Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = centrifugal droplet generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1113 KB  
Article
Dynamics and Mutual Influence of Droplets in a Rotating Liquid Under Centrifugal Forces
by Alexey Alexandrovich Salin, Sergey Ivanovich Ponikarov and Artem Sergeevich Ponikarov
Processes 2025, 13(12), 3833; https://doi.org/10.3390/pr13123833 - 27 Nov 2025
Viewed by 229
Abstract
The article presents the results of experimental studies of the velocity of liquid droplets in a chain under the action of centrifugal forces in a uniformly rotating liquid continuous phase. The aim of the work is to study the mutual influence of droplets [...] Read more.
The article presents the results of experimental studies of the velocity of liquid droplets in a chain under the action of centrifugal forces in a uniformly rotating liquid continuous phase. The aim of the work is to study the mutual influence of droplets on each other through the analysis of entrainment, simplified to plane motion. An experimental setup was developed based on a cylindrical vessel with adjustable angular velocity, a droplet-forming device, and stroboscopic photography to record trajectories. The methodology includes phase saturation, adjustment of the dispersed phase flow rate, and two shooting modes to minimize errors. The dependencies of the satellite trail velocity (Vsp) on the radial distance (R) and the drop frequency (f) were obtained for three liquid systems; based on regression analysis, a generalized formula Vsp=k·Ra·fb was proposed, providing satisfactory agreement between the calculated and experimental data (deviation < 10%). The results confirm the increase in Vsp with increasing R and f, which allows optimizing the extraction and mass transfer processes in centrifugal devices. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

28 pages, 8033 KB  
Review
The Application of Microfluidics in Traditional Chinese Medicine Research
by Shanxi Zhu, Xuanqi Ke, Yayuan Li, Zixuan Shu, Jiale Zheng, Zihan Xue, Wuzhen Qi and Bing Xu
Biosensors 2025, 15(12), 770; https://doi.org/10.3390/bios15120770 - 25 Nov 2025
Viewed by 628
Abstract
Microfluidics enables precise manipulation of scarce Traditional Chinese Medicine (TCM) samples while accelerating analysis and enhancing sensitivity. Device-level structures explain these gains: staggered herringbone and serpentine mixers overcome low-Reynolds-number constraints to shorten diffusion distances and reduce incubation time; flow-focusing or T-junction droplet generators [...] Read more.
Microfluidics enables precise manipulation of scarce Traditional Chinese Medicine (TCM) samples while accelerating analysis and enhancing sensitivity. Device-level structures explain these gains: staggered herringbone and serpentine mixers overcome low-Reynolds-number constraints to shorten diffusion distances and reduce incubation time; flow-focusing or T-junction droplet generators create one-droplet–one-reaction compartments that suppress cross-talk and support high-throughput screening; “Christmas-tree” gradient generators deliver quantitative dosing landscapes for mechanism-aware assays; micropillar/weir arrays and nanostructured capture surfaces raise surface-to-volume ratios and probe density, improving capture efficiency and limits of detection; porous-membrane, perfused organ-on-a-chip architectures recreate apical–basolateral transport and physiological shear, enabling metabolism-aware pharmacology and predictive toxicology; wax-patterned paper microfluidics (µPADs) use capillary networks for instrument-free metering in field settings; and lab-on-a-disc radial channels/valves exploit centrifugal pumping for parallelised workflows. Framed by key performance indicators—sensitivity (LOD/LOQ), reliability/reproducibility, time-to-result, throughput, sample volume, and sustainability/cost—this review synthesises how such structures translate into value across TCM quality/safety control, toxicology, pharmacology, screening, and delivery. Emphasis on structure–function relationships clarifies where microfluidics most effectively closes gaps between chemical fingerprints and biological potency and indicates practical routes for standardisation and deployment. Full article
(This article belongs to the Special Issue Recent Advances in Biosensors for Pharmaceutical Analysis)
Show Figures

