Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,553)

Search Parameters:
Keywords = centralizing material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 883 KB  
Article
The Effect of Organic Waste and Hydrogel on the Yield and P, Ca, and Mg Content of Selected Grass Species with the C4 Photosynthesis Pathway in the First Three Years of Cultivation
by Elżbieta Malinowska and Urszula Ostaszewska
Agronomy 2026, 16(2), 255; https://doi.org/10.3390/agronomy16020255 (registering DOI) - 21 Jan 2026
Abstract
The aim of the experiment was to assess the effects of municipal sewage sludge, mushroom substrate, and hydrogel on the quality of energy grass species and their biomass yield. The experiment was conducted in the climatic conditions of central-eastern Poland between 2020 and [...] Read more.
The aim of the experiment was to assess the effects of municipal sewage sludge, mushroom substrate, and hydrogel on the quality of energy grass species and their biomass yield. The experiment was conducted in the climatic conditions of central-eastern Poland between 2020 and 2022. Two perennial grass species were used: Miscanthus giganteus (giant miscanthus) M 19 and Panicum virgatum L. (rod millet) var. Northwind. Sewage sludge and mushroom substrate doses, each corresponding to 170 kg N·ha−1, were applied in the spring of the first year. The experiment was established on microplots with four replications. Each year, biomass was harvested in January, and the yield of fresh and dry matter was determined. Then plant material was adequately prepared, and the total content of P, Ca, and Mg was measured with the ICP-OES method. The application of hydrogel resulted in a significant increase in the yield of each grass species: giant miscanthus by 11.87% and rod millet by 8.28%. Organic waste applied in combination with hydrogel increased the yield of energy plants and improved their chemical composition. Full article
Show Figures

Figure 1

28 pages, 1515 KB  
Article
Supply Chain Integration for Sustainability in Belt and Road Initiative EPC Projects: A Multi-Stakeholder Perspective
by Jiaxin Huang and Kelvin K. Orisaremi
Sustainability 2026, 18(2), 1081; https://doi.org/10.3390/su18021081 - 21 Jan 2026
Abstract
This study investigates critical research gaps in procurement management challenges faced by Chinese contractors in international engineering–procurement–construction (EPC) projects under the Belt and Road Initiative (BRI), with a particular focus on sustainability-oriented outcomes. It examines the following: (1) prevalent procurement inefficiencies, such as [...] Read more.
This study investigates critical research gaps in procurement management challenges faced by Chinese contractors in international engineering–procurement–construction (EPC) projects under the Belt and Road Initiative (BRI), with a particular focus on sustainability-oriented outcomes. It examines the following: (1) prevalent procurement inefficiencies, such as communication delays and material shortages, encountered in international EPC projects; (2) the role of supply chain INTEGRATION in enhancing procurement performance; (3) the application of social network analysis (SNA) to reveal inter-organizational relationships in procurement systems; and (4) the influence of stakeholder collaboration on achieving efficient and sustainable procurement processes. The findings demonstrate that effective supply chain integration significantly improves procurement efficiency, reduces delays, and lowers costs, thereby contributing to more sustainable project delivery. Strong collaboration and transparent communication among key stakeholders—including contractors, suppliers, subcontractors, and designers—are shown to be essential for mitigating procurement risks and supporting resilient supply chain operations. SNA results highlight the critical roles of central stakeholders and their relational structures in optimizing resource allocation and enhancing risk management capabilities. Evidence from case studies further indicates that Chinese contractors increasingly adopt sustainability-oriented practices, such as just-in-time inventory management, strategic supplier relationship management, and digital procurement platforms, to reduce inefficiencies and environmental impacts. Overall, this study underscores that supply chain INTEGRATION, combined with robust stakeholder collaboration, is a key enabler of sustainable procurement and long-term competitiveness for Chinese contractors in the global EPC market. The purpose of this study is to identify critical procurement management challenges and propose evidence-based solutions for Chinese contractors. It further aims to develop a sustainability-oriented framework integrating supply chain integration and stakeholder collaboration to enhance competitiveness. Full article
Show Figures

