Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = centronuclear myopathy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 185 KiB  
Brief Report
European EHBP1L1 Genotyping Survey of Dyserythropoietic Anemia and Myopathy Syndrome in English Springer Spaniels
by Sarah Østergård Jensen, Alexandra Kehl and Urs Giger
Vet. Sci. 2024, 11(12), 596; https://doi.org/10.3390/vetsci11120596 - 26 Nov 2024
Viewed by 1670
Abstract
Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an EHBP1L1 frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for [...] Read more.
Dyserythropoietic anemia and myopathy syndrome (DAMS) with neonatal losses was recently characterized as an autosomal recessive disorder caused by an EHBP1L1 frameshift variant in English Springer Spaniels (ESSPs). The frequency and dissemination of the mutation remained unknown. The EHBP1L1 protein is essential for muscle function, and the Rab8/10-EHBP1L1-Bin1-dynamin axis participates in nuclear polarization during the enucleation of erythroblasts. Lack of EHBP1L1 function decreases enucleation, leading to increased numbers of nucleated erythrocytes, which are characteristic of DAMS. A genotyping survey for the EHBP1L1 variant was conducted based upon submitted samples of ESSPs from Europe. DNA was extracted, and a real-time PCR assay, with allele-specific TaqMan probes for EHBP1L1 wild-type and frameshift deletion, was applied. Between September 2022 and August 2024, 803 samples were received from 18 European countries. The EHBP1L1 mutant allele frequency was 9.7%, including 4 homozygous dogs and 148 heterozygotes. The mutant EHBP1L1 allele was found in 13 countries. A total of 6 homozygous and 73 heterozygous ESSPs reported on an open database could be tracked to an original common ancestor. Although the survey is biased, it indicates that the mutant EHBP1L1 variant is disseminated in the breed and across Europe. The genotyping of ESSPs is recommended to diagnose DAMS and guide breeders. Full article
(This article belongs to the Section Veterinary Internal Medicine)
24 pages, 8603 KiB  
Article
CCDC78: Unveiling the Function of a Novel Gene Associated with Hereditary Myopathy
by Diego Lopergolo, Gian Nicola Gallus, Giuseppe Pieraccini, Francesca Boscaro, Gianna Berti, Giovanni Serni, Nila Volpi, Patrizia Formichi, Silvia Bianchi, Denise Cassandrini, Vincenzo Sorrentino, Daniela Rossi, Filippo Maria Santorelli, Nicola De Stefano and Alessandro Malandrini
Cells 2024, 13(17), 1504; https://doi.org/10.3390/cells13171504 - 8 Sep 2024
Viewed by 2404
Abstract
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family [...] Read more.
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. Methods: We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. Results: The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. Conclusions: Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4. Full article
Show Figures

Figure 1

26 pages, 4294 KiB  
Article
The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease
by Nathaniel P. Mohar, Efrem M. Cox, Emily Adelizzi, Steven A. Moore, Katherine D. Mathews, Benjamin W. Darbro and Lori L. Wallrath
Int. J. Mol. Sci. 2024, 25(9), 4930; https://doi.org/10.3390/ijms25094930 - 30 Apr 2024
Cited by 2 | Viewed by 2159
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb–Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to [...] Read more.
Mutations in the LMNA gene-encoding A-type lamins can cause Limb–Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes. Full article
Show Figures

Figure 1

13 pages, 2026 KiB  
Article
Prognostic Value of Genotype–Phenotype Correlations in X-Linked Myotubular Myopathy and the Use of the Face2Gene Application as an Effective Non-Invasive Diagnostic Tool
by Katarína Kušíková, Andrea Šoltýsová, Andrej Ficek, René G. Feichtinger, Johannes A. Mayr, Martina Škopková, Daniela Gašperíková, Miriam Kolníková, Karoline Ornig, Ognian Kalev, Serge Weis and Denisa Weis
Genes 2023, 14(12), 2174; https://doi.org/10.3390/genes14122174 - 3 Dec 2023
Cited by 2 | Viewed by 2431
Abstract
Background: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a [...] Read more.
Background: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory failure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve ambulation and adulthood. Notable facial dysmorphia is also present. Methods: We investigated the genotype–phenotype correlations in newly diagnosed XLMTM patients in a patients’ cohort (previously published data plus three novel variants, n = 414). Based on the facial gestalt difference between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene application. Results: Significant associations between severe phenotype and truncating variants (p < 0.001), frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were present. Missense variants were significantly associated with the mild and moderate phenotype (p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and unaffected controls (p = 0.001). Conclusions: Using genotype–phenotype correlations could predict the disease course in most XLMTM patients, but still with limitations. The Face2Gene application seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm. Full article
Show Figures

