Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,732)

Search Parameters:
Keywords = cellulose treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3116 KiB  
Article
Enhancement of Stability Towards Aging and Soil Degradation Rate of Plasticized Poly(lactic Acid) Composites Containing Ball-Milled Cellulose
by Roberta Capuano, Roberto Avolio, Rachele Castaldo, Mariacristina Cocca, Federico Olivieri, Gennaro Gentile and Maria Emanuela Errico
Polymers 2025, 17(15), 2127; https://doi.org/10.3390/polym17152127 - 1 Aug 2025
Viewed by 287
Abstract
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The [...] Read more.
In this study, multicomponent PLA-based biocomposites were developed. In particular, both native fibrous cellulose and cellulose with modified morphology obtained through ball milling treatments were incorporated into the polyester matrix in combination with an oligomeric plasticizer, specifically a lactic acid oligomer (OLA). The resulting materials were analyzed in terms of their morphology, thermal and mechanical properties over time, water vapor permeability, and degradation under soil burial conditions in comparison to neat PLA and unplasticized PLA/cellulose composites. The cellulose phase significantly affected the mechanical properties and enhanced their long-term stability, addressing a common limitation of PLA/plasticizer blends. Additionally, water vapor permeability increased in all composites. Finally, the ternary systems exhibited a significantly higher degradation rate in soil burial conditions compared to PLA, evidenced by larger weight loss and reduction in the molecular weight of the PLA phase. The degradation rate was notably influenced by the morphology of the cellulose phase. Full article
(This article belongs to the Special Issue Functional Polymer Composites: Synthesis and Application)
Show Figures

Graphical abstract

13 pages, 553 KiB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 250
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

13 pages, 6965 KiB  
Article
Direct Isolation of Carboxylated Cellulose Nanocrystals from Lignocellulose Source
by Thai Anh Do, Luong Lam Nguyen, Thuy Khue Nguyen Thi and Van Quyen Nguyen
Polymers 2025, 17(15), 2124; https://doi.org/10.3390/polym17152124 - 31 Jul 2025
Viewed by 295
Abstract
In this study, we report an effective, one-step chemical treatment to directly isolate carboxylated cellulose nanocrystals (CCNCs) from a lignocellulosic source using a mixture of peracetic acid and 10% H2SO4 solution. We used infrared spectroscopy, X-ray diffraction, dynamic light scattering, [...] Read more.
In this study, we report an effective, one-step chemical treatment to directly isolate carboxylated cellulose nanocrystals (CCNCs) from a lignocellulosic source using a mixture of peracetic acid and 10% H2SO4 solution. We used infrared spectroscopy, X-ray diffraction, dynamic light scattering, atomic force microscopy, and scanning electron microscopy to characterize all the materials. The obtained CCNCs exhibited needle-like shapes with a width of 10–50 nm and a length of 200–500 nm, a high crystalline index (71.3%), and a high content of -COOH groups (~1.405 mmol/g), with a zeta potential value of −48.5 mV. We attributed this to the cooperative effect of strong oxidative agent and strong acid, which makes the removal of all components occur simultaneously in parallel with the partial hydrolysis of amorphous cellulose regions. Our study opens a new, simple approach to directly isolate cellulose nanocrystals from a lignocellulosic source. Full article
(This article belongs to the Special Issue Sustainable Polymers for a Circular Economy)
Show Figures

Graphical abstract

16 pages, 2870 KiB  
Article
Development and Characterization of Modified Biomass Carbon Microsphere Plugging Agent for Drilling Fluid Reservoir Protection
by Miao Dong
Processes 2025, 13(8), 2389; https://doi.org/10.3390/pr13082389 - 28 Jul 2025
Viewed by 303
Abstract
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified [...] Read more.
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified carbon microspheres were studied. Research indicates that after hydrothermal treatment, under the multi-level structural action of a small amount of proteins in corn stalks, the naturally occurring cellulose, polysaccharide organic compounds, and part of the ash in the stalks are adsorbed and encapsulated within the long-chain network structure formed by proteins and cellulose. By attaching silicate nanoparticles with certain rigidity from the ash to the relatively stable chair-type structure in cellulose, functional dense-structured carbon microspheres were ultimately prepared. These carbon microspheres could still effectively reduce fluid loss at 200 °C. The permeability recovery value of the cores treated with modified biomass carbon microspheres during flowback reached as high as 88%, which was much higher than that of the biomass itself. With the dense network-like chain structure supplemented by small-molecule aldehydes and silicate ash, the subsequent invasion of drilling fluid was successfully prevented, and a good sealing effect was maintained even under high-temperature and high-pressure conditions. Moreover, since this functional dense-structured carbon microsphere achieved sealing through a physical mechanism, it did not cause damage to the formation, showing a promising application prospect. Full article
Show Figures

