Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,835)

Search Parameters:
Keywords = central nervous system development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 757 KB  
Review
Microglial Maturation and Functional Heterogeneity: Mechanistic Links to Neurodevelopmental Disorders
by Pariya Khodabakhsh and Olga Garaschuk
Int. J. Mol. Sci. 2026, 27(3), 1185; https://doi.org/10.3390/ijms27031185 (registering DOI) - 24 Jan 2026
Abstract
As the brain’s resident macrophages, microglia on the one side are increasingly recognized as essential players in discrete developmental stages, where immune, metabolic, and activity-derived signals are coordinately integrated to guide brain development. On the other side, the precise temporal and molecular coordination [...] Read more.
As the brain’s resident macrophages, microglia on the one side are increasingly recognized as essential players in discrete developmental stages, where immune, metabolic, and activity-derived signals are coordinately integrated to guide brain development. On the other side, the precise temporal and molecular coordination of microglial maturation is imperative for the structural and functional integrity of the developing central nervous system (CNS). In this review, we synthesize recent data that reposition microglia from a uniform population of immune sentinels to temporally programmed and regionally specialized regulators of circuit maturation. This involves dissecting the embryonic origins and migratory pathways of microglial progenitors in mouse and human systems and illustrating how gradual transcriptional and morphological maturation aligns the biology of microglia with progressive phases of neurogenesis, synaptic fine-tuning, myelination, and vascular stabilization. In addition, we discuss how individual gene mutations, inflammatory insults during perinatal life, and environmental disturbances intersect with these temporal programs to alter microglial phenotypes and compromise circuit formation. With a special emphasis on epilepsy and autism spectrum disorder, often sharing the common etiology, we illustrate how early malfunction of microglia may drive neural network dysfunction. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Neurobiology 2025)
Show Figures

Figure 1

16 pages, 6136 KB  
Article
Dose–Effect Relationship of the Immunotoxicity, Neurotoxicity, Gastrointestinal Toxicity, and Hepatotoxicity of the Maillard Reaction Product 2-Acetylfuran
by Qiaosi Wei, Xiangxin Wang, Qingxue Chen, Shubo Luo, Dongying Cui, Sinan Mu, Jufang Li, Qinggang Xie and Yajun Xu
Foods 2026, 15(3), 432; https://doi.org/10.3390/foods15030432 (registering DOI) - 24 Jan 2026
Abstract
2-acetylfuran is a product of the Maillard reaction and is widely found, especially in heat-processed foods such as grain products, baked goods, and dairy products. Although 2-acetylfuran contributes to flavor, high concentrations may be toxic. Its target organs and dose–response relationships remain poorly [...] Read more.
2-acetylfuran is a product of the Maillard reaction and is widely found, especially in heat-processed foods such as grain products, baked goods, and dairy products. Although 2-acetylfuran contributes to flavor, high concentrations may be toxic. Its target organs and dose–response relationships remain poorly characterized. In this study, transgenic zebrafish with fluorescently labeled immune and neural systems were used to assess the effects of 2-acetylfuran on immune and neural development. Wild-type zebrafish were employed to assess the toxicity of 2-acetylfuran on locomotor ability, gastrointestinal development, and liver function. The maximum non-lethal concentration (MNLC) and the 10% lethal concentration (LC10) for zebrafish embryos were 0.844 and 0.889 μL/mL, respectively. Regarding immunotoxicity, at concentrations of 0.281, 0.844, and 0.889 μL/mL, 2-acetylfuran significantly reduced the numbers of neutrophils, T cells, and macrophages. Regarding locomotor and neurotoxicity, motor speed and total locomotor distance were significantly reduced at 0.844 and 0.889 μL/mL. These findings were consistent with neurodevelopmental assessments, in which 0.844 μL/mL 2-acetylfuran resulted in a significant increase in apoptotic cells in the central nervous system and markedly shortened peripheral motor nerve lengths. Regarding gastrointestinal toxicity, 0.844 and 0.889 μL/mL 2-acetylfuran significantly reduced the gastrointestinal area, while neutrophil counts showed no significant changes, suggesting a relatively mild effect on the gastrointestinal tract. Regarding hepatic toxicity, all tested concentrations of 2-acetylfuran primarily increased the delayed yolk sac absorption area. Furthermore, at 0.844 μL/mL, histological examination revealed hepatic pathological changes characterized by hepatocyte nuclear swelling, vacuolar degeneration, and hepatocyte necrosis. In summary, this study reveals the multi-organ toxicity profile of 2-acetylfuran in the zebrafish model, with particularly high sensitivity in the immune system and liver. This research provides theoretical support for risk assessment and process control of 2-acetylfuran in foods. Full article
Show Figures