Figure 1

7 pages, 14512 KiB  
Case Report
A Possible Case of Centronuclear Myopathy: A Case Report
by Narjara Castillo-Ferrán, Juan Mario Junco-Rodriguez, Zurina Lestayo-O’Farrill, María de los Angeles Robinson-Agramonte, Zoilo Camejo-León, Héctor Jesús Gómez-Suárez, Mercedes Salinas-Olivares, Evelyn Antiguas-Valdez, Elizabeth Falcón-Lamazares and Dario Siniscalco
Medicina 2023, 59(6), 1112; https://doi.org/10.3390/medicina59061112 - 8 Jun 2023
Cited by 1 | Viewed by 2533
Abstract
Congenital myopathies (CMs) are a group of diseases that primarily affect the muscle fiber, especially the contractile apparatus and the different components that condition its normal functioning. They present as muscle weakness and hypotonia at birth or during the first year of life. [...] Read more.
Congenital myopathies (CMs) are a group of diseases that primarily affect the muscle fiber, especially the contractile apparatus and the different components that condition its normal functioning. They present as muscle weakness and hypotonia at birth or during the first year of life. Centronuclear CM is characterized by a high incidence of nuclei located centrally and internally in muscle fibers. Clinical case: a 22-year-old male patient with symptoms of muscle weakness since early childhood, with difficulty in performing physical activity according to his age, with the presence of a long face, a waddling gait, and a global decrease in muscle mass. Electromyography was performed, showing a neurogenic pattern and not the expected myopathic one, neuroconduction with reduced amplitude of the motor potential of the peroneal nerve and axonal and myelin damage of the posterior tibial nerves. The microscopic study of the studied striated muscle fragments stained with hematoxylin–eosin and Masson’s trichrome showed the presence of fibers with central nuclei, diagnosing CM. The patient meets most of the description for CM, with involvement of all striated muscles, although it is important to note the neurogenic pattern present in this case, due to the denervation of damaged muscle fibers, which contain terminal axonal segments. Neuroconduction shows the involvement of motor nerves, but with normal sensory studies, axonal polyneuropathy is unlikely, due to normal sensory potentials. Different pathological findings have been described depending on the mutated gene in this disease, but all coincide with the presence of fibers with central nuclei for diagnosis by this means, which is so important in institutions where it is not possible to carry out genetic studies, and allowing early specific treatment, according to the stage through which the patient passes. Full article
Show Figures

Figure 1

10 pages, 1917 KiB  
Case Report
X-Linked Myotubular Myopathy in a Female Patient with a Pathogenic Variant in the MTM1 Gene
by Polina Chausova, Aysylu Murtazina, Anna Stepanova, Artem Borovicov, Valeriia Kovalskaia, Nina Ryadninskaya, Alena Chukhrova, Oxana Ryzhkova and Aleksander Poliakov
Int. J. Mol. Sci. 2023, 24(9), 8409; https://doi.org/10.3390/ijms24098409 - 7 May 2023
Cited by 1 | Viewed by 2352
Abstract
X-linked centronuclear myopathy is caused by pathogenic variants in the MTM1 gene, which encodes myotubularin, a phosphatidylinositol 3-phosphate (PI3P) phosphatase. This form of congenital myopathy predominantly affects males. This study presents a case of X-linked myotubular myopathy in a female carrier of a [...] Read more.
X-linked centronuclear myopathy is caused by pathogenic variants in the MTM1 gene, which encodes myotubularin, a phosphatidylinositol 3-phosphate (PI3P) phosphatase. This form of congenital myopathy predominantly affects males. This study presents a case of X-linked myotubular myopathy in a female carrier of a pathogenic c.1261-10A>G variant in the MTM1 gene. Full article
(This article belongs to the Special Issue Genetic Basis and Epidemiology of Myopathies: 3rd Edition)
Show Figures