Figure 1

17 pages, 8482 KiB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Viewed by 281
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2401 KiB  
Article
Structural Analysis of Regenerated Cellulose Textile Covered with Cellulose Nano Fibers
by Ayaka Yamaji, Yui Okuda, Chikaho Kobayashi, Rikako Kurahashi, Kyoko Kazuma, Kazuki Chiba, Mitsuhiro Hirata, Yuka Ikemoto, Keiichi Osaka, Jiacheng Gao, Harumi Sato and Go Matsuba
Polymers 2025, 17(15), 2015; https://doi.org/10.3390/polym17152015 - 23 Jul 2025
Viewed by 584
Abstract
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit [...] Read more.
Cellulose nanofiber (CNF) treatments can enhance the structure and performance of regenerated cellulose fibers. This study investigates the effects of CNF treatment on the mechanical properties, water absorption behavior, and humidity dependence of regenerated cellulose fibers. Tensile testing demonstrated that CNF-treated fibers exhibit improved elasticity and reduced swelling in aqueous environments. Scanning electron microscopy revealed the adsorption of CNF components onto the fiber surfaces. Microbeam X-ray diffraction indicated structural differences between untreated and CNF-treated fibers, with the latter containing cellulose I crystals. Small-angle X-ray scattering revealed alterations in the internal fibrillar structure due to CNF treatment. FT-IR spectroscopy highlighted humidity-dependent variations in molecular vibrations, with peak intensities increasing under higher humidity conditions. Additionally, CNF treatment inhibited water absorption in high-humidity conditions, contributing to reduced expansion rates and increased elastic modulus during water absorption. Overall, CNF treatment enhanced both the mechanical strength and water resistance of regenerated cellulose fibers, making them suitable for advanced textile applications. This study provides valuable insights into the role of CNF-treated fibers in improving the durability and functional performance of regenerated cellulose-based textile. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

19 pages, 2622 KiB  
Article
Development and Application of Biodegradable Pectin/Carboxymethylcellulose Films with Cinnamon Essential Oil and Cold Plasma Modification for Chicken Meat Preservation
by Newton Carlos Santos, Raphael L. J. Almeida, Gabriel M. da Silva, Maria T. S. da Fonseca, Cosme M. S. Farias, Virgínia M. de A. Silva, Fábio G. Teles, Victor H. de A. Ribeiro, Kalinny de A. Alves, Railene H. C. R. Araújo, Romário O. de Andrade, Rennan P. de Gusmão, Josivanda P. Gomes and Ana Paula T. Rocha
Polysaccharides 2025, 6(3), 64; https://doi.org/10.3390/polysaccharides6030064 - 23 Jul 2025
Viewed by 294
Abstract
The present study aimed to develop biodegradable films formulated with pectin/carboxymethyl cellulose (CMC) and cinnamon essential oil, investigating the effects of CP treatment time on the properties of the films. The developed films were used as packaging to evaluate the shelf life of [...] Read more.
The present study aimed to develop biodegradable films formulated with pectin/carboxymethyl cellulose (CMC) and cinnamon essential oil, investigating the effects of CP treatment time on the properties of the films. The developed films were used as packaging to evaluate the shelf life of chicken meat. Biodegradable films were produced from a film-forming solution containing pectin/CMC, glycerol (30%), and cinnamon essential oil (2%). All formulations included the essential oil, and the control group corresponded to the film that was not subjected to CP treatment. The CP treatments were applied at 22.5 L/min, 20 kV, and 80 kHz for 10, 20, and 30 min. The results showed that increasing CP treatment time led to a progressive reduction in apparent viscosity, indicating improved homogeneity of the polymer system. Hydrophobicity increased with treatment time, as shown by a higher contact angle (from 51.15° to 62.38°), resulting in lower water solubility. Mechanical properties were also enhanced, with tensile strength rising from 3.29 MPa to 6.74 MPa after 30 min of CP. Biodegradability improved with treatment time, reaching 99.51% mass loss after 15 days for the longest exposure. Films produced from the solution treated for 30 min (FCP30) were most effective in extending the shelf life of chicken breast fillets, reducing lipid oxidation (TBARS: 61.9%), peroxide content (58.7%), and microbial spoilage (TVB-N: 59.2%) compared to the untreated film. Overall, the results highlight the importance of CP treatment time as a key factor in enhancing film performance, supporting its application in sustainable active packaging. Full article
Show Figures

Figure 1

17 pages, 4532 KiB  
Article
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Viewed by 279
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as [...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