Figure 1

16 pages, 947 KB  
Article
Comparative Analysis of Concentration and Quantification Methods for Antibiotic Resistance Genes and Their Phage-Mediated Dissemination in Treated Wastewater and Biosolids
by Irene Falcó, Ana Allende, Francesca Cutrupi, Rosa Aznar, Gloria Sánchez and Pilar Truchado
Pathogens 2025, 14(10), 1050; https://doi.org/10.3390/pathogens14101050 - 18 Oct 2025
Viewed by 997
Abstract
Antimicrobial resistance poses a growing threat to public health, and integrated surveillance strategies across environmental compartments such as treated wastewater and biosolids can substantially improve monitoring efforts. A key challenge is the diversity of available protocols, which complicates comparability for the concentration and [...] Read more.
Antimicrobial resistance poses a growing threat to public health, and integrated surveillance strategies across environmental compartments such as treated wastewater and biosolids can substantially improve monitoring efforts. A key challenge is the diversity of available protocols, which complicates comparability for the concentration and detection of antibiotic resistance genes (ARGs), particularly in complex matrices. In this study, we compared two commonly used concentration methods—filtration–centrifugation (FC) and aluminum-based precipitation (AP)—and two detection techniques, quantitative PCR (qPCR) and droplet digital PCR (ddPCR), for the quantification of four clinically relevant ARGs: tet(A), blaCTX-M group 1, qnrB, and catI. Analyses were performed in both secondary treated wastewater and biosolid samples, including their purified bacteriophage-associated DNA fractions. Results showed that the AP method provided higher ARG concentrations than FC, particularly in wastewater samples. ddPCR demonstrated greater sensitivity than qPCR in wastewater, whereas in biosolids, both methods performed similarly, although ddPCR yielded weaker detection. Importantly, ARGs were detected in the phage fraction of both matrices, with ddPCR generally offering higher detection levels. These results provide comparative insights into established methodologies and highlight the value of selecting appropriate protocols based on matrix characteristics and surveillance objectives. Full article
Show Figures

Graphical abstract

23 pages, 7750 KB  
Article
Simulation and Experiment on Parameters of an Airflow-Guiding Device for a Centrifugal Air-Assisted Sprayer
by Sibo Tian, Hao Guo, Jianping Li, Yang Li, Zhu Zhang and Peng Wang
Agriculture 2025, 15(18), 1969; https://doi.org/10.3390/agriculture15181969 - 18 Sep 2025
Viewed by 547
Abstract
Orchard air-assisted sprayers have become key equipment for the prevention and control of fruit tree diseases and pests. However, centrifugal fans are rarely used in orchard air-assisted sprayers. To address the issue that the airflow generated by single-duct centrifugal air-assisted sprayers is insufficient [...] Read more.
Orchard air-assisted sprayers have become key equipment for the prevention and control of fruit tree diseases and pests. However, centrifugal fans are rarely used in orchard air-assisted sprayers. To address the issue that the airflow generated by single-duct centrifugal air-assisted sprayers is insufficient to cover the lower canopy, a flow-guiding device for the lower canopy of fruit trees was designed. The Flow Simulation software of SOLIDWORKS 2021 was used to simulate the airflow field, and various structural parameters of the air outlet were analyzed to determine the optimal configuration of the upper edge inclination angle, the position of the upper air outlet, and the length of the upper air outlet. The results showed that the position of the upper air outlet had the most significant impact on the uniformity of the external flow field, followed by the upper edge inclination angle and the length of the upper air outlet. The optimal parameter settings for the air supply guiding device were determined as follows: upper edge inclination angle of 79°, upper air outlet position of 307 mm, and upper air outlet length of 190 mm. The verification test showed that the relative error between the simulated and actual airflow velocity measurements did not exceed 10%, confirming the accuracy of the simulation. The orchard field test showed that the average deposition density in the inner canopy of fruit trees was 78 particles/cm2, indicating strong penetration ability; the distribution of spray droplets in the vertical direction of the canopy was uniform, meeting the requirements of fruit tree pesticide application operations. This technology provides a new approach for the application of centrifugal fans in fruit tree pesticide spraying. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