Figure 1

17 pages, 1872 KiB  
Article
Gain-of-Function Dynamin-2 Mutations Linked to Centronuclear Myopathy Impair Ca2+-Induced Exocytosis in Human Myoblasts
by Lucas Bayonés, María José Guerra-Fernández, Fernando Hinostroza, Ximena Báez-Matus, Jacqueline Vásquez-Navarrete, Luciana I. Gallo, Sergio Parra, Agustín D. Martínez, Arlek González-Jamett, Fernando D. Marengo and Ana M. Cárdenas
Int. J. Mol. Sci. 2022, 23(18), 10363; https://doi.org/10.3390/ijms231810363 - 8 Sep 2022
Cited by 4 | Viewed by 3878
Abstract
Gain-of-function mutations of dynamin-2, a mechano-GTPase that remodels membrane and actin filaments, cause centronuclear myopathy (CNM), a congenital disease that mainly affects skeletal muscle tissue. Among these mutations, the variants p.A618T and p.S619L lead to a gain of function and cause a severe [...] Read more.
Gain-of-function mutations of dynamin-2, a mechano-GTPase that remodels membrane and actin filaments, cause centronuclear myopathy (CNM), a congenital disease that mainly affects skeletal muscle tissue. Among these mutations, the variants p.A618T and p.S619L lead to a gain of function and cause a severe neonatal phenotype. By using total internal reflection fluorescence microscopy (TIRFM) in immortalized human myoblasts expressing the pH-sensitive fluorescent protein (pHluorin) fused to the insulin-responsive aminopeptidase IRAP as a reporter of the GLUT4 vesicle trafficking, we measured single pHluorin signals to investigate how p.A618T and p.S619L mutations influence exocytosis. We show here that both dynamin-2 mutations significantly reduced the number and durations of pHluorin signals induced by 10 μM ionomycin, indicating that in addition to impairing exocytosis, they also affect the fusion pore dynamics. These mutations also disrupt the formation of actin filaments, a process that reportedly favors exocytosis. This altered exocytosis might importantly disturb the plasmalemma expression of functional proteins such as the glucose transporter GLUT4 in skeletal muscle cells, impacting the physiology of the skeletal muscle tissue and contributing to the CNM disease. Full article
(This article belongs to the Special Issue Highlights in Pathophysiology of the Musculoskeletal System)
Show Figures

Figure 1

8 pages, 1387 KiB  
Case Report
Novel Splicing Mutation in MTM1 Leading to Two Abnormal Transcripts Causes Severe Myotubular Myopathy
by Luca Bosco, Daniela Leone, Laura Costa Comellas, Mauro Monforte, Marika Pane, Eugenio Mercuri, Enrico Bertini, Adele D’Amico and Fabiana Fattori
Int. J. Mol. Sci. 2022, 23(18), 10274; https://doi.org/10.3390/ijms231810274 - 7 Sep 2022
Cited by 2 | Viewed by 2294
Abstract
X-linked myotubular myopathy (XLMTM) is a severe form of centronuclear myopathy, characterized by generalized weakness and respiratory insufficiency, associated with pathogenic variants in the MTM1 gene. NGS targeted sequencing on the DNA of a three-month-old child affected by XLMTM identified the novel hemizygous [...] Read more.
X-linked myotubular myopathy (XLMTM) is a severe form of centronuclear myopathy, characterized by generalized weakness and respiratory insufficiency, associated with pathogenic variants in the MTM1 gene. NGS targeted sequencing on the DNA of a three-month-old child affected by XLMTM identified the novel hemizygous MTM1 c.1261-5T>G intronic variant, which interferes with the normal splicing process, generating two different abnormal transcripts simultaneously expressed in the patient’s muscular cells. The first aberrant transcript, induced by the activation of a cryptic splice site in intron 11, includes four intronic nucleotides upstream of exon 12, resulting in a shift in the transcript reading frame and introducing a new premature stop codon in the catalytic domain of the protein (p.Arg421SerfsTer7). The second aberrant MTM1 transcript, due to the lack of recognition of the 3′ acceptor splice site of intron 11 from the spliceosome complex, leads to the complete skipping of exon 12. We expanded the genotypic spectrum of XLMTM underlying the importance of intron–exons boundaries sequencing in male patients affected by XLMTM. Full article
(This article belongs to the Special Issue Genetic Basis and Epidemiology of Myopathies 2.0)
Show Figures