Figure 1

17 pages, 3132 KB  
Article
Experimental Thermal Study of the Materials Used in the Construction of Combustion Chamber of Firewood Stoves in Southern Mexico and Central America
by Edwin N. Hernandez-Estrada, José B. Robles-Ocampo, Perla Y. Sevilla-Camacho, Marco Antonio Zúñiga Reyes, Roberto Adrian González Domínguez and Juvenal Rodriguez-Resendiz
Thermo 2026, 6(1), 8; https://doi.org/10.3390/thermo6010008 (registering DOI) - 21 Jan 2026
Abstract
A firewood stove’s combustion chamber can withstand temperatures of 1500 °C. To prevent the deterioration of a firewood stove due to excessive heat, it is necessary to use thermal insulation materials that stop heat transfer to the walls. These materials must be economical [...] Read more.
A firewood stove’s combustion chamber can withstand temperatures of 1500 °C. To prevent the deterioration of a firewood stove due to excessive heat, it is necessary to use thermal insulation materials that stop heat transfer to the walls. These materials must be economical and durable. This work examines the materials used in the construction of combustion chambers of firewood stoves in southern Mexico and Central America. This field study collects information and samples of materials used in the manufacture of firewood stoves. Heat transfer experiments are conducted, and the thermal properties of each material are analyzed. As a result, methodology and information is provided for the manufacture of future plancha-type firewood stoves used in the study area, such as pine wood (pinus chiapensis) which is mainly used as casing for firewood stoves in coniferous forest areas; in addition, the use of wood ash as thermal insulation material is proposed since it does not present direct costs and has a thermal conductivity between 0.10 and 0.20 W/m°C and a melting point greater than 1500 °C. The next layer proposed is hollow brick, a high-temperature-resistant material that can be used as support due to its mechanical strength and low thermal conductivity of 0.6 W/m°C. Finally, the use of calcium hydroxide as a coating material is proposed, applied in the form of a paste or paint to detail the imperfections of the combustion chamber construction as it resists temperatures above 1000 °C. Full article
Show Figures

Figure 1

27 pages, 4995 KB  
Article
Evolution of Urban Mosque Architecture in Nigeria: A Case Study of Ilorin Central Mosque
by Muhammed Madandola, Akel Ismail Kahera and Djamel Boussaa
Buildings 2026, 16(2), 421; https://doi.org/10.3390/buildings16020421 - 20 Jan 2026
Abstract
Mosque architecture often exhibits distinct identities, elements, and forms associated with geographical locations or dynastic patronage in the Islamic world. However, there has been a significant paradigm shift in mosque architecture over the past century, with external factors influencing the construction and sustainability [...] Read more.
Mosque architecture often exhibits distinct identities, elements, and forms associated with geographical locations or dynastic patronage in the Islamic world. However, there has been a significant paradigm shift in mosque architecture over the past century, with external factors influencing the construction and sustainability of contemporary mosques. This study examines the evolution of mosque architecture in Nigeria, concentrating on the Ilorin Central Mosque as a pivotal case study connecting the northern and southern regions. The study employs a qualitative research methodology, utilizing descriptive approach, historical research, architectural analysis, and field observations to examine the architectural language, urban context, and socio-historical factors shaping the mosque’s development. Although geographical settings have always influenced traditional religious designs in Nigeria, the findings reveal a transformation from simple mud structures to grand modern edifices. The Ilorin Central Mosque exemplifies this shift, with its Ottoman-inspired domes and minarets contrasting with the traditional vernacular mosques of the 19th century. The study highlights the challenges of globalization, sustainability, foreign architectural influences, and the tension between local identity and contemporary trends in mosque architecture. The study concludes by arguing that future mosques must reintegrate regionalism, local materials, and climate-responsive principles into contemporary aesthetics while considering the quintessential principles of the Prophet’s Mosque and the religious and social significance of mosques within the urban fabric. The Ilorin Central Mosque exemplifies a microcosm of the transformations in Nigerian mosque architecture, highlighting the necessity of a balanced approach that embraces both cultural heritage and contemporary needs. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