13 pages, 3614 KB  
Article
Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification
by Xuanjing Zhang, Xinqi Wang, Lei Gao, Yidong Wu, Jianing Xue and Xidong Hui
Metals 2025, 15(9), 982; https://doi.org/10.3390/met15090982 - 2 Sep 2025
Viewed by 766
Abstract
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This [...] Read more.
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This study introduces an innovative purification method combining droplet electron-beam melting (EBM) with centrifugal directional solidification. Through this advanced EBM technique, we successfully produced ultrapure DZ125 superalloy with nitrogen content reduced below 5 ppm and total O + N + S content below 10 ppm. Most significantly, the process nearly eliminated Hf oxides from the reverts, meeting the stringent purity standards for DZ125 superalloy. We conducted a comprehensive analysis of inclusion morphology and composition in three distinct regions: the top slag layer, final solidification zone, and interior section of the ingot processed at varying EBM power levels. Our findings reveal that MC-type carbides at the slag–crucible interface were formed. There are HfO2, TaC, and Al2O3 in the final solidification zone, with notable encapsulation of HfO2 particulates within Al2O3 particles; and few HfO2 and Al2O3 inclusions exist in the ingot interior. It is also found that increasing EBM power from 36 kW to 46 kW significantly improved impurity removal efficiency, as evidenced by substantial reductions in both inclusion quantity and size. This enhanced purification stems from two primary mechanisms: (1) flotation of inclusions during EBM melting, facilitated by Marangoni convection, droplet stirring effects, and centrifugal forces generated by ingot rotation; and (2) decomposition of stable oxides enabled by the high-energy density characteristic of EBM and high-vacuum processing environment. This combined approach demonstrates superior capability in overcoming the limitations of traditional refining methods, particularly for challenging Hf oxide removal, while establishing an effective pathway for superalloy revert recycling. Full article
Show Figures

Figure 1

17 pages, 4280 KB  
Systematic Review
Monkeypox Virus Occurrence in Wastewater Environment and Its Correlation with Incidence Cases of Mpox: A Systematic Review and Meta-Analytic Study
by Cornelius A. Omatola, Ropo E. Ogunsakin, Ademola O. Olaniran and Sheena Kumari
Viruses 2025, 17(3), 308; https://doi.org/10.3390/v17030308 - 24 Feb 2025
Viewed by 1852
Abstract
The COVID-19 pandemic has increased the interest in the use of wastewater-based surveillance (WBS) strategy for infectious disease monitoring, especially when clinical cases are underreported. The excretion of monkey virus (MPXV) in the feces of both symptomatic and preclinical individuals has further driven [...] Read more.
The COVID-19 pandemic has increased the interest in the use of wastewater-based surveillance (WBS) strategy for infectious disease monitoring, especially when clinical cases are underreported. The excretion of monkey virus (MPXV) in the feces of both symptomatic and preclinical individuals has further driven the interest in WBS applicability to MPXV monitoring in wastewater to support its mitigation efforts. We performed a systematic review with meta-analysis, using six databases to assess MPXV detection in wastewater. We performed a random-effects model meta-analysis to calculate the pooled prevalence at a 95% confidence interval (95% CI). Also, we carried out a subgroup analysis according to the country regions and a sensitivity analysis excluding studies classified as having a high risk of bias. The overall MPXV positivity rate in wastewater was estimated at 22% (95% CI: 14−30%; I2 = 94.8%), with more detection rate in North America (26%, 95% CI: 8–43%) compared to Europe and Asia (22%, 95% CI: 12–31%). The MPXV detection rate was significantly higher in 2022 studies (22%, 95% CI: 13–31%) compared to 2023 (19%, 95% CI: 14–25%). The real-time PCR platform significantly detected more MPXV (24%, 95% CI: 14–34%) than the digital droplet PCR-based studies (17%, 95% CI: 4–31%), which was used less frequently. Viral concentration with centrifugation procedure indicated higher detection rates (21%, 95% CI: 10–33%) than other known sample concentration protocols. Generally, MPXV detection rates in wastewater samples strongly correlate with incidence cases of mpox (range of R = 0.78–0.94; p < 0.05). Findings from this study suggest that WBS of MPXV could be employed as an epidemiological early warning tool for disease monitoring and mpox outbreak prediction similar to the clinical case-based surveillance strategies. Full article
(This article belongs to the Section General Virology)
Show Figures