Figure 1

20 pages, 3139 KiB  
Article
EHBP1L1 Frameshift Deletion in English Springer Spaniel Dogs with Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) or Neonatal Losses
by Sarah Østergård Jensen, Matthias Christen, Veronica Rondahl, Christopher T. Holland, Vidhya Jagannathan, Tosso Leeb and Urs Giger
Genes 2022, 13(9), 1533; https://doi.org/10.3390/genes13091533 - 26 Aug 2022
Cited by 3 | Viewed by 5600
Abstract
Hereditary myopathies are well documented in dogs, whereas hereditary dyserythropoietic anemias are rarely seen. The aim of this study was to further characterize the clinical and clinicopathological features of and to identify the causative genetic variant for a dyserythropoietic anemia and myopathy syndrome [...] Read more.
Hereditary myopathies are well documented in dogs, whereas hereditary dyserythropoietic anemias are rarely seen. The aim of this study was to further characterize the clinical and clinicopathological features of and to identify the causative genetic variant for a dyserythropoietic anemia and myopathy syndrome (DAMS) in English springer spaniel dogs (ESSPs). Twenty-six ESSPs, including five dogs with DAMS and two puppies that died perinatally, were studied. Progressive weakness, muscle atrophy—particularly of the temporal and pelvic muscles—trismus, dysphagia, and regurgitation due to megaesophagus were observed at all ages. Affected dogs had a non-regenerative, microcytic hypochromic anemia with metarubricytosis, target cells, and acanthocytes. Marked erythroid hyperplasia and dyserythropoiesis with non-orderly maturation of erythrocytes and inappropriate microcytic metarubricytosis were present. Muscle biopsies showed centralized nuclei, central pallor, lipocyte infiltrates, and fibrosis, which was consistent with centronuclear myopathy. The genome sequencing of two affected dogs was compared to 782 genomes of different canine breeds. A homozygous frameshift single-base deletion in EHBP1L1 was identified; this gene was not previously associated with DAMS. Pedigree analysis confirmed that the affected ESSPs were related. Variant genotyping showed appropriate complete segregation in the family, which was consistent with an autosomal recessive mode of inheritance. This study expands the known genotype–phenotype correlation of EHBP1L1 and the list of potential causative genes in dyserythropoietic anemias and myopathies in humans. EHBP1L1 deficiency was previously reported as perinatally lethal in humans and knockout mice. Our findings enable the genetic testing of ESSP dogs for early diagnosis and disease prevention through targeted breeding strategies. Full article
(This article belongs to the Special Issue Advances in Canine Genetics)
Show Figures

Figure 1

7 pages, 1864 KiB  
Article
An EHPB1L1 Nonsense Mutation Associated with Congenital Dyserythropoietic Anemia and Polymyopathy in Labrador Retriever Littermates
by G. Diane Shelton, Katie M. Minor, Ling T. Guo, Alison Thomas-Hollands, Koranda A. Walsh, Steven G. Friedenberg, Jonah N. Cullen and James R. Mickelson
Genes 2022, 13(8), 1427; https://doi.org/10.3390/genes13081427 - 11 Aug 2022
Cited by 5 | Viewed by 2387
Abstract
In this report, we describe a novel genetic basis for congenital dyserythropoietic anemia and polymyopathy in Labrador Retriever littermates characterized by incidental detection of marked microcytosis, inappropriate metarubricytosis, pelvic limb weakness and muscle atrophy. A similar syndrome has been described in English Springer [...] Read more.
In this report, we describe a novel genetic basis for congenital dyserythropoietic anemia and polymyopathy in Labrador Retriever littermates characterized by incidental detection of marked microcytosis, inappropriate metarubricytosis, pelvic limb weakness and muscle atrophy. A similar syndrome has been described in English Springer Spaniel littermates with an early onset of anemia, megaesophagus, generalized muscle atrophy and cardiomyopathy. Muscle histopathology in both breeds showed distinctive pathological changes consistent with congenital polymyopathy. Using whole genome sequencing and mapping to the CanFam4 (Canis lupus familiaris reference assembly 4), a nonsense variant in the EHBP1L1 gene was identified in a homozygous form in the Labrador Retriever littermates. The mutation produces a premature stop codon that deletes approximately 90% of the protein. This variant was not present in the English Springer Spaniels. Currently, EHPB1L1 is described as critical to actin cytoskeletal organization and apical-directed transport in polarized epithelial cells, and through connections with Rab8 and a BIN1-dynamin complex generates membrane vesicles in the endocytic recycling compartment. Furthermore, EHBP1L1 knockout mice die early and develop severe anemia. The connection of EHBP1L1 to BIN1 and DMN2 functions is particularly interesting due to BIN1 and DMN2 mutations being causative in forms of centronuclear myopathy. This report, along with an independent study conducted by another group, are the first reports of an association of EHBP1L1 mutations with congenital dyserythropoietic anemia and polymyopathy. Full article
(This article belongs to the Special Issue Advances in Canine Genetics)
Show Figures