Figure 1

24 pages, 6263 KB  
Review
Targeting Nav Channels for Pain Relief: Structural Insights and Therapeutic Opportunities
by Yuzhen Xie, Xiaoshuang Huang, Fangzhou Lu and Jian Huang
Int. J. Mol. Sci. 2026, 27(3), 1180; https://doi.org/10.3390/ijms27031180 - 23 Jan 2026
Abstract
Pain is an unpleasant but essential sensory experience that serves as a protective mechanism, yet it can also manifest maladaptively in a wide range of pathological conditions. Current analgesic strategies rely heavily on opioid medications and non-steroidal anti-inflammatory drugs (NSAIDs); however, concerns regarding [...] Read more.
Pain is an unpleasant but essential sensory experience that serves as a protective mechanism, yet it can also manifest maladaptively in a wide range of pathological conditions. Current analgesic strategies rely heavily on opioid medications and non-steroidal anti-inflammatory drugs (NSAIDs); however, concerns regarding addiction, tolerance, and dose-limiting adverse effects highlight the urgent need for safer and more effective therapeutics. Voltage-gated sodium (Nav) channels, which govern the initiation and propagation of action potentials, have emerged as promising targets for mechanism-based analgesic development. In particular, the Nav1.7–Nav1.9 subtypes have attracted substantial interest owing to their enrichment in the peripheral nervous system—despite broader expression elsewhere—and their central roles in nociception, offering the potential for non-addictive, subtype-selective pain modulation. This review summarizes the physiological roles of these channels in nociception, examines how disease-associated mutations shape pain phenotypes, and highlights recent advances in drug discovery targeting Nav1.7 and Nav1.8. The recent FDA approval of VX-548 (suzetrigine), a first-in-class and highly selective Nav1.8 inhibitor, marks a major milestone that validates peripheral Nav channels as clinically actionable targets for analgesia. We also discuss the remaining challenges and emerging opportunities in the pursuit of next-generation, mechanism-informed analgesics. Full article
(This article belongs to the Special Issue Role of Ion Channels in Human Health and Diseases)
20 pages, 1047 KB  
Review
Intermittent Fasting: A Metabolically Focused Therapeutic Strategy for Obesity
by Natalia Diaz-Garrido, Sebastián Zagmutt, Alejandro Regaldiz, Pedro Cisternas and Marianela Bastías-Pérez
Nutrients 2026, 18(3), 371; https://doi.org/10.3390/nu18030371 - 23 Jan 2026
Viewed by 36
Abstract
The global prevalence of obesity continues to rise and is a significant risk factor for the onset and progression of cardiovascular diseases. Despite the development of new pharmacological therapies, novel strategies are being explored to mitigate the impact of this disease. Intermittent fasting [...] Read more.
The global prevalence of obesity continues to rise and is a significant risk factor for the onset and progression of cardiovascular diseases. Despite the development of new pharmacological therapies, novel strategies are being explored to mitigate the impact of this disease. Intermittent fasting (IF) is a nutritional intervention that has gained popularity and shows potential as an innovative approach to weight management. This study aims to compile scientific evidence on various aspects of fasting, including its physiological effects, the molecular and thermogenic mechanisms involved, and recommendations regarding nutritional strategies during the refeeding period within the eating window. We conducted a narrative review, analyzing evidence available from PubMed/MEDLINE based on studies related to intermittent fasting, thermogenesis, and their associated outcomes. Our results demonstrate the existence of three commonly used IF protocols: alternate day fasting (ADF), periodic fasting (PF), and time-restricted eating (TRE). In addition to its effects on weight loss, IF has demonstrated notable benefits for cardiovascular health, oxidative stress, and metabolic function. Moreover, the interaction between the central nervous system and brown adipose tissue provides an alternative mechanism for the molecular regulation of thermogenesis. Nutritional patterns adopted during intermittent fasting play a crucial role in optimizing outcomes, with particular emphasis on the intake of proteins, fiber, bioactive compounds, and essential fatty acids during the feeding window. In summary, current evidence indicates that intermittent fasting provides a biologically robust framework for studying energy balance and holds promise for developing targeted nutritional interventions. Full article
(This article belongs to the Special Issue Diet and Nutrition: Metabolic Diseases (2nd Edition))
Show Figures