Graphical abstract

13 pages, 4106 KB  
Article
Characterization of the Droplet Population Generated by Centrifugal Atomization Nozzles of UAV Sprayers
by Fábio Henrique Rojo Baio, Job Teixeira de Oliveira, Marcos Eduardo Miranda Alves, Larissa Pereira Ribeiro Teodoro, Fernando França da Cunha and Paulo Eduardo Teodoro
AgriEngineering 2025, 7(1), 15; https://doi.org/10.3390/agriengineering7010015 - 13 Jan 2025
Cited by 3 | Viewed by 2457
Abstract
The use of unmanned aerial spraying systems is currently being explored and applied worldwide. The objective of this study was to characterize the droplet population generated by hydraulic nozzles and centrifugal atomization nozzles used in sprayers mounted on remotely piloted aircraft (RPA). Two [...] Read more.
The use of unmanned aerial spraying systems is currently being explored and applied worldwide. The objective of this study was to characterize the droplet population generated by hydraulic nozzles and centrifugal atomization nozzles used in sprayers mounted on remotely piloted aircraft (RPA). Two spray nozzle technologies were tested using a Malvern SprayTech laser particle size meter. The hydraulic nozzle evaluated was model 11001, which generates a wide-use fan spray. The centrifugal atomization nozzle, used in RPA sprayers, was manufactured by Yuenhoang, model DC12V. The experimental design was implemented in a completely randomized scheme, containing variations in the nozzles (hydraulic nozzle and centrifugal atomization nozzle) and application rate (AR) (5, 10, and 15 L ha−1 in the test with the hydraulic nozzle; and 9.2, 12.8, and 15.6 L ha−1 in the test with the centrifugal nozzle), with five replicates per treatment. The hydraulic nozzle test data showed a coefficient of variation of 6.8% VMD for all treatments, with droplet sizes within the fine classification ranging from 132.8 to 163.2 µm. It is noteworthy that the average relative span (span) of the droplet population generated by the hydraulic nozzle was 1.2, i.e., 20% higher than the desired reference value of 1. This value exceeds the general average reported for the centrifugal atomization nozzle, which has a span of 1.1. The relative span of the droplet size distribution for the hydraulic nozzles is greater than that observed with the centrifugal atomization nozzles. Excluding the extreme rotational speeds of the centrifugal atomization nozzle, the percentage of droplets generated with a volume smaller than 100 µm is lower compared to those produced by the hydraulic nozzle. Full article
Show Figures

Figure 1

15 pages, 6308 KB  
Communication
An Injection-Mold Based Method with a Nested Device for Microdroplet Generation by Centrifugation
by Jichen Li, Wen Li, Bizhu Wu, Wenting Bu, Miaomiao Li, Jinyan Ou, Yuxiang Xiong, Shangtao Wu, Yanyi Huang, Yong Fan and Yongfan Men
Processes 2024, 12(3), 483; https://doi.org/10.3390/pr12030483 - 27 Feb 2024
Cited by 1 | Viewed by 3071
Abstract
Microdroplets have been widely used in different fields due to their unique properties, such as compartmentalization, single-molecule sensitivity, chemical and biological compatibility, and high throughput. Compared to intricate and labor-intensive microfluidic techniques, the centrifuge-based method is more convenient and cost-effective for generating droplets. [...] Read more.
Microdroplets have been widely used in different fields due to their unique properties, such as compartmentalization, single-molecule sensitivity, chemical and biological compatibility, and high throughput. Compared to intricate and labor-intensive microfluidic techniques, the centrifuge-based method is more convenient and cost-effective for generating droplets. In this study, we developed a handy injection molding based method to readily produce monodisperse droplets by centrifugation. Briefly, we used two three-dimensional (3D) printed master molds with internal cavities to forge two coupled sub-molds by injecting polydimethylsiloxane (PDMS) and casted these two PDMS sub-molds into a nested structure that clamps the micro-channel array (MiCA) by injecting polyurethane resin. This method enables the generation of various sizes of monodispersed microdroplets by centrifugation with proper parameters within 10 min. To assess the performance of this method, homogeneous fluorescent hydrogel microspheres were generated and droplet digital polymerase chain reaction (ddPCR) was carried out. Overall, this method offers high-throughput droplet generation, reduces costs compared to other methods, and is user-friendly. Full article
(This article belongs to the Special Issue Interfacial Structure-Mediated Controllable Adhesion and Assembly)
Show Figures