21 pages, 4538 KB  
Article
Rapid Growth of Dimension Stone Imports: Implications for the Urban Geocultural Heritage of the City of Poznań (Poland)
by Paweł Wolniewicz
Geosciences 2026, 16(1), 45; https://doi.org/10.3390/geosciences16010045 - 19 Jan 2026
Viewed by 37
Abstract
The global production of dimension stones, that is, natural stones that can be processed into blocks and used as building and decorative materials, has grown steadily since the second half of the twentieth century. The rise of global markets and trade has also [...] Read more.
The global production of dimension stones, that is, natural stones that can be processed into blocks and used as building and decorative materials, has grown steadily since the second half of the twentieth century. The rise of global markets and trade has also contributed to a rapid increase in imports of natural stones from distant locations. The introduction of dimension stones sourced from other continents can contribute significantly to geocultural heritage, defined as geological features that have acquired cultural, historical or symbolic meaning, as well as cultural elements embedded in a geological context. In the present contribution, the use of dimension stones in the city of Poznań (Poland, central Europe) is quantified. The study reveals dramatic changes in natural stone use between 1990 and 2019, with the number of dimension stone types increasing nearly threefold, and the mean distance to the stone source areas rising from 322 to 3885 km. Growing numbers and more diversified lithologies of natural stones can improve the urban landscape and contribute to the development of geotourism. On the other hand, increasing imports of dimension stones negatively affect local producers, threaten future conservation efforts, and have significant geoethical implications. Full article
Show Figures

Figure 1

16 pages, 1096 KB  
Article
Effect of Operator Experience on the Predictability of Rotational and Vertical Tooth Movements in Clear Aligner Therapy: A Retrospective Observational Study
by Ambra Sedran, Alessandro Bruni, Sabrina Mutinelli, Francesco Garino, Simone Parrini, Tommaso Castroflorio and Nicola Scotti
Appl. Sci. 2026, 16(2), 995; https://doi.org/10.3390/app16020995 - 19 Jan 2026
Viewed by 39
Abstract
Design: Retrospective observational cohort study conducted at university and private practice setting. Objective: To evaluate whether operator experience affects the predictability of orthodontic tooth movements and the overall treatment duration in clear aligner therapy. Materials and Methods: This retrospective observational [...] Read more.
Design: Retrospective observational cohort study conducted at university and private practice setting. Objective: To evaluate whether operator experience affects the predictability of orthodontic tooth movements and the overall treatment duration in clear aligner therapy. Materials and Methods: This retrospective observational study was conducted at the Dental School of the University of Turin and in private orthodontic settings. Seventy-two patients (50 females, 22 males; median age: 24.6 years; IQR = 5.9) with mild to moderate malocclusions were included and equally distributed between two groups: 36 patients treated by postgraduate orthodontic students (Group B) and 36 patients treated by experienced orthodontists (Group E). Post-treatment digital models were analyzed to assess discrepancies between the predicted and achieved tooth positions. The accuracy of specific movements—rotation, vertical displacement, and treatment duration—was statistically evaluated using the Mann–Whitney U test. Most of these differences, although statistically significant, remained below established thresholds for clinical relevance (0.5 mm/2°). Results: Expert operators achieved significantly greater accuracy in controlling the vertical movements of the upper central incisors (p = 0.01) and the rotational movements of the upper first molars (p = 0.03), upper lateral incisors (p = 0.03), lower incisors (p = 0.001), and lower premolars (p = 0.001). In contrast, non-expert operators demonstrated superior outcomes in the control of vertical movements of the upper premolars (p = 0.01) and in the rotational movement of the lower canines (p = 0.03). Treatment duration was significantly shorter in the expert group, with a median difference of 4.1 months (p = 0.0037). Conclusions: These findings confirm the importance of clinical experience in enhancing the predictability and efficiency of clear aligner therapy, particularly in complex movements. However, the improved performance of non-expert operators in selected areas—such as vertical control of upper premolars and rotation of lower canines—suggests that conservative movement planning may also play a role in improving clinical outcomes. Overall, expert clinicians achieved more predictable tooth movements and shorter treatment durations, underscoring the value of structured training and accumulated clinical expertise in optimizing clear aligner therapy. Full article
Show Figures