Figure 1

27 pages, 6495 KB  
Article
Linear Polyethyleneimine-Coated Gold Nanoparticles as a Platform for Central Nervous System Targeting
by Agustín J. Byrne, Antonia Infantes-Molina, Enrique Rodríguez-Castellón, Romina J. Glisoni, María J. Pérez, Patrizia Andreozzi, Barbara Richichi, Marco Marradi, Paula G. Franco and Juan M. Lázaro-Martínez
Polymers 2026, 18(2), 298; https://doi.org/10.3390/polym18020298 - 22 Jan 2026
Viewed by 34
Abstract
The unique physicochemical properties of gold nanoparticles (GNPs) have made them versatile tools for biomedical applications, such as imaging, therapy, and drug delivery. The surface modification of GNPs with polymers or biomolecules can enhance their colloidal stability and facilitate internalization into cells. However, [...] Read more.
The unique physicochemical properties of gold nanoparticles (GNPs) have made them versatile tools for biomedical applications, such as imaging, therapy, and drug delivery. The surface modification of GNPs with polymers or biomolecules can enhance their colloidal stability and facilitate internalization into cells. However, the efficient and biocompatible delivery to the central nervous system remains a major challenge, as many existing nanocarriers show poor capacity to cross the blood-brain barrier. We developed a method to coat GNPs with linear polyethyleneimine (GNP@PEI) through a chemical reduction bottom-up approach, in which linear PEI hydrochloride acts simultaneously as a reducing and stabilizing agent of colloidal dispersion. This strategy yielded monodisperse spherical GNP@PEI nanoparticles with an average diameter of 50 nm. The physicochemical profile, biocompatibility, and capacity for neural uptake of this potentially brain-targeted nanoplatform were then evaluated. GNP@PEI nanoparticles exhibited high biocompatibility in several primary neural cultures and cell lines, with cellular uptake showing clear cell-type-dependent differences. In vivo studies carried out in a murine model demonstrated that after the intranasal or intraperitoneal administrations of GNP@PEI nanoparticles, detectable levels of gold were found in several organs, including the brain. Collectively, these findings highlight the potential of GNP@PEI as a promising nanoplatform for brain-targeted delivery and for advancing the development of therapeutic strategies for neurological disorders. Full article
Show Figures