Figure 1

16 pages, 5055 KB  
Article
Automated Nanodroplet Dispensing for Large-Scale Spheroid Generation via Hanging Drop and Parallelized Lossless Spheroid Harvesting
by Viktoria Zieger, Ellen Woehr, Stefan Zimmermann, Daniel Frejek, Peter Koltay, Roland Zengerle and Sabrina Kartmann
Micromachines 2024, 15(2), 231; https://doi.org/10.3390/mi15020231 - 31 Jan 2024
Cited by 10 | Viewed by 3358
Abstract
Creating model systems that replicate in vivo tissues is crucial for understanding complex biological pathways like drug response and disease progression. Three-dimensional (3D) in vitro models, especially multicellular spheroids (MCSs), offer valuable insights into physiological processes. However, generating MCSs at scale with consistent [...] Read more.
Creating model systems that replicate in vivo tissues is crucial for understanding complex biological pathways like drug response and disease progression. Three-dimensional (3D) in vitro models, especially multicellular spheroids (MCSs), offer valuable insights into physiological processes. However, generating MCSs at scale with consistent properties and efficiently recovering them pose challenges. We introduce a workflow that automates large-scale spheroid production and enables parallel harvesting into individual wells of a microtiter plate. Our method, based on the hanging-drop technique, utilizes a non-contact dispenser for dispensing nanoliter droplets of a uniformly mixed-cell suspension. The setup allows for extended processing times of up to 45 min without compromising spheroid quality. As a proof of concept, we achieved a 99.3% spheroid generation efficiency and maintained highly consistent spheroid sizes, with a coefficient of variance below 8% for MCF7 spheroids. Our centrifugation-based drop transfer for spheroid harvesting achieved a sample recovery of 100%. We successfully transferred HT29 spheroids from hanging drops to individual wells preloaded with collagen matrices, where they continued to proliferate. This high-throughput workflow opens new possibilities for prolonged spheroid cultivation, advanced downstream assays, and increased hands-off time in complex 3D cell culture protocols. Full article
(This article belongs to the Section B2: Biofabrication and Tissue Engineering)
Show Figures

Figure 1

14 pages, 4044 KB  
Article
Experimental Study on the Influence of Stearic Acid Additive on the Elastohydrodynamic Lubrication of Mineral Oil 2137
by Wei Li, Feng Guo, Chenglong Liu and Zhaoqun Ma
Lubricants 2023, 11(10), 446; https://doi.org/10.3390/lubricants11100446 - 16 Oct 2023
Cited by 5 | Viewed by 2836
Abstract
Using an optical elastohydrodynamic lubrication (EHL) test rig, oil film thickness and the coefficient of friction (COF) were measured, and the influence of stearic acid additive on the EHL performance of mineral oil 2137 was investigated. The results showed that 2137 with 0.3 [...] Read more.
Using an optical elastohydrodynamic lubrication (EHL) test rig, oil film thickness and the coefficient of friction (COF) were measured, and the influence of stearic acid additive on the EHL performance of mineral oil 2137 was investigated. The results showed that 2137 with 0.3 wt% stearic acid (denoted to as 2137s) achieved the same film thickness as 2137, while the COF of 2137s was significantly lower than that of 2137 when the contact was under conditions of a fully lubricant supply. Under conditions of limited lubricant supply, 2137 base oil was prone to oil starvation with the increase of entrainment velocity. On the other hand, 2137s significantly mitigated the oil starvation. This was attributed to the fact that lower surface energy by the adsorption of stearic acid results in discontinuous oil-droplet distribution on the lubrication track and, therefore, early pressure generation. Moreover, it is interesting to find that less 2137s supply quantity can produce higher film thickness when the contact is at high speeds, which is attributed to the fact that a smaller quantity of 2137s gives smaller droplets on the lubrication track, and the resultant small surface area–volume ratio presents oil more resistance to the centrifugal force and results in less oil escaping from the lubrication track. The addition of stearic acid reduced the average COF of 2137 mineral oil by about 13.3% Full article
(This article belongs to the Special Issue Friction and Wear of Rolling-Element Bearings)
Show Figures

