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Abstract: Background: X-linked myotubular myopathy (XLMTM) is a rare congenital myopathy
resulting from dysfunction of the protein myotubularin encoded by the MTM1 gene. XLMTM has a
high neonatal and infantile mortality rate due to a severe myopathic phenotype and respiratory fail-
ure. However, in a minority of XLMTM cases, patients present with milder phenotypes and achieve
ambulation and adulthood. Notable facial dysmorphia is also present. Methods: We investigated
the genotype–phenotype correlations in newly diagnosed XLMTM patients in a patients’ cohort
(previously published data plus three novel variants, n = 414). Based on the facial gestalt difference
between XLMTM patients and unaffected controls, we investigated the use of the Face2Gene applica-
tion. Results: Significant associations between severe phenotype and truncating variants (p < 0.001),
frameshift variants (p < 0.001), nonsense variants (p = 0.006), and in/del variants (p = 0.036) were
present. Missense variants were significantly associated with the mild and moderate phenotype
(p < 0.001). The Face2Gene application showed a significant difference between XLMTM patients and
unaffected controls (p = 0.001). Conclusions: Using genotype–phenotype correlations could predict
the disease course in most XLMTM patients, but still with limitations. The Face2Gene application
seems to be a practical, non-invasive diagnostic approach in XLMTM using the correct algorithm.

Keywords: MTM1 gene; myotubularin; X-linked myotubular myopathy; centronuclear myopathy;
genotype–phenotype correlations; DeepGestalt technology; Face2Gene application

1. Introduction

Myotubularin (MTM1), a protein of 603 amino acids, is a member of the myotubularin
superfamily. It functions as an endosomal lipid phosphatase, which acts, for example, on
phosphatidylinositol 3-phosphate, a crucial lipid in the intracellular signaling pathway. It
regulates intracellular membrane trafficking and vesicular transport processes, particu-
larly in the myocytes of skeletal muscles [1–3]. Myotubularin constitutes four conserved
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functional domains: (1) PH-GRAM (Pleckstrin Homology-Glucosyltransferase, Rab-like
GTPase Activator, and Myotubularin) from amino acid 29 to 160 of MTM1, which plays a
crucial role in targeting the various myotubularins to a specific intracellular compartment;
(2) RID (Rac1-Induced recruitment Domain) from position 161 to 272, which is unnecessary
in the recruitment of the MTM1 protein to the plasma membrane; (3) PTP/DSP (Protein
Tyrosine Phosphatase/Dual-Specificity Phosphatase) from position 273 to 471, which de-
phosphorylates phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol
3,5-bisphosphate (PtdIns(3,5)P2) into phosphatidylinositol (PtdIns) and phosphatidylinos-
itol 5-phosphate (PtdIns5P), respectively; and (4) SID (SET-protein Interaction Domain)
from position 435 to 486, where interaction between the SID domain of myotubularins and
proteins with a SET domain could regulate the expression of some genes. These four func-
tional domains of the MTM1 protein are followed by a C-terminal coiled-coil motif and a
PDZ binding domain [3]. Myotubularin is encoded by the MTM1 gene (MIM * 300415, gene
locus Xq28), composed of 15 exons [4], while the start codon is located in exon 2. To date,
more than 590 variants (LOVD database https://www.lovd.nl/ (accessed on 1 November
2023), from which more than 530 are classified as pathogenic and likely pathogenic) have
been found in the MTM1 gene, distributed throughout the MTM1 gene, with some recurrent
variants but no unambiguous hotspots in the gene.