Figure 1

21 pages, 1205 KB  
Article
Reassessing China’s Regional Modernization Based on a Grey-Based Evaluation Framework and Spatial Disparity Analysis
by Wenhao Zhou, Hongxi Lin, Zhiwei Zhang and Siyu Lin
Entropy 2026, 28(1), 117; https://doi.org/10.3390/e28010117 - 19 Jan 2026
Viewed by 97
Abstract
Understanding regional disparities in Chinese modernization is essential for achieving coordinated and sustainable development. This study develops a multi-dimensional evaluation framework, integrating grey relational analysis, entropy weighting, and TOPSIS to assess provincial modernization across China from 2018 to 2023. The framework operationalizes Chinese-style [...] Read more.
Understanding regional disparities in Chinese modernization is essential for achieving coordinated and sustainable development. This study develops a multi-dimensional evaluation framework, integrating grey relational analysis, entropy weighting, and TOPSIS to assess provincial modernization across China from 2018 to 2023. The framework operationalizes Chinese-style modernization through five dimensions: population quality, economic strength, social development, ecological sustainability, innovation and governance, capturing both material and institutional aspects of development. Using K-Means clustering, kernel density estimation, and convergence analysis, the study examines spatial and temporal patterns of modernization. Results reveal pronounced regional heterogeneity: eastern provinces lead in overall modernization but display internal volatility, central provinces exhibit gradual convergence, and western provinces face widening disparities. Intra-regional analysis highlights uneven development even within geographic clusters, reflecting differential access to resources, governance capacity, and innovation infrastructure. These findings are interpreted through modernization theory, linking observed patterns to governance models, regional development trajectories, and policy coordination. The proposed framework offers a rigorous, data-driven tool for monitoring modernization progress, diagnosing regional bottlenecks, and informing targeted policy interventions. This study demonstrates the methodological value of integrating grey system theory with multi-criteria decision-making and clustering analysis, providing both theoretical insights and practical guidance for advancing balanced and sustainable Chinese-style modernization. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