Figure 1

17 pages, 7222 KB  
Article
Design of a Cryogenic Duplex Pressure-Swirl Atomizer through CFDs for the Cold Conservation of Marine Products
by Eduardo Ayala, Diego Rivera, Julio Ronceros, Nikolai Vinces and Gustavo Ronceros
Fluids 2023, 8(10), 271; https://doi.org/10.3390/fluids8100271 - 1 Oct 2023
Cited by 5 | Viewed by 2600
Abstract
The following article proposes the design of a bi-centrifugal atomizer that allows the interaction of sprays from two fluids (water and liquid nitrogen). The liquid nitrogen (LN2) is below −195.8 °C, a temperature low enough for the nitrogen, upon contact with [...] Read more.
The following article proposes the design of a bi-centrifugal atomizer that allows the interaction of sprays from two fluids (water and liquid nitrogen). The liquid nitrogen (LN2) is below −195.8 °C, a temperature low enough for the nitrogen, upon contact with the atomized water, to cause heat loss and bring it to its freezing point. The objective is to convert the water droplets present in the spray into ice. Upon falling, the ice particles can be dispersed, covering the largest possible area of the seafood products intended for cold preservation. All these phenomena related to the interaction of two fluids and heat exchange are due to the bi-centrifugal atomizer, which positions the two centrifugal atomizers concentrically, resulting in the inevitable collision of the two sprays. Each of these atomizers will be designed using a mathematical model and CFDs tools. The latter will provide a better study of the flow behavior of both fluids inside and outside the bi-centrifugal atomizer. Hence, the objective revolves around confirming the validity of the mathematical model through a comparison with numerical simulation data. This comparison establishes a strong correlation (with a maximum variance of 1.94% for the water atomizer and 10% for the LN2 atomizer), thereby ensuring precise manufacturing specifications for the atomizers. It is important to highlight that, in order to achieve the enhanced resolution and comprehension of the fluid both inside and outside the duplex atomizer, two types of meshes were utilized, ensuring the utilization of the optimal option. Similarly, the aforementioned meshes were generated using two distinct software platforms, namely ANSYS Meshing (tetrahedral mesh) and ANSYS ICEM (hexahedral mesh), to facilitate a comparative analysis of the mesh quality obtained. This comprehension facilitated the observation of water temperature during its interaction with liquid nitrogen, ultimately ensuring the freezing of water droplets at the atomizer’s outlet. This objective aligns seamlessly with the primary goal of this study, which revolves around the preservation of seafood products through cold techniques. This particular attribute holds potential for various applications, including cooling processes for food products. Full article
(This article belongs to the Special Issue Industrial CFD and Fluid Modelling in Engineering)
Show Figures

Figure 1

18 pages, 16073 KB  
Article
Characterization of Fluidic-Barrier-Based Particle Generation in Centrifugal Microfluidics
by Masoud Madadelahi, Javid Azimi-Boulali, Marc Madou and Sergio Omar Martinez-Chapa
Micromachines 2022, 13(6), 881; https://doi.org/10.3390/mi13060881 - 31 May 2022
Cited by 10 | Viewed by 3351
Abstract
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we [...] Read more.
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles’ size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle’s ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets. Full article
Show Figures

Figure 1

9 pages, 2878 KB  
Article
Low Cost, Easily-Assembled Centrifugal Buoyancy-Based Emulsification and Digital PCR
by Wuping Zhou, Cong Liu, Tao Zhang, Keming Jiang, Haiwen Li, Zhiqiang Zhang and Yuguo Tang
Micromachines 2022, 13(2), 171; https://doi.org/10.3390/mi13020171 - 24 Jan 2022
Cited by 8 | Viewed by 4398
Abstract
Microfluidic-based droplet generation approaches require the design of microfluidic chips and a precise lithography process, which require skilled technicians and a long manufacturing time. Here we developed a centrifugal buoyancy-based emulsification (CBbE) method for producing droplets with high efficiency and minimal fabrication time. [...] Read more.
Microfluidic-based droplet generation approaches require the design of microfluidic chips and a precise lithography process, which require skilled technicians and a long manufacturing time. Here we developed a centrifugal buoyancy-based emulsification (CBbE) method for producing droplets with high efficiency and minimal fabrication time. Our approach is to fabricate a droplet generation module that can be easily assembled using syringe needles and PCR tubes. With this module and a common centrifuge, high-throughput droplet generation with controllable droplet size could be realized in a few minutes. Experiments showed that the droplet diameter depended mainly on centrifugal speed, and droplets with controllable diameter from 206 to 158 μm could be generated under a centrifugal acceleration range from 14 to 171.9 g. Excellent droplet uniformity was achieved (CV < 3%) when centrifugal acceleration was greater than 108 g. We performed digital PCR tests through the CBbE approach and demonstrated that this cost-effective method not only eliminates the usage of complex microfluidic devices and control systems but also greatly suppresses the loss of materials and cross-contamination. CBbE-enabled droplet generation combines both easiness and robustness, and breaks the technical challenges by using conventional lab equipment and supplies. Full article
(This article belongs to the Topic Microfluidics Applied in Nanomedicine and Pharmaceutics)
Show Figures