Mutations in the MTM1 gene lead to congenital myopathy called X-linked myotubular
myopathy (XLMTM, MIM # 310400, ORPHA: 596) as a subtype of centronuclear myopathies
group, first described in 1966 by Spiro et al. [5]. XLMTM is inherited in an X-linked recessive
manner, and its prevalence is 1:50,000 in males [6]. Three clinical forms of XLMTM have
been classified as severe, moderate, and mild according to the severity of the disease course:
achieving the milestones, ambulation, and ventilatory support needed [7–9]. In most
cases (more than 80%), XLMTM presents in the neonatal period, typically immediately
after birth, by severe global hypotonia (floppy infant), hypo- to areflexia, and different
degrees of respiratory insufficiency. Weak fetal movements and polyhydramnios can be
present even prenatally. Miscarriages or stillbirths also occur. In early infancy (in the
first year of life), 25% of patients die due to respiratory failure [10], and 48% of patients
die by 18 months of age [8]. However, some XLMTM patients achieve respiratory and
ambulatory independence and adulthood. Gene therapy in XLMTM is under investigation,
and symptomatic treatment remains the standard [11]; early diagnosis is therefore essential.

The majority of XLMTM patients have characteristic facial features (myopathic facies,
uni- or bilateral ptosis, dolichocephaly with a high forehead and long face, midface hy-
poplasia, and a narrow, high-arched palate with malocclusion), becoming more pronounced
with age, a birth length above the 97th percentile, long hands, feet, and fingers, as well as a
rare condition called peliosis hepatis in up to 5% of individuals [7,10–12]. Thanks to the
typical histopathological picture, relatively low costs, and quick results, invasive muscle
biopsy has, for a long time, been considered a standard diagnostic method. However, the
innovative non-invasive approach of applying DeepGestalt technology to facial features in
the diagnosis of XLMTM has not yet been investigated.

As mentioned, some XLMTM patients achieve respiratory and ambulatory indepen-
dence and adulthood, contrasting with high neonatal and infantile mortality rates. This
phenotype variability logically led to questions about genotype and resulting phenotype.
Several studies focusing on evaluating genotype–phenotype correlations have been pub-
lished [8,9,13,14], but these correlations remain unclear.

Our study aimed to introduce a new perspective on genotype–phenotype correlations
and reconsider their predictive value in the XLMTM disease course based on data obtained
from databases published over more than 20 years, supported by statistical processing,
as well as expansion of the MTM1 mutational spectrum by three novel disease-causing
variants identified in our patients. Considering the typical facial features, using DeepGestalt
technology [15] via the Face2Gene application (FDNA, Inc., Boston, MA, USA), we aimed
to determine its relevance in a non-invasive diagnostic approach in XLMTM patients,
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and whether it has a potential to replace the invasive muscle biopsy as the investigation
supplementary to genetic testing in the future.

2. Subjects and Methods
2.1. Subjects Involved in the Statistical Analysis

For the selection of subjects involved in the present analysis, we used already pub-
lished data obtained retrospectively from the PubMed® database, searched using the
following keywords: myotubularin, MTM1 gene, X-linked myotubular myopathy, XLMTM,
X-linked centronuclear myopathy (XLCNM), and genotype–phenotype correlations in
XLMTM/XLCNM (n = 411). In our study, we included only index male subjects (from un-
related families), with disease-causing variants identified in the MTM1 gene and specified
XLMTM phenotype (see Section 2.2 below). Data were expanded by three novel MTM1
variants detected in patients P1–P4 from our in-house database (Figure 1).
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Figure 1. Genotype–phenotype correlations: methodologic flow chart. We included N = 411 already
published cases (index patients with defined genotype and phenotype) and N = 3 novel variants
from our in-house database with defined phenotypes. All index cases (N = 414) were statistically
processed using Fisher’s exact test.

2.2. Phenotype Severity

All involved subjects had a specified XLMTM phenotype, classified according to [7–9]
into three groups, presented as: (1) “S”—severe (classic) phenotype with characteris-
tic facial features, long-term ventilator dependence more than 12 h per day, delayed
gross motor milestones, no independent ambulation, and high mortality rate in infancy;
(2) “Mo”—moderate (intermediate) phenotype with less severe motor delay, prolonged
periods of decreased ventilation support, at least 6 to 8 h per day without ventilatory
support [7], or more than 12 h without ventilator support per day [9]; and (3) “Mi”—mild
phenotype with minimal motor delay, and the lack of a need for mechanical ventilation,
independent spontaneous respiratory function beyond the newborn period, and no or
limited impact of the life span. Cases collected by Laport et al. (2000) were classified only
into two groups: (1) “S”—severe subjects with classic phenotype; and (2) “M”—mild or
moderate subjects who are long-term survivors without heavy ventilator assistance [16].
This fact was taken into account during statistical processing.