Graphical abstract

13 pages, 234 KB  
Article
Exploring the Illness Experience of Patients with Central Nervous System Hemangioblastomas in Von Hippel–Lindau Disease: A Qualitative Study
by Mei-Fang Chuang, Pi-Hua Huang, Jing-Shan Huang and Chii Jeng
Healthcare 2026, 14(2), 275; https://doi.org/10.3390/healthcare14020275 - 21 Jan 2026
Viewed by 103
Abstract
Background/Objectives: Von Hippel–Lindau (VHL) disease is a rare autosomal dominant hereditary disorder. Central nervous system hemangioblastomas are one of the most common tumor types associated with VHL disease. Although these tumors are histologically benign, delayed diagnosis and treatment may result in severe neurological [...] Read more.
Background/Objectives: Von Hippel–Lindau (VHL) disease is a rare autosomal dominant hereditary disorder. Central nervous system hemangioblastomas are one of the most common tumor types associated with VHL disease. Although these tumors are histologically benign, delayed diagnosis and treatment may result in severe neurological dysfunction, permanent disability, and even death. However, little is known about the experiences of patients with VHL disease. The aim of this study was to gain a better understanding of the illness experiences and psychological responses of patients with VHL disease accompanied by central nervous system hemangioblastomas. Methods: A qualitative study based on a semi-structured guide was conducted. Twelve participants were recruited. Data were collected through face-to-face interviews and analyzed using the constant comparative method. Results: Four themes and their subthemes were identified: 1. powerlessness—unpredictable disease progression and uncontrollable continuity; 2. negative emotional experiences—guilt and self-blame, depression, and low self-esteem; 3. compromise—acceptance of fate, positive outlook, and sense of hope; and 4. persistent worry—worries about family members, anxiety regarding finances and employment, and uncertainty regarding the future. Conclusions: This study identified four major themes in the illness experiences of patients with VHL disease accompanied by central nervous system hemangioblastomas, which provided deep insights into the care needs of individuals with VHL disease. Healthcare providers should develop effective measures to enhance patients’ ability to maintain a good quality of life and confront the future with resilience. Full article
34 pages, 1354 KB  
Review
Dysregulation of Immune Mediators and Synaptic Plasticity in Central Nervous System Disorders
by Paola Imbriani, Clara D'Ambra, Roberta De Mori, Marta Ionta, Alessandro Renna and Paola Bonsi
Cells 2026, 15(2), 201; https://doi.org/10.3390/cells15020201 - 21 Jan 2026
Viewed by 299
Abstract
Bidirectional communication between the central nervous system and the immune system is crucial for brain function, particularly in regulating neuroplasticity: on the one hand, glial cells modulate neuronal function, brain circuitry, axon myelination, dendritic spine architecture, and information processing, while on the other [...] Read more.
Bidirectional communication between the central nervous system and the immune system is crucial for brain function, particularly in regulating neuroplasticity: on the one hand, glial cells modulate neuronal function, brain circuitry, axon myelination, dendritic spine architecture, and information processing, while on the other hand, neuronal activity can alter the immune response. Neuroinflammation and dysregulation of astroglia and microglia can be detrimental to brain development and function. In particular, maladaptive responses and chronic glial activation have been correlated to synaptic dysfunction in diverse brain conditions. In the present review, we will provide a general introduction to the main players of the neuroimmune response and their ability to modulate neuroplasticity, followed by a comprehensive overview of experimental evidence linking the dysregulation of immune mediators to the disruption of synaptic plasticity in neurodegenerative and neurodevelopmental disorders, with a specific focus on Alzheimer’s disease, Parkinson’s disease, and autism spectrum disorder. Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
Show Figures

Figure 1

23 pages, 11750 KB  
Article
Computational Identification of Blood–Brain Barrier-Permeant Microbiome Metabolites with Binding Affinity to Neurotransmitter Receptors in Neurodevelopmental Disorders
by Ricardo E. Buendia-Corona, María Fernanda Velasco Dey, Lisset Valencia Robles, Hannia Josselín Hernández-Biviano, Cristina Hermosillo-Abundis and Lucila Isabel Castro-Pastrana
Molecules 2026, 31(2), 366; https://doi.org/10.3390/molecules31020366 - 20 Jan 2026
Viewed by 190
Abstract
The gut microbiome produces thousands of metabolites with potential to modulate central nervous system function through peripheral or direct neural mechanisms. Tourette syndrome, attention-deficit/hyperactivity disorder, and autism spectrum disorder exhibit shared neurotransmitter dysregulation and microbiome alterations, yet mechanistic links between microbial metabolites and [...] Read more.
The gut microbiome produces thousands of metabolites with potential to modulate central nervous system function through peripheral or direct neural mechanisms. Tourette syndrome, attention-deficit/hyperactivity disorder, and autism spectrum disorder exhibit shared neurotransmitter dysregulation and microbiome alterations, yet mechanistic links between microbial metabolites and receptor-mediated neuromodulation remain unclear. We screened 27,642 microbiome SMILES metabolites for blood–brain barrier permeability using rule-based SwissADME classification and a PyTorch 2.0 neural network trained on 7807 experimental compounds (test accuracy 86.2%, AUC 0.912). SwissADME identified 1696 BBB-crossing metabolites following Lipinski’s criteria, while PyTorch classified 2484 metabolites with expanded physicochemical diversity. Following 3D conformational optimization (from SMILES) and curation based on ≤32 rotatable bonds, molecular docking was performed against five neurotransmitter receptors representing ionotropic (GABRA2, GRIA2, GRIN2B) and metabotropic (DRD4, HTR1A) receptor classes. The top 50 ligands across five receptors demonstrated method-specific BBB classification (44% SwissADME-only, 44% PyTorch-only, 12% overlap), validating complementary prediction approaches. Fungal metabolites from Ascomycota dominated high-affinity top ligands (66%) and menaquinone MK-7 showed broad phylogenetic conservation (71.4% of phylum). Our results establish detailed receptor–metabolite interaction maps, with fungal metabolites dominating high-affinity ligands, challenging the prevailing bacterial focus of the microbiome and providing a foundation for precision medicine and a framework for developing microbiome-targeted therapeutics to address clinical needs in neurodevelopmental disorders. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

