applications
by Nabanita Saikia
Inorganics 2025, 13(8), 260; https://doi.org/10.3390/inorganics13080260 - 4 Aug 2025
Viewed by 674
Abstract
Inorganic biomaterials comprise a broad array of materials that include metals, polymers, ceramics, and composites [...] Full article
Back to TopTop