2.3. Variant Evaluation

Variants reported in already published XLMTM patients were considered as disease-
causing and missense variants were tested in silico using the PredictSNP tool (combination
of MAPP, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT, and SNAP tools) [17] to prove their
pathogenicity. Classification of the three novel MTM1 variants (from our in-house database)
was performedfollowingthe consensus recommendations of the American College of Med-
ical Genetics [18]. All collected variants were grouped according to their location in the
MTM1 gene (in the exon or intron and MTM1-specific functional domain: PH-GRAM, RID,
PTP/DSP, and SID), variant type, and their impact on the resulting protein (truncating or
non-truncating), and predicted to escape or undergo nonsense-mediated mRNA decay.
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2.4. Facial Gestalt Analysis

We used DeepGestalt technology [15] via the Face2Gene application (FDNA, Inc.,
Boston, MA, USA), for facial dysmorphology comparison. In the facial gestalt analysis, we
only enrolled patients with appropriate photo quality. Each cohort had to comprise at least
ten photos. We selected four patient cohorts: (1) a cohort of XLMTM patients (14 patients);
(2) a cohort of Myotonic dystrophy type 1 (MD1) patients, whose facial features, in our
opinion, were most similar to XLMTM (10 patients); (3) a cohort of overall neuromuscular
disorders (NMD patients: other congenital myopathies and muscle dystrophies, except
XLMTM patients, 21 patients in total); and (4) a cohort of unaffected controls (11 patients).
Healthy controls showed no obvious dysmorphia and were never suspected of 0having any
genetic syndrome. We compared all cohorts with each other and the cohort of 11 healthy
individuals in a binary comparison and as composite photos. A mean area under the
curve (AUC) value was generated in the binary comparison, representing the degree of
discrimination between the cohorts. The mean AUC ranged between 0 and 1, where
0 means incorrectly classified cohorts, 0.5 indicates random classifications, and 1 represents
perfect separation between the cohorts. The p-value describes the accuracy of the binary
comparison; p < 0.05 was considered statistically significant, indicating that the Face2Gene
application can distinguish between the two cohorts.

2.5. Statistical Analysis of Genotype–Phenotype Correlations

For statistical evaluation, we used IBM SPSS version 28.0.1 Statistics software. For
genotype–phenotype correlation: phenotype vs. protein truncation, phenotype vs. mu-
tation type, phenotype vs. MTM1-specific functional domain, phenotype vs. nonsense-
mediated mRNA decay, i.e., categorical variables, we used Fisher’s exact test.

3. Results
3.1. Novel Variants in the MTM1 Gene

We identified three novel MTM1 variants in our patients P1–P3 (Figure 2A). All pa-
tients presented a severe (classic) XLMTM phenotype. The hemizygous frameshift variant
c.438_439delCA (p.His146Glnfs*10) in exon 6, found in P1, was evaluated as pathogenic.
The hemizygous variant c.(342+1_343-1)_(444+1_445-1)del; p.(Asp115_Leu148del), which
represents an in-frame exon 6 deletion, detected in P2, and the hemizygous variant
c.(1053+1_1054-1)_(1467+1_1468-1)del; p.(Leu352_Gln489del), which represents an in-frame
deletion of exons 11–13, found in P3 and his brother P4, were classified as likely pathogenic
(Table 1). In P2 and P3, the pathogenicity of these variants was proved by histopathologic
and immunohistochemical evaluation of the vastus lateralis muscle biopsy sample (for
more details, see the Supplementary Materials).

Table 1. Three novel variants in the MTM1 gene.