Figure 1

14 pages, 1930 KiB  
Review
Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants
by Kenshiro Fujise, Satoru Noguchi and Tetsuya Takeda
Int. J. Mol. Sci. 2022, 23(11), 6274; https://doi.org/10.3390/ijms23116274 - 3 Jun 2022
Cited by 14 | Viewed by 4431
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and [...] Read more.
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis. Full article
(This article belongs to the Special Issue Myogenesis and Muscular Disorders)
Show Figures

Figure 1

9 pages, 2984 KiB  
Communication
Dilated-Left Ventricular Non-Compaction Cardiomyopathy in a Pediatric Case with SPEG Compound Heterozygous Variants
by Hager Jaouadi, Fedoua El Louali, Chloé Wanert, Aline Cano, Caroline Ovaert and Stéphane Zaffran
Int. J. Mol. Sci. 2022, 23(9), 5205; https://doi.org/10.3390/ijms23095205 - 6 May 2022
Cited by 2 | Viewed by 2337
Abstract
Left Ventricular Non-Compaction (LVNC) is defined by the triad prominent myocardial trabecular meshwork, thin compacted layer, and deep intertrabecular recesses. LVNC associated with dilation is characterized by the coexistence of left ventricular dilation and systolic dysfunction. Pediatric cases with dilated-LVNC have worse outcomes [...] Read more.
Left Ventricular Non-Compaction (LVNC) is defined by the triad prominent myocardial trabecular meshwork, thin compacted layer, and deep intertrabecular recesses. LVNC associated with dilation is characterized by the coexistence of left ventricular dilation and systolic dysfunction. Pediatric cases with dilated-LVNC have worse outcomes than those with isolated dilated cardiomyopathy and adult patients. Herein, we report a clinical and genetic investigation using trio-based whole-exome sequencing of a pediatric case with early-onset dilated-LVNC. Compound heterozygous mutations were identified in the Striated Muscle Enriched Protein Kinase (SPEG) gene, a key regulator of cardiac calcium homeostasis. A paternally inherited mutation: SPEG; p.(Arg2470Ser) and the second variant, SPEG; p.(Pro2687Thr), is common and occurred de novo. Subsequently, Sanger sequencing was performed for the family in order to segregate the variants. Thus, the index case, his father, and both sisters carried the SPEG: p.(Arg2470Ser) variant. Only the index patient carried both SPEG variants. Both sisters, as well as the patient’s father, showed LVNC without cardiac dysfunction. The unaffected mother did not harbor any of the variants. The in silico analysis of the identified variants (rare and common) showed a decrease in protein stability with alterations of the physical properties as well as high conservation scores for the mutated residues. Interestingly, using the Project HOPE tool, the SPEG; p.(Pro2687Thr) variant is predicted to disturb the second fibronectin type III domain of the protein and may abolish its function. To our knowledge, the present case is the first description of compound heterozygous SPEG mutations involving a de novo variant and causing dilated-LVNC without neuropathy or centronuclear myopathy. Full article
(This article belongs to the Special Issue Calcium Handling)
Show Figures

Figure 1

47 pages, 3643 KiB  
Review
Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances
by Raquel Gómez-Oca, Belinda S. Cowling and Jocelyn Laporte
Int. J. Mol. Sci. 2021, 22(21), 11377; https://doi.org/10.3390/ijms222111377 - 21 Oct 2021
Cited by 42 | Viewed by 7896
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding [...] Read more.
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets. Full article
(This article belongs to the Special Issue Muscular Structure, Physiology and Metabolism)
Show Figures

Figure 1

13 pages, 5824 KiB  
Review
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease
by Shiyu Luo, Samantha M. Rosen, Qifei Li and Pankaj B. Agrawal
Int. J. Mol. Sci. 2021, 22(11), 5732; https://doi.org/10.3390/ijms22115732 - 27 May 2021
Cited by 14 | Viewed by 5150
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and [...] Read more.
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders. Full article
Show Figures

Figure 1

Back to TopTop