44 pages, 3308 KB  
Review
Experimental Models and Translational Strategies in Neuroprotective Drug Development with Emphasis on Alzheimer’s Disease
by Przemysław Niziński, Karolina Szalast, Anna Makuch-Kocka, Kinga Paruch-Nosek, Magdalena Ciechanowska and Tomasz Plech
Molecules 2026, 31(2), 320; https://doi.org/10.3390/molecules31020320 - 16 Jan 2026
Viewed by 239
Abstract
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are becoming more prevalent and still lack effective disease-modifying therapies (DMTs). However, translational efficiency remains critically low. For example, a ClinicalTrials.gov analysis of AD programs [...] Read more.
Neurodegenerative diseases (NDDs), including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are becoming more prevalent and still lack effective disease-modifying therapies (DMTs). However, translational efficiency remains critically low. For example, a ClinicalTrials.gov analysis of AD programs (2002–2012) estimated ~99.6% attrition, while PD programs (1999–2019) achieved an overall success rate of ~14.9%. In vitro platforms are assessed, ranging from immortalized neuronal lines and primary cultures to human-induced pluripotent stem cell (iPSC)-derived neurons/glia, neuron–glia co-cultures (including neuroinflammation paradigms), 3D spheroids, organoids, and blood–brain barrier (BBB)-on-chip systems. Complementary in vivo toxin, pharmacological, and genetic models are discussed for systems-level validation and central nervous system (CNS) exposure realism. The therapeutic synthesis focuses on AD, covering symptomatic drugs, anti-amyloid immunotherapies, tau-directed approaches, and repurposed drug classes that target metabolism, neuroinflammation, and network dysfunction. This review links experimental models to translational decision-making, focusing primarily on AD and providing a brief comparative context from other NDDs. It also covers emerging targeted protein degradation (PROTACs). Key priorities include neuroimmune/neurovascular human models, biomarker-anchored adaptive trials, mechanism-guided combination DMTs, and CNS PK/PD-driven development for brain-directed degraders. Full article
Show Figures