Patient
ID

Ancestry
(Ethnicity) MTM1 Variant Type Exon Domain ACMG

Classification Origin Phenotype

P1/F1
M

Slovakia
(Caucasian)

c.438_439delCA
(p.His146Glnfs*10) Frameshift ex6 PH-GRAM Pathogenic Maternal Severe

P2/F2
M

Austria
(Caucasian)

c.(342+1_343-
1)_(444+1_445-1)del

p.(Asp115_Leu148del)

In-frame
deletion ex6 PH-GRAM Likely

pathogenic Maternal Severe

P3/F3
M

Austria
(Caucasian)

c.(1053+1_1054-
1)_(1467+1_1468-1)del;
p.(Leu352_Gln489)del

In-frame
deletion ex11-13 PTP/DSP-SID Likely

pathogenic Maternal Severe

P4/F3
M

Austria
(Caucasian)

c.(1053+1_1054-
1)_(1467+1_1468-1)del;
p.(Leu352_Gln489)del

In-frame
deletion ex11-13 PTP/DSP-SID Likely

pathogenic Maternal Severe

Abbreviations: P—patient, F—family, M—male, ex—exon.
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Figure 2. Gene structure, variant distribution, and phenotype severity proportion. (A) MTM1 gene:
gene structure and three novel variants identified in Patients 1–4 (P1–P4); (B) distribution of the
disease-causing variants: n = 385 variants (except large deletions, n = 29) within the MTM1 gene;
(C) phenotype severity proportion: (n = 414). Abbreviations: In—intron, Ex—exon.

3.2. XLMTM Cohort: Variants Type and Their Distribution

We collected 414 index cases (411 published cases so far and 3 novel variants from our
in-house database); 192 variants (78.4%) in the MTM1 gene occurred only once, whereas
53 variants (21.6%) occurred twice or more. All collected variants are summarized in the
Supplementary Table S1.

3.2.1. Exonic and Intronic Variants

Of 385 variants (except large deletions n = 29), 307 variants (79.7%) were located in
exons, and 78 (20.3%) were situated in introns. More than half (53.7%) were located in exon
8 (n = 55; 14.3%), exon 4 (n = 48; 12.5%), exon 9 (n = 41; 10.6%), exon 11 (n = 36; 9.3%), and
intron 11 (n = 27; 7%). Among other represented exons are: exon 12 (n = 22; 5.7%), exons 3
and 13 (each n = 21; 5.4%), and exon 14 and 11 (each n = 17; 4.4%) (Figure 2B).
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3.2.2. Variants in the MTM1-Specific Functional Domain

Most variants were located in the MTM1-specific functional domain (n = 276, 66.7%):
100 variants (24.1%) were located in the RID domain; 85 variants (20.5%) in the PH-GRAM
domain; 64 variants (15.5%) in the PTP/DSP domain; 15 variants (3.4%) in the SID domain;
and 12 variants (2.9%) in both the PTP/DSP and SIDdomains. In total, 138 variants (33.3%)
were located outside of the specific domain.

3.2.3. Truncating Effect and Nonsense-Mediated mRNA Decay

A total of 188 variants (45.4%) were identified as truncating and 133 (32.1%) were
categorized as non-truncating. For 93 variants it was not possible to define final protein
truncation. Nonsense-mediated mRNA decay was associated with 129 variants (31.2%), in
24 not (5.8%).

3.2.4. Phenotype Severity and Variant Types

The severe phenotype was present in 330 (79.7%) subjects, moderate in 19 (4.6%),
mild in 32 (7.7%), and a combination of mild and moderate phenotype in 33 (8%) subjects
(Figure 2C). Of 414 variants, the most frequent variants were missense (n = 137, 33.1%),
frameshift (n = 85, 20.5%), and nonsense variants (n = 70, 16.9%). Of the 137 missense
variants, 87 (63.5%) were located in a functional domain, as follows: PH-GRAM 15 variants
(17.2%), RID 42 variants (48.3%), PTP/DSP 25 variants (28.7%), PTP/DSP/SID 4 variants
(4.6%), and SID 1 variant (1.2%). Of all 137 missense variants, 75 variants (54.7%) were
associated with the severe phenotype, and the remaining (n= 62; 45.3%) with the mild
to moderate phenotype. Less common were intronic variants (n = 45, 10.9%), splicing
variants (n = 32, 7.7%), large deletions (n = 29, 7.0%), in/del variants (n = 13, 3.1%), variants
affecting codon initiation (n = 2, 0.5%), and silent variants (n = 1, 0.2%). 209 variants
(63.5%) associated with severe phenotype were located in the specific domain: PH-GRAM
63 variants (30.1%), RID 71 variants (34%), PTP/DSP 50 variants (23.9%), PTP/DSP/SID
11 variants (5.3%), and SID 14 variants (6.7%).