12 pages, 10952 KB  
Article
Therapeutic Outcomes of Fingolimod and Interferon Beta-1a in Relapsing–Remitting Multiple Sclerosis: A Real-World Study from Jordan
by Arwa Al Anber, Ola Abu Al Karsaneh, Dua Abuquteish, Osama Abdallah, Mohammad A. Issa, Mohammad Sa’adeh and Dena Kilani
Medicina 2026, 62(1), 203; https://doi.org/10.3390/medicina62010203 - 18 Jan 2026
Viewed by 129
Abstract
Background and Objectives: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system with rising prevalence in the Middle East. Real-world comparative data on disease-modifying therapies from this region remain limited. This retrospective study compared the clinical outcomes and [...] Read more.
Background and Objectives: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system with rising prevalence in the Middle East. Real-world comparative data on disease-modifying therapies from this region remain limited. This retrospective study compared the clinical outcomes and tolerability of fingolimod and interferon beta-1a (IFN-β1a) among patients with relapsing–remitting multiple sclerosis treated at a large public referral hospital in Jordan. Materials and Methods: All eligible RRMS patients received fingolimod or IFN-β1a at a single tertiary hospital. The annualized relapse rate (ARR), Expanded Disability Status Scale (EDSS) scores, and adverse effect frequencies were analyzed using descriptive and inferential statistics. A full-cohort inclusion approach was applied instead of sample-size calculation, as all available cases at Al-Basheer Hospital (Amman, Jordan) were included. Results: Fingolimod-treated patients showed a significantly higher ARR than those on IFN-β1a (0.51 vs. 0.26, p = 0.016), an association likely influenced by treatment sequencing and baseline disease activity. EDSS distributions were similar between treatment groups, with most patients demonstrating mild disability (EDSS ≤ 3.5). IFN-β1a was linked to injection site reactions, while fingolimod was better tolerated. Conclusions: The higher observed relapse rate among fingolimod-treated patients possibly reflects treatment sequencing and underlying disease severity rather than pharmacologic efficacy, as fingolimod was commonly prescribed as an escalation therapy. These findings highlight the importance of individualized treatment selection and underscore the need for prospective studies incorporating standardized baseline disease activity measures to better inform multiple sclerosis care in Jordan and the wider Middle Eastern region. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 570 KB  
Article
Machines Prefer Humans as Literary Authors: Evaluating Authorship Bias in Large Language Models
by Marco Rospocher, Massimo Salgaro and Simone Rebora
Information 2026, 17(1), 95; https://doi.org/10.3390/info17010095 - 16 Jan 2026
Viewed by 135
Abstract
Automata and artificial intelligence (AI) have long occupied a central place in cultural and artistic imagination, and the recent proliferation of AI-generated artworks has intensified debates about authorship, creativity, and human agency. Empirical studies show that audiences often perceive AI-generated works as less [...] Read more.
Automata and artificial intelligence (AI) have long occupied a central place in cultural and artistic imagination, and the recent proliferation of AI-generated artworks has intensified debates about authorship, creativity, and human agency. Empirical studies show that audiences often perceive AI-generated works as less authentic or emotionally resonant than human creations, with authorship attribution strongly shaping esthetic judgments. Yet little attention has been paid to how AI systems themselves evaluate creative authorship. This study investigates how large language models (LLMs) evaluate literary quality under different framings of authorship—Human, AI, or Human+AI collaboration. Using a questionnaire-based experimental design, we prompted four instruction-tuned LLMs (ChatGPT 4, Gemini 2, Gemma 3, and LLaMA 3) to read and assess three short stories in Italian, originally generated by ChatGPT 4 in the narrative style of Roald Dahl. For each story × authorship condition × model combination, we collected 100 questionnaire completions, yielding 3600 responses in total. Across esthetic, literary, and inclusiveness dimensions, the stated authorship systematically conditioned model judgments: identical stories were consistently rated more favorably when framed as human-authored or human–AI co-authored than when labeled as AI-authored, revealing a robust negative bias toward AI authorship. Model-specific analyses further indicate distinctive evaluative profiles and inclusiveness thresholds across proprietary and open-source systems. Our findings extend research on attribution bias into the computational realm, showing that LLM-based evaluations reproduce human-like assumptions about creative agency and literary value. We publicly release all materials to facilitate transparency and future comparative work on AI-mediated literary evaluation. Full article
(This article belongs to the Special Issue Emerging Research in Computational Creativity and Creative Robotics)
Show Figures