Figure 1

18 pages, 2594 KB  
Article
Hippocampal Metabolomics Reveal the Mechanism of α-Conotoxin [S9K]TxID Attenuating Nicotine Addiction
by Meiting Wang, Weifeng Xu, Huanbai Wang, Cheng Cui, Rongyan He, Xiaodan Li, Jinpeng Yu, J. Michael McIntosh, Dongting Zhangsun and Sulan Luo
Mar. Drugs 2026, 24(1), 43; https://doi.org/10.3390/md24010043 - 15 Jan 2026
Viewed by 214
Abstract
Nicotine is the main substance responsible for the development of tobacco addiction. The α3β4 nicotinic acetylcholine receptors (nAChRs) are a potential key target for mitigating nicotine reward. Preliminary studies in our laboratory suggest that α-conotoxin [S9K]TxID serves as a selective and potent antagonist [...] Read more.
Nicotine is the main substance responsible for the development of tobacco addiction. The α3β4 nicotinic acetylcholine receptors (nAChRs) are a potential key target for mitigating nicotine reward. Preliminary studies in our laboratory suggest that α-conotoxin [S9K]TxID serves as a selective and potent antagonist targeting α3β4 nAChRs, which may be beneficial in addressing nicotine addiction. However, the mechanisms of [S9K]TxID treatment in nicotine addiction are still to be determined. This study aimed to identify the differential metabolic profiles of [S9K]TxID treatment in nicotine addiction using an untargeted metabolomic profiling method. As demonstrated by behavioral experiments, [S9K]TxID effectively attenuated nicotine-induced conditioned place preference (CPP) expression without exerting inhibitory effects on the central nervous system (CNS). The results of untargeted metabolomics revealed that eight metabolites were significantly altered after [S9K]TxID treatment, particularly phenylalanine. [S9K]TxID also attenuated nicotine-induced metabolic disorders by regulating phenylalanine, tyrosine and tryptophan biosynthesis. In conclusion, our findings suggest that [S9K]TxID could be a potential therapeutic compound for nicotine addiction. Full article
(This article belongs to the Section Marine Toxins)
Show Figures

Graphical abstract

13 pages, 1433 KB  
Article
Presynaptic Terminal Proteins and Nicotinic Receptors Are Depleted from Mouse Parasympathetic Ganglionic Junctions Paralysed with Botulinum Neurotoxin Type A
by Ahmed Al-Sabi and Gary W. Lawrence
Toxins 2026, 18(1), 43; https://doi.org/10.3390/toxins18010043 - 14 Jan 2026
Viewed by 186
Abstract
Plasticity is fundamental to the development, strengthening, and maintenance of healthy synaptic connections and recovery from injury in both the central and peripheral nervous systems. Yet, the processes involved are poorly understood. Herein, using a combination of patch-clamp electrophysiology and immuno-fluorescence confocal microscopy [...] Read more.
Plasticity is fundamental to the development, strengthening, and maintenance of healthy synaptic connections and recovery from injury in both the central and peripheral nervous systems. Yet, the processes involved are poorly understood. Herein, using a combination of patch-clamp electrophysiology and immuno-fluorescence confocal microscopy in adult mice, it is shown that blockade of synaptic transmission at submandibular ganglion junctions exposed to botulinum neurotoxin type A was accompanied by a rapid and striking decline in the abundance of synaptic vesicle markers—SV2, vesicle-associated membrane protein 2, and vesicular acetylcholine transporter—plus SNAP-25 (cleaved and intact) and postsynaptic α7 nicotinic acetylcholine receptors. Such alterations by the neurotoxin of parasympathetic synapses contrast starkly with the stability of postsynaptic proteins at nearby skeletal neuromuscular junctions. Both neurotransmission and the expression of SV2 and α7 nicotinic acetylcholine receptors remained depressed for 4 weeks, with full recovery of synaptic function delayed for more than 8 weeks. These novel findings may explain the relatively slow recovery of autonomic function after botulism or following therapeutic injections to alleviate hypersecretory disorders. Full article
Show Figures