3.2.5. Recurrent Variants in the MTM1 Gene

The most frequent variants were c.1261-10A>G in intron 11 (n = 26), missense vari-
ant c.721C>T, p.(Arg241Cys) in exon 9 and the RID domain (n = 13), missense variant
c.205C>T, p.(Arg69Cys) in exon 4 and the PH-GRAM domain (n = 12), frameshift variant
c.141_144del, p.(Glu48Leufs*24) in exon 4 and the PH-GRAM domain (n = 10); nonsense
variant c.109C>T, p.(Arg37*) in exon 3 and the PH-GRAM domain (n = 9), missense variant
c.614C>T, p.(Pro205Leu) in exon 8 and the RID domain (n = 9), and missense variant
c.1262G>A, p.(Arg421Gln) in exon 12 and the PTP/DSP domain (n = 8).

3.2.6. Inter-Individual Phenotype Variability

In the cohort of 414 unrelated subjects, we found 53 variants (21.6%) occurring more
than once. In 13 variants, we observed inter-individual variability, where phenotype varied
from mild to severe in the case of the same mutation (Table 2).

3.3. Genotype–Phenotype Correlations

For genotype–phenotype correlations, we used Fisher’s exact test. We found that 95.2%
of all truncating variants were associated with severe phenotype; this association was highly
significant (p < 0.001). Focusing on variant type vs. phenotype, we found that frameshift
variants were significantly associated with the severe phenotype (p < 0.001), as well as
nonsense variants (p = 0.006) and deletions/insertions (p = 0.036). On the other hand,
missense variants were significantly associated with the mild and moderate phenotype
(p < 0.001) compared with the other variants vs. the mild and moderate phenotype. We
found no significant association between phenotype and MTM1-specific functional domain,
as well as phenotype and nonsense-mediated mRNA decay (Figure 3A–D).
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Table 2. Recurrent disease-causing variants in MTM1 gene with inter-individual phenotype variability
in the XLMTM cohort (n = 414).

Variant Type Exon/intron Domain Count Phenotype Reference

c.98_103del, p.(Glu33_Ala34del) Deletion ex3 PH-GRAM 2 1S/1Mi [19,20]

c.109C>T, p.(Arg37 *) Nonsense ex3 PH-GRAM 9 8S/1Mo [21–26]

c.139_141del, p.(Lys47del) Deletion ex4 PH-GRAM 5 4S/1Mo [23,25,27,28]

c.142G>T, p.(Glu48 *) Nonsense ex4 PH-GRAM 2 1S/1Mo [7,29]

c.205C>T, p.(Arg69Cys) Missense ex4 PH-GRAM 12 2S/1Mo/6M/3Mi [16,19,20,24,30]

c.232-26_232-23del Intronic in4 - 2 1S/1Mo [19,31]

c.590C>T, p.(Thr197Ile) Missense ex8 RID 3 1S/1Mo/1Mi [16,20]

c.614C>T, p.(Pro205Leu) Missense ex8 RID 9 8S/1Mi [19,22–24,29]

c.679G>A, p.(Val227Met) Missense ex9 RID 3 1S/1M/1Mi [16,19,24]

c.695A>G, p.(His232Arg) Missense ex9 RID 2 1S/1Mo [19,29]

c.721C>T, p.(Arg241Cys) Missense ex9 RID 13 3S/1Mo/5M/4Mi [16,19,25,26,28,29]

c.1262G>A, p.(Arg421Gln) Missense ex12 PTP/DSP 8 7S/1M [16,23–25,30]

c.1558C>T, p.(Arg520 *) Nonsense ex14 - 3 1S/2M [16,18]