Figure 1

10 pages, 2260 KB  
Article
Centrifugal Microfluidic Integration of 4-Plex ddPCR Demonstrated by the Quantification of Cancer-Associated Point Mutations
by Franziska Schlenker, Elena Kipf, Nadine Borst, Nils Paust, Roland Zengerle, Felix von Stetten, Peter Juelg and Tobias Hutzenlaub
Processes 2021, 9(1), 97; https://doi.org/10.3390/pr9010097 - 5 Jan 2021
Cited by 24 | Viewed by 5649
Abstract
We present the centrifugal microfluidic implementation of a four-plex digital droplet polymerase chain reaction (ddPCR). The platform features 12 identical ddPCR units on a LabDisk cartridge, each capable of generating droplets with a diameter of 82.7 ± 9 µm. By investigating different oil–surfactant [...] Read more.
We present the centrifugal microfluidic implementation of a four-plex digital droplet polymerase chain reaction (ddPCR). The platform features 12 identical ddPCR units on a LabDisk cartridge, each capable of generating droplets with a diameter of 82.7 ± 9 µm. By investigating different oil–surfactant concentrations, we identified a robust process for droplet generation and stabilization. We observed high droplet stability during thermocycling and endpoint fluorescence imaging, as is required for ddPCRs. Furthermore, we introduce an automated process for four-color fluorescence imaging using a commercial cell analysis microscope, including a customized software pipeline for ddPCR image evaluation. The applicability of ddPCRs is demonstrated by the quantification of three cancer-associated KRAS point mutations (G12D, G12V and G12A) in a diagnostically relevant wild type DNA background. The four-plex assay showed high sensitivity (3.5–35 mutant DNA copies in 15,000 wild type DNA copies) and linear performance (R² = 0.99) across all targets in the LabDisk. Full article
(This article belongs to the Special Issue Advances in Microfluidics Technology for Diagnostics and Detection)
Show Figures

Figure 1

19 pages, 3824 KB  
Article
Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis
by Rohollah Nasiri, Amir Shamloo, Javad Akbari, Peyton Tebon, Mehmet R. Dokmeci and Samad Ahadian
Micromachines 2020, 11(7), 699; https://doi.org/10.3390/mi11070699 - 20 Jul 2020
Cited by 56 | Viewed by 7733
Abstract
Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such [...] Read more.
Separation of circulating tumor cells (CTCs) from blood samples and subsequent DNA extraction from these cells play a crucial role in cancer research and drug discovery. Microfluidics is a versatile technology that has been applied to create niche solutions to biomedical applications, such as cell separation and mixing, droplet generation, bioprinting, and organs on a chip. Centrifugal microfluidic biochips created on compact disks show great potential in processing biological samples for point of care diagnostics. This study investigates the design and numerical simulation of an integrated microfluidic device, including a cell separation unit for isolating CTCs from a blood sample and a micromixer unit for cell lysis on a rotating disk platform. For this purpose, an inertial microfluidic device was designed for the separation of target cells by using contraction–expansion microchannel arrays. Additionally, a micromixer was incorporated to mix separated target cells with the cell lysis chemical reagent to dissolve their membranes to facilitate further assays. Our numerical simulation approach was validated for both cell separation and micromixer units and corroborates existing experimental results. In the first compartment of the proposed device (cell separation unit), several simulations were performed at different angular velocities from 500 rpm to 3000 rpm to find the optimum angular velocity for maximum separation efficiency. By using the proposed inertial separation approach, CTCs, were successfully separated from white blood cells (WBCs) with high efficiency (~90%) at an angular velocity of 2000 rpm. Furthermore, a serpentine channel with rectangular obstacles was designed to achieve a highly efficient micromixer unit with high mixing quality (~98%) for isolated CTCs lysis at 2000 rpm. Full article
Show Figures

Figure 1

Back to TopTop