18 pages, 3500 KiB  
Article
Cellulose Acetate–PHB Biocomposite from Saccharum officinarum for Ni (II) Adsorption: Equilibrium and Kinetics
by Candelaria Tejada-Tovar, Ángel Villabona-Ortíz, Oscar Toro-Madrid, Rodrigo Ortega-Toro and Humberto Bonilla Mancilla
J. Compos. Sci. 2025, 9(7), 376; https://doi.org/10.3390/jcs9070376 - 18 Jul 2025
Viewed by 596
Abstract
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment [...] Read more.
This research work focused on the development of an adsorbent biocomposite material based on polyhydroxybutyrate (PHB) and cellulose acetate derived from sugarcane (Saccharum officinarum) fibre, through cellulose acetylation. The resulting material represents both an accessible and effective alternative for the treatment and remediation of water contaminated with heavy metals, such as Ni (II). The biocomposite was prepared by blending cellulose acetate (CA) with the biopolymer PHB using the solvent-casting method. The resulting biocomposite exhibited a point of zero charge (pHpzc) of 5.6. The material was characterised by FTIR, TGA-DSC, and SEM analyses. The results revealed that the interaction between Ni (II) ions and the biocomposite is favoured by the presence of functional groups, such as –OH, C=O, and N–H, which act as active adsorption sites on the material’s surface, enabling efficient interaction with the metal ions. Adsorption kinetics studies revealed that the biocomposite achieved an optimal adsorption capacity of 5.042 mg/g at pH 6 and an initial Ni (II) concentration of 35 mg/L, corresponding to a removal efficiency of 86.44%. Finally, an analysis of the kinetic and isotherm models indicated that the experimental data best fit the pseudo-second-order kinetic model and the Freundlich isotherm. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

18 pages, 2410 KiB  
Article
Nanostructured Cellulose Acetate Membranes Embedded with Al2O3 Nanoparticles for Sustainable Wastewater Treatment
by Ines Elaissaoui, Soumaya Sayeb, Mouna Mekki, Francesca Russo, Alberto Figoli, Karima Horchani-Naifer and Dorra Jellouli Ennigrou
Coatings 2025, 15(7), 823; https://doi.org/10.3390/coatings15070823 - 15 Jul 2025
Viewed by 363
Abstract
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2 [...] Read more.
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2O3) nanoparticles (NPs) at varying concentrations (0–2 wt.%). The structural, morphological, and thermal properties of the resulting CA/Al2O3 nanocomposite membranes were investigated through FTIR, XRD, SEM, water contact angle (WCA), pore size measurements, and DSC analyses. FTIR and XRD confirmed strong interactions and the uniform dispersion of the Al2O3 NPs within the CA matrix. The incorporation of Al2O3 improved membrane hydrophilicity, reducing the WCA from 107° to 35°, and increased the average pore size from 0.62 µm to 0.86 µm. These modifications led to enhanced filtration performance, with the membrane containing 2 wt.% Al2O3 achieving a 99% removal efficiency for Indigo Carmine (IC) dye, a maximum adsorption capacity of 45.59 mg/g, and a high permeate flux of 175.47 L·m−2 h−1 bar−1. Additionally, phytotoxicity tests using Lactuca sativa seeds showed a significant increase in germination index from 20% (untreated) to 88% (treated), confirming the safety of the permeate for potential reuse in agricultural irrigation. These results highlight the effectiveness of Al2O3-modified CA electrospun membranes for sustainable wastewater treatment and water reuse. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

13 pages, 2599 KiB  
Article
Enhancement of Dimensional Stability, Hydrophobicity, and Mechanical Strength of North American Red Alder Wood Through Silane Impregnation Combined with DES Pretreatment
by Yang Zheng, Ting Zhou, Chenyang Cai and Honghai Liu
Forests 2025, 16(7), 1152; https://doi.org/10.3390/f16071152 - 12 Jul 2025
Viewed by 240
Abstract
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep [...] Read more.
Wood is a green and renewable bio-based building material, but its hygroscopicity affects its dimensional stability, limiting its use in construction. Chemical modification can improve its properties, yet its effectiveness depends on wood permeability and traditional modifiers. This study first used a deep eutectic solvent (DES) to boost the permeability of North American alder wood. Then, methyl trimethoxysilane was impregnated under supercritical carbon dioxide (SCI), pressure (PI), vacuum (VI), and atmospheric pressure (AI) conditions. DES treatment damaged the cell structure, increasing wood permeability. Silane was deposited and polymerized in the cell lumen, chemically bonding with cell-wall components, filling walls and pits, and thickening walls. The VI group had the highest absolute density (0.59 g/cm3, +36.6%) and the lowest moisture absorption (4.4%, −33.3%). The AI group had the highest ASE (25%). The PI group showed the highest surface hardness (RL, 2592 N) and a water contact angle of 131.9°, much higher than natural wood. Overall, the VI group had the best performance. Silane reacts with cellulose, hemicellulose, and lignin in wood via hydrolysis and hydroxyl bonding, forming stable bonds that enhance the treated wood’s hydrophobicity, dimensional stability, and surface hardness. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 351 KiB  
Article
Vaginal Adsorbent Gel as a Therapeutic Agent: Is a New Era Beginning for HPV?
by Fatma Ozmen, Sule Gul Aydin, Sevtap Seyfettinoglu, Sevda Bas and Mehmet Ali Narin
J. Clin. Med. 2025, 14(14), 4826; https://doi.org/10.3390/jcm14144826 - 8 Jul 2025
Viewed by 421
Abstract
Objectives: Persistent Human