Abbreviations: in—intron, ex—exon, S—severe, Mo—moderate, M—mild and moderate [16], Mi—mild. * stop codon.
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Figure 3. Genotype–phenotype correlations in XLMTM. (A) Type of disease-causing variant in the
MTM1 gene vs. phenotype: frameshift, nonsense, and in/del variants are significantly associated with
a severe phenotype, as well as missense variants significantly correlating with the mild or moderate
phenotype; (B) truncation vs. phenotype: truncating variants are significantly associated with the
severe phenotype; (C) MTM1-specific domain vs. phenotype: there is no significant difference
between specific domain and phenotype severity; and (D) nonsense-mediated mRNA decay (NMD)
vs. phenotype: there is no significant difference between nonsense-mediated mRNA decay and
phenotype severity.

3.4. Facial Gestalt Analysis

Face2Gene software identified significant differences between XLMTM patients and
unaffected controls (p = 0.001) (Figure 4) and between unaffected controls and NMD patients
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(p = 0.023). Some differences in facial gestalt could also be observe between XLMTM and
MD1 patients and XLMTM patients and other NMD patients, but these were not statistically
significant (see Table 3).
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Table 3. Binary comparison of the facial features of XLMTM patients, MD1 patients, NMDs patients,
and healthy controls using the Face2Gene application.

Binary Comparison No. of Cases Mean AUC AUC SD p Value for AUC

XLMTM vs. Unaffected 14 vs. 11 1.00 0.01 0.001

XLMTM vs. MD1 14 vs. 10 0.88 0.07 0.074

XLMTM vs. NMDs 14 vs. 11 0.63 0.09 0.229

Unaffected vs. NMDs 11 vs. 11 0.99 0.02 0.023
Abbreviations: AUC: area under the curve, SD: standard deviation, XLMTM: a cohort of X-linked myotubular
myopathy patients, MD1: a cohort of patients with myotonic dystrophy type 1, NMDs: a cohort of overall patients
with neuromuscular disorder except XLMTM. A p-value < 0.05 represents a high degree of discrimination.

4. Discussion

X-linked myotubular myopathy (XLMTM) is a rare neuromuscular disorder associ-
ated with a high rate of neonatal and infantile mortality in patients by 18 months of age
(approximately46% of all XLMTM cases) based on the severe myopathic phenotype [8].
In our opinion, the percentage of mortality is underestimated because not all cases of
abortion, stillbirth, or early death of newborns are genetically investigated in the sense of
congenital myopathy. For that reason, and due to the high risk of recurrence in the family,
the early recognition of XLMTM is essential. On the other hand, the possible prediction of
the prognosis and further disease course in newly diagnosed XLMTM patients seems to be
a contributing factor; genotype–phenotype correlations could be one of these non-invasive
prognostic tools.

Our study is the most extensive genotype–phenotype comparison in XLMTM, and
expands the spectrum of known variants in the MTM1 gene. Using the PubMed® database
plus three novel variants, we selected an XLMTM cohort of 414 index subjects with 245 dif-
ferent disease-causing variants. All subjects involved were males from unrelated families.
Female subjects were excluded due to different disease manifestations resulting from
X-linked inheritance (asymptomatic or milder phenotype in females, resulting not only
from mutation type, but also due to different degrees of skewed X chromosome inactiva-
tion) [21,32].

In our study, the majority of variants in the MTM1 gene were associated with the severe
(classic) form of XLMTM (79.7%), following already published data [8,10]. According to the



Genes 2023, 14, 2174 9 of 13

previously published studies focusing on phenotype correlations with the type of variant
(truncating vs. non-truncating) [8], it seems that truncating variants as nonsense, frameshift,
and large deletions almost always lead to severe (classic) XLMTM phenotype, while non-
truncating variants such as splice site, intronic variants, as well as missense variants are
associated with the milder phenotype in the minority of cases [9,13,14]. These studies were
based on data from cohorts of n = 116 males [8] and n = 146 males [9]. According to the
data from the n = 414 male subjects involved in our study, we can assume that truncating
variants as frameshift, nonsense, and in/del variants are significantly associated with the
severe phenotype. Missense variants are significantly associated with the moderate or mild
phenotype. Thanks to this finding, we can suppose better outcomes in individuals affected
by missense variants.