Graphical abstract

28 pages, 21767 KB  
Article
Reservoir Characteristics and Productivity Controlling Factors of the Wufeng–Longmaxi Formations in the Lu203–Yang101 Well Block, Southern Sichuan Basin, China
by Zhi Gao, Tian Tang, Cheng Yang, Jing Li, Yijia Wu, Ying Wang, Jingru Ruan, Yi Xiao, Hu Li and Kun Zhang
Energies 2026, 19(2), 444; https://doi.org/10.3390/en19020444 - 16 Jan 2026
Viewed by 134
Abstract
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction [...] Read more.
The Wufeng–Longmaxi (WF–LMX) shale gas reservoirs at depths > 3500 m in the Lu203–Yang101 well block, southern Sichuan Basin, possess great exploration potential, but their reservoir characteristics and high-production mechanisms remain unclear. In this study, we employed multi-scale analyses—including core geochemistry, X-ray diffraction (XRD), scanning electron microscopy (SEM), low-pressure N2 adsorption, and nuclear magnetic resonance (NMR)—to characterize the macro- and micro-scale characteristics of these deep shales. By comparing with shallower shales in adjacent areas, we investigated differences in pore structure between deep and shallow shales and the main controlling factors for high gas-well productivity. The results show that the Long 11 sub-member shales are rich in organic matter, with total organic carbon (TOC) content decreasing upward. The mineral composition is dominated by quartz (averaging ~51%), which slightly decreases upward, while clay content increases upward. Porosity ranges from 1% to 7%; the Long11-1-3 sublayers average 4–6%, locally >6%. Gas content correlates closely with TOC and porosity, highest in the Long11-1 sublayer (6–10 m3/t) and decreasing upward, and the central part of the study area has higher gas content than adjacent areas. The micro-pore structure exhibits pronounced stratigraphic differences: the WF Formation top and Long11-1 and Long11-3 sublayers are dominated by connected round or bubble-like organic pores (50–100 nm), whereas the Long11-2 and Long11-4 sublayers contain mainly smaller isolated organic pores (5–50 nm). Compared to shallow shales nearby, the deep shales have a slightly lower proportion of organic pores, smaller pore sizes with more isolated pores, inorganic pores of mainly intraparticle types, and more developed microfractures, confirming that greater burial depth leads to a more complex pore structure. Type I high-quality reservoirs are primarily distributed from the top of the WF Formation to the Long11-3 sublayer, with a thickness of 15.6–38.5 m and a continuous thickness of 13–23 m. The Lu206–Yang101 area has the thickest high-quality reservoir, with a cumulative thickness of Type I + II exceeding 60 m. Shale gas-well high productivity is jointly controlled by multiple factors: an oxygen-depleted, stagnant deep-shelf environment, with deposited organic-rich, biogenic siliceous shales providing the material basis for high yields; abnormally high pore-fluid pressure with preserved abundant large organic pores and increased free gas content; and effective multi-stage massive fracturing connecting a greater reservoir volume, which is the key to achieving high gas-well production. This study provides a scientific basis for evaluating deep marine shale gas reservoirs in southern Sichuan and understanding the enrichment patterns for high productivity. Full article
Show Figures

Figure 1

64 pages, 10763 KB  
Review
The State of HBIM in Digital Heritage: A Critical and Bibliometric Assessment of Six Emerging Frontiers (2015–2025)
by Fabrizio Banfi and Wanqin Liu
Appl. Sci. 2026, 16(2), 906; https://doi.org/10.3390/app16020906 - 15 Jan 2026
Viewed by 127
Abstract
After nearly two decades of developments in Historic/Heritage Building Information Modeling (HBIM), the field has reached a stage of maturity that calls for a critical reassessment of its evolution, achievements, and remaining challenges. Digital representation has become a central component of contemporary heritage [...] Read more.
After nearly two decades of developments in Historic/Heritage Building Information Modeling (HBIM), the field has reached a stage of maturity that calls for a critical reassessment of its evolution, achievements, and remaining challenges. Digital representation has become a central component of contemporary heritage conservation, enabling advanced methods for analysis, management, and communication. This review examines the maturation of HBIM as a comprehensive framework that integrates extended reality (XR), artificial intelligence (AI), machine learning (ML), semantic segmentation and Digital Twin (DT). Six major research domains that have shaped recent progress are outlined: (1) the application of HBIM to restoration and conservation workflows; (2) the expansion of public engagement through XR, virtual museums, and serious games; (3) the stratigraphic documentation of building archaeology, historical phases, and material decay; (4) data-exchange mechanisms and interoperability with open formats and Common Data Environments (CDEs); (5) strategies for modeling geometric and semantic complexity using traditional, applied, and AI-driven approaches; and (6) the emergence of heritage DT as dynamic, semantically enriched systems integrating real-time and lifecycle data. A comparative assessment of international case studies and bibliometric trends (2015–2025) illustrates how HBIM is transforming proactive and data-informed conservation practice. The review concludes by identifying persistent gaps and outlining strategic directions for the next phase of research and implementation. Full article
Show Figures