Figure 1

31 pages, 1252 KB  
Review
Current Pharmacotherapeutic Strategies in Diffuse Gliomas: Focus on Glioblastoma, IDH-Wildtype, and Emerging Targeted Therapies for IDH-Mutant Tumors
by Klaudia Dynarowicz, Barbara Smolak, Dorota Bartusik-Aebisher, Wiesław Guz, Gabriela Henrykowska and David Aebisher
Pharmaceuticals 2026, 19(1), 148; https://doi.org/10.3390/ph19010148 - 14 Jan 2026
Viewed by 191
Abstract
Glioblastoma, isocitrate dehydrogenase (IDH1/2) wild-type (IDH-wildtype), is one of the most aggressive and malignant tumors of the central nervous system, characterized by rapid growth, pronounced cellular heterogeneity, and an exceptionally poor prognosis. The median survival time for patients with glioblastoma, IDH-wildtype, [...] Read more.
Glioblastoma, isocitrate dehydrogenase (IDH1/2) wild-type (IDH-wildtype), is one of the most aggressive and malignant tumors of the central nervous system, characterized by rapid growth, pronounced cellular heterogeneity, and an exceptionally poor prognosis. The median survival time for patients with glioblastoma, IDH-wildtype, is approximately 15 months after diagnosis, and current multimodal treatment strategies remain largely ineffective. This review focuses on contemporary pharmacotherapeutic approaches used in the management of glioblastoma, IDH-wildtype, including temozolomide-based chemotherapy, corticosteroids for edema control, and antiangiogenic therapy in recurrent disease, with particular emphasis on their clinical efficacy and limitations. In addition, the review discusses emerging targeted therapeutic strategies developed for IDH-mutant diffuse gliomas, which represent a biologically distinct disease entity. Particular attention is given to ivosidenib, a selective inhibitor of mutant IDH1, currently evaluated for the treatment of astrocytoma, IDH-mutant, grade 4. Its epigenetic mechanism of action, involving inhibition of the oncometabolite 2-hydroxyglutarate (2-HG), is outlined, along with preliminary clinical evidence suggesting potential to delay disease progression. Finally, innovative drug-delivery technologies designed to overcome the blood–brain barrier are briefly discussed as complementary strategies that may enhance the efficacy of both conventional and targeted therapies. Overall, future advances in the treatment of diffuse gliomas will likely depend on the integration of molecularly targeted agents, predictive biomarkers, and advanced delivery platforms aimed at improving patient survival and quality of life. Full article
(This article belongs to the Special Issue Advances in Medicinal Chemistry: 2nd Edition)
Show Figures

Figure 1

13 pages, 1107 KB  
Systematic Review
Non-Invasive Neuromodulation for Pain Management in Children and Adolescents: A Systematic Review of Randomized Controlled Trials
by Gabrielly Santos Pereira, Marcelo Lourenço da Silva, Ana Beatriz Oliveira and Luciano Maia Alves Ferreira
Future 2026, 4(1), 5; https://doi.org/10.3390/future4010005 - 14 Jan 2026
Viewed by 188
Abstract
Pain in children and adolescents remains an underestimated and undertreated condition, with long-term physical and psychosocial consequences. Non-invasive neuromodulation has emerged as a promising, low-risk approach for managing acute and chronic pain by modulating central and peripheral neural pathways. This systematic review followed [...] Read more.
Pain in children and adolescents remains an underestimated and undertreated condition, with long-term physical and psychosocial consequences. Non-invasive neuromodulation has emerged as a promising, low-risk approach for managing acute and chronic pain by modulating central and peripheral neural pathways. This systematic review followed PRISMA 2020 guidelines to evaluate the efficacy, safety, and clinical applicability of non-invasive neuromodulation techniques in pediatric pain. Searches were conducted in PubMed, Embase, Scopus, Web of Science, Cochrane CENTRAL, and ScienceDirect for randomized controlled trials (RCTs) published between 2015 and 2025. Six RCTs met the inclusion criteria, encompassing percutaneous electrical nerve field stimulation (PENFS), transcutaneous auricular vagus nerve stimulation (taVNS), transcutaneous electrical acupoint stimulation (TEAS), and transcutaneous electrical nerve stimulation (TENS). Four trials reported significant reductions in pain intensity alongside improvements in functional outcomes and quality of life, particularly in functional abdominal pain and postoperative contexts. Most studies showed low or moderate risk across domains, with appropriate randomization and blinded assessment. No serious adverse events were reported, confirming an excellent safety profile. These findings support non-invasive neuromodulation as a feasible and well-tolerated adjunct to conventional pediatric pain management. Further high-quality trials are warranted to standardize protocols and explore mechanisms of neuroplasticity in the developing nervous system. PROSPERO (CRD420251170866). Full article
Show Figures