In our cohort, missense variants are the most common changes in the MTM1 gene
(n = 137, 33.1%). According to Oliveira et al. (2013), who centered their analysis on missense
variants using data from the LOVD database, it was suggested that missense variants are
not randomly scattered in the protein because 96% of them are located in myotubularin
regions with a known function (i.e., functional domains), in contrast to 59% of nonsense
variants [9]. In our study, only 63.5% (n = 87/137) of missense variants and 82.8% of
nonsense variants (n = 58/70) were located in the specific functional domains, which, in
the case of missense variants, corresponds to a sequence of functional domains, i.e., 71% of
the length of the total MTM1 protein sequence [9]. We conclude a random scatter of the
missense variants in the MTM1 protein.

Large deletions are, in almost all cases, associated with severe phenotypes. One
exception in our dataset represents the deletion of the entire exon 15 reported by Tanner
et al. (1999), associated with the mild XLMTM phenotype. This phenomenon could be
explained by the fact that exon 15 is located at the end of the MTM1 gene, representing less
vital regions of the gene [29]. This observation could be supported by other mild phenotype
frameshift variants in exon 15 [7]. No other pathogenic variants in exon 15 have been found
(LOVD database https://www.lovd.nl/ (accessed on 1 November 2023)). In conclusion,
large deletions, except for the isolated deletion of exon 15, are associated with a severe
phenotype in all cases.

According to [9,13,14], domain-specific correlations show that mutations in PTP/DSP,
SET, and RID domains are almost always associated with severe (classic) phenotypes.
However, variants outside these domains are more likely to be associated with a moderate
or mild phenotype. Pathogenic variants in PTP/DSP domains should be significantly
associated with severe phenotypes due to the crucial enzyme activity (dephosphorylation
of PtdIns3P and PtdIns(3,5)P2 into PtdIns and PtdIns5P, respectively). However, our
study did not find any significant association between phenotype and the MTM1-specific
functional domain, nor between phenotype and nonsense-mediated mRNA decay.

To date, more than 590 variants (LOVD database https://www.lovd.nl/ (accessed
on 1 November 2023), from which more than 530 are classified as pathogenic and likely
pathogenic) have been found in the MTM1 gene. Considering that the variants detected
in the MTM1 gene are, in a high percentage, pathogenic or likely pathogenic (more than
90%), it can be assumed that every patient in whom a variant in the MTM1 gene is detected
deserves special attention, and detailed clinical evaluation in the context of XLMTM in
males as well as in female probands is appropriate.

We found that from 385 point disease-causing variants in the MTM1 gene, more than
half (53.7%) are located in exon 8, exon 4, exon 9, exon 11, and intron 11. This high number
of pathogenic variants found in these exons could be explained by their length without other
known explanations or correlation. Some variants in the MTM1 gene occur more than once.
Tsai et al. (2005) described a potential hotspot: the recurrent pathogenic intronic variant
c.1261-10A>G in a Japanese XLMTM cohort [22]. In the present cohort, we observed this
variant 26 times, and according to our findings, it is the most frequently occurring variant
in the MTM1 gene, in all cases associated with the severe (classic) XLMTM phenotype.

https://www.lovd.nl/
https://www.lovd.nl/
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Inter-individual variability (phenotype from classic to mild form), as well as between
members of the same family, have previously been described: two families were diag-
nosed according to clinical examination and the histopathological findings in the biopsied
muscle of affected individuals [33] in the three-generation family with variant c.540T>G,
p.(Asn180Lys) [23], and a very mild phenotype in the grandfather with pathogenic variant
c.1210G>A, p.(Glu404Lys), with the more severe phenotype in his grandson [34]. Bertazzi
et al. (2014) described patients’ disease-causing variants affecting the PH-GRAM domain
and their association with XLMTM phenotype severity [3]. While the variant p.(Val49Phe)
was associated with a two-fold decrease in phosphatase activity, p.(Arg69Cys) displays
wild-type phosphatase activity [35]. Our data show that the first patient is associated with
the severe phenotype [24], but we collected 12 subjects with variant p.(Arg69Cys) with
phenotypes varying from mild to severe. What causes inter-individual and intra-familial
phenotype differences in XLMTM has yet to be discovered. We can only presume environ-
mental factors, epigenetic factors, gene interactions, gene expression, DNA methylation, or
some unknown mechanisms.