Figure 1

22 pages, 5885 KB  
Article
Performance Analysis of Phase Change Material Walls and Different Window-to-Wall Ratios in Elderly Care Home Buildings Under Hot-Summer and Cold-Winter Climate
by Wuying Chen, Bao Xie and Lu Nie
Buildings 2026, 16(2), 367; https://doi.org/10.3390/buildings16020367 - 15 Jan 2026
Viewed by 168
Abstract
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls [...] Read more.
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls with the window-to-wall ratio (WWR). PCM wall performance was tested experimentally, and EnergyPlus simulations were conducted to assess building energy use for WWR values ranging from 0.25 to 0.50, with and without PCM. The phase change material (PCM) used in this study is paraffin (an organic phase change material), which has a melting point of 26 °C and can store and release heat during temperature fluctuations. The experimental results show that PCM walls effectively reduce heat transfer, lowering the surface temperatures of external, central, and internal walls by 3.9 °C, 3.8 °C, and 3.7 °C, respectively, compared to walls without PCM. The simulation results predict that the PCM wall can reduce air conditioning energy consumption by 8.2% in summer and total annual energy consumption by 14.2%. The impact of WWR is orientation-dependent: east and west façades experience significant cooling penalties as WWR increases and should be maintained at or below 0.30; the south façade achieves optimal performance at a WWR of 0.40, with the lowest total energy load (111.2 kW·h·m-2); and the north façade performs best at the lower bound (WWR = 0.25). Under the combined strategy (south wall with PCM and WWR = 0.40), annual total energy consumption is reduced by 9.8% compared to the baseline (no PCM), with indoor temperatures maintained between 18 and 26 °C. This range is selected based on international thermal comfort standards (e.g., ASHRAE) and comfort research specifically targeting the elderly population, ensuring comfort for elderly occupants. These findings offer valuable guidance for energy-efficient design in similar climates and demonstrate that the synergy between PCM and WWR can reduce energy consumption while maintaining thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

11 pages, 2786 KB  
Systematic Review
Association Between VKORC1 Gene Polymorphisms and Osteopenia and Osteoporosis: A Systematic Review and Meta-Analysis
by Ştefan Cristian Vesa, Vlad-Mihai Ichim, Silvina Iluț, Stefano Miglietta, Mihai Lupu, Camelia Alexandra Coada, Antonia Eugenia Macarie, Ovidiu Chiroban, Anca Dana Buzoianu and Octavia Sabin
Medicina 2026, 62(1), 180; https://doi.org/10.3390/medicina62010180 - 15 Jan 2026
Viewed by 154
Abstract
Background and Objectives: The vitamin K epoxide reductase complex subunit 1 (VKORC1) plays a central role in the vitamin K cycle, which is essential for γ-carboxylation of multiple bone-related proteins. Genetic variants in VKORC1 may influence bone mineral density (BMD) and osteoporosis risk. [...] Read more.
Background and Objectives: The vitamin K epoxide reductase complex subunit 1 (VKORC1) plays a central role in the vitamin K cycle, which is essential for γ-carboxylation of multiple bone-related proteins. Genetic variants in VKORC1 may influence bone mineral density (BMD) and osteoporosis risk. Materials and Methods: A systematic review and meta-analysis were conducted to evaluate the association between VKORC1 polymorphisms and osteopenia and osteoporosis. Relevant studies were identified through PubMed, Scopus, and Web of Science databases. Data on study characteristics, genotypes, BMD measurement, ethnicity, sex, and menopausal status were extracted. Results: Six studies comprising 7335 participants were included. All studies assessed BMD using dual-energy X-ray absorptiometry (DXA). The mean participant age ranged from 41.9 to 63.7 years. The VKORC1 variants most frequently studied, which were included in the meta-analysis, were rs9923231 and rs9934438. The overall effect of VKORC1 risk alleles on osteopenia/osteoporosis was significant with a p = 0.041 (fixed effects OR = 1.16, 95% CI = 1.01–1.35). Heterogeneity among studies was insignificant (I2 = 0%, p = 0.893). Conclusions: A modest association was observed for the VKORC1 variants. The current body of evidence requires further studies to elucidate whether VKORC1 polymorphisms have a clinically meaningful role in bone health. Full article
(This article belongs to the Special Issue Bone Regeneration, Osteoporosis and Osteoarthritis)
Show Figures