Figure 1

26 pages, 1203 KB  
Review
Synergy of SARS-CoV-2 and HIV-1 Infections in the Human Brain
by Rajnish S. Dave and Howard S. Fox
Pathogens 2026, 15(1), 89; https://doi.org/10.3390/pathogens15010089 - 13 Jan 2026
Viewed by 312
Abstract
This review explores the interplay between SARS-CoV-2 and HIV-1 infections within the human brain, highlighting the significant neurological implications of these viral infections. SARS-CoV-2 can infect the central nervous system (CNS), with evidence of the virus detected in various brain regions, including the [...] Read more.
This review explores the interplay between SARS-CoV-2 and HIV-1 infections within the human brain, highlighting the significant neurological implications of these viral infections. SARS-CoV-2 can infect the central nervous system (CNS), with evidence of the virus detected in various brain regions, including the hypothalamus, cerebellum, and olfactory bulb. This infection is linked to microglial activation and neuroinflammation, which can lead to severe neurological outcomes in affected individuals. Autopsy studies revealed microglial changes, including downregulation of the P2RY12 receptor, indicating a shift from homeostatic to inflammatory phenotype. Similar changes in microglia are found in the brains of people with HIV-1 (PWH). In SARS-CoV-2, the correlation between inflammatory cytokines, such as IL-1, IL-6, and MCP-1, found in cerebrospinal fluid and brain tissues, indicates significant neurovascular inflammation. Astrogliosis and microglial nodules were observed, further emphasizing the inflammatory response triggered by the viral infections, again in parallel to those found in the brains of PWH. Epidemiologic data indicate that although SARS-CoV-2 infection rates in PWH mirror those in People without HIV (PWoH) populations, Long-COVID prevalence is markedly higher among PWH. Evidence of overlapping cognitive impairment, mental health burden, and persistent neuroinflammation highlights diagnostic complexity and therapeutic gaps. Despite plausible mechanistic synergy, direct neuropathological confirmation remains scarce, warranting longitudinal, biomarker-driven studies. Understanding these interactions is critical for developing targeted interventions to mitigate CNS injury and improve outcomes. Full article
Show Figures

Figure 1

37 pages, 6099 KB  
Review
Is Obesity a Modifiable Risk Factor in Multiple Sclerosis? Mechanistic Insights into Neuroinflammation and Oxidative Damage
by Fani-Niki Varra, Olga Pagonopoulou, Michail Varras, Viktoria-Konstantina Varra and Panagiotis Theodosis-Nobelos
Pathophysiology 2026, 33(1), 5; https://doi.org/10.3390/pathophysiology33010005 - 13 Jan 2026
Viewed by 143
Abstract
Introduction: Multiple sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS) that leads to demyelination of CNS neurons and is influenced by genetic, environmental, and lifestyle factors, including diet and obesity. Methods: This review aims to [...] Read more.
Introduction: Multiple sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS) that leads to demyelination of CNS neurons and is influenced by genetic, environmental, and lifestyle factors, including diet and obesity. Methods: This review aims to analyze at the molecular level the relationship between obesity, as a chronic inflammatory condition, and the pathophysiology of MS, as a chronic autoimmune inflammatory disease, in order to understand the complex links between obesity and MS through a search of the PubMed and Google Scholar databases. Discussion: Chronic inflammation and OS are interconnected processes, causing a toxic state, which contributes to the development of CNS neuroinflammation and neuronal damage, resulting in neuronal demyelination and the onset of MS. Adipose tissue is a complex endocrine organ; in addition to being a lipid storage organ, it secretes cytokines and adipokines, which are involved in the regulation of hormones, metabolism, inflammation, and whole-body homeostasis. Obesity triggers chronic low-grade inflammation, disruption of the blood–brain barrier (BBB) and brain metabolism, infiltration of the CNS by immune cells, production of ROS, and generation of oxidative stress (OS). Anti-inflammatory and pro-inflammatory adipokines are also implicated in MS and obesity. Conclusions: Obesity affects MS through common underlying mechanisms and seems to be a modifiable risk factor. Antioxidant and anti-inflammatory compounds with multi-functional characteristics could be additional tools to slow the progression of MS and its promotion through obesity while also offering potential treatment options for both conditions via their multi-targeting characteristics. Full article
Show Figures

Graphical abstract

Back to TopTop