In the era of massive development and the availability of non-invasive genetic meth-
ods, the question of using invasive procedures such as muscle biopsy to diagnose neuro-
muscular diseases remains controversial. Based on muscle biopsy findings, some authors
have suggested non-genetic starting points for determining the phenotype. Other studies,
such as McEntagart et al. (2002), aimed to determine whether the level of myotubularin
expression correlates with XLMTM phenotype [8]. Pierson et al. (2007) described that
myofiber size correlated with MTM1 mutation type and patient outcome [36]. According
to Bryen et al. (2021), all procedures considering clinical scoring/phenotype, genetics, and
muscle biopsy are equally crucial in the diagnostics of XLMTM [37]. Despite the constant
improvements in harmless genetic diagnostic methods, we consider muscle biopsy, regard-
less of its invasiveness, to be an essential diagnostic tool in diagnosing neuromuscular
diseases, especially in cases with rapid progression. Furthermore, muscle tissue can be
used for possible functional studies and variant pathogenicity proof.

Considering the typical facial features in XLMTM, using DeepGestalt technology [15]
via the Face2Gene application (FDNA, Inc., Boston, MA, USA), we aimed to determine
its relevance in a non-invasive diagnostic approach in XLMTM patients. The Face2Gene
software identified significant differences between XLMTM patients and unaffected con-
trols, and between unaffected controls and NMD patients. Some differences in facial gestalt
could also be seen between XLMTM and MD1 patients and XLMTM patients and other
NMD patients, but these were not statistically significant. This could be explained by myo-
pathic facial features commonly present in most myopathic patients. Even when patients
with MDI or other NMDs are clinically entirely different, it is possible that the myopathic
facial expression does not enable DeepGestalt technology to detect these features in a
high-quality pattern. Therefore, DeepGestalt has limitations in distinguishing specific types
of myopathic syndromes. In the future, we plan to compare XLMTM and other dysmorphic
syndromes. Currently, XLMTM does not appear as one of the syndromes in the RARE tab
with a composite image, meaning that the DeepGestalt algorithm (vs. DG 22.3.0) cannot yet
discern it from other possible syndromes. Therefore, the second algorithm, GestaltMatcher,
based on facial gestalt comparison, available in the ultra-rare tab [27], will need to be used
for these cases. Based on our findings, the Face2Gene application is a potential diagnostic
tool in XLMTM.

5. Conclusions

The presented genotype–phenotype correlations show that truncating variants such as
frameshift, nonsense, and in/del variants are significantly associated with a severe pheno-
type. In contrast, missense variants lead, significantly in nearly half of the patients, to mild
and moderate phenotypes. No significant association was found between phenotype and
MTM1-specific functional domains, nor between phenotype and nonsense-mediated mRNA
decay. Other associations are suggestive but are statistically not significant. Interindividual
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phenotypic variability, even between members of the same family, is a known phenomenon
in XLMTM, which needs further investigation. Thus, the genotype–phenotype correla-
tions are helpful but still need to be clarified and are, as a single approach, insufficient
for predicting the disease course in XLMTM patients. Despite the increasing availability
and effectiveness of molecular-genetic methods, muscle biopsy remains an irreplaceable,
albeit invasive, method in diagnosing congenital myopathies, including XLMTM. Based on
our findings, Face2Gene represents a promising non-invasive diagnostic tool for XLMTM
when using the correct algorithm. However, the idea that this innovative non-invasive
approach, including the Face2Gene application and the result of molecular genetic testing,
will prospectively supplement an invasive muscle biopsy, is now closer to reality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14122174/s1, Supplementary Materials (Case Reports in-
cluding Figures S1–S4 and additional Methods and Results) and Supplementary Table S1 (Excel table,
Sheet 1–2) [38–42].
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