Figure 1

18 pages, 4040 KB  
Article
Non-Uniform Microstructural Evolution Rules and Mechanisms of Ti2AlNb-Based Alloy Stiffened Panels Subjected to Electrically Assisted Press Bending
by Xiao-Li Zhang, Si-Liang Yan, Zi-Long Liu, Yu-Hong Gong and Miao Meng
Metals 2026, 16(1), 97; https://doi.org/10.3390/met16010097 - 15 Jan 2026
Viewed by 174
Abstract
A knowledge of the process–structure–property correlation and underlying deformation mechanisms of material under a coupled electro-thermal–mechanical field is crucial for developing novel electrically assisted forming techniques. In this work, numerical simulation and experimental analyses were carried out to study the non-uniform deformation behaviors [...] Read more.
A knowledge of the process–structure–property correlation and underlying deformation mechanisms of material under a coupled electro-thermal–mechanical field is crucial for developing novel electrically assisted forming techniques. In this work, numerical simulation and experimental analyses were carried out to study the non-uniform deformation behaviors and microstructure evolution of Ti2AlNb-based alloy stiffened panels in different characteristic deformation regions during electrically assisted press bending (EAPB). The quantitative relationships between electro-thermal–mechanical routes, microstructural features, and mechanical properties of EAPBed stiffened panels were initially established, and the underlying mechanisms of electrically induced phase transformation and morphological transformation were unveiled. Results show that the temperature of the panel first increases then deceases with forming time in most regions, but it increases monotonically and reaches its peak value of 720.1 °C in the web region close to the central transverse rib. The higher accumulated strain and precipitation of the acicular O phase at mild temperature leads to strengthening of the longitudinal ribs at near blank holder regions, resulting in an ideal microstructure of 3~4% blocky α2 phase + a dual-scale O structure in a B2 matrix with a maximal hardness of 389.4 ± 7.2 HV0.3. While the dissolution of the α2 phase and the spheroidization and coarsening of the O phase bring about softening (up to 9.29%) of the lateral ribs and web near the center region, the differentiated evolution of microstructure and the mechanical property in EAPB results in better deformation coordination and resistance to wrinkling and thickness variation in the rib–web structure. The present work will provide valuable references for achieving shape-performance coordinated manufacturing of Ti2AlNb-based stiffened panels. Full article
(This article belongs to the Special Issue Thermomechanical Performance of Metallic Alloys)
Show Figures

Figure 1

17 pages, 1011 KB  
Review
Biomolecular Condensates in Disease: Decoding the Material State and Engineering Precision Modulators
by Biwei Han, Boxian Li, Xingyue Wang and Liang Wang
Int. J. Mol. Sci. 2026, 27(2), 837; https://doi.org/10.3390/ijms27020837 - 14 Jan 2026
Viewed by 121
Abstract
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of [...] Read more.
The recognition of liquid–liquid phase separation (LLPS) as a widespread organizing principle has revolutionized our view of cellular biochemistry. By forming biomolecular condensates, cells spatially orchestrate reactions without membranes. However, the dysregulation of this precise physical organization is emerging as a driver of diverse pathologies, collectively termed “Condensatopathies.” Unlike traditional proteinopathies defined by static aggregates, these disorders span a dynamic spectrum of material state dysfunctions, from the failure to assemble essential compartments to the formation of aberrant, toxic phases. While research has largely focused on neurodegeneration and cancer, the impact of condensate dysfunction likely extends across broad physiological landscapes. A central unresolved challenge lies in deciphering the “molecular grammar” that governs the transition from functional fluids to pathological solids and, critically, visualizing these transitions in situ. This “material science” perspective presents a profound conundrum for drug discovery: how to target the collective physical state of a protein ensemble rather than a fixed active site. This review navigates the evolving therapeutic horizon, examining the limitations of current pharmacological approaches in addressing the complex “condensatome.” Moving beyond inhibition, we propose that the future of intervention lies in “reverse-engineering” the biophysical codes of phase separation. We discuss how deciphering these principles enables the creation of programmable molecular tools—such as synthetic peptides and state-specific degraders—designed to precisely modulate or dismantle pathological condensates, paving the way for a new era of precision medicine governed by soft matter physics. Full article
Show Figures

Figure 1

Back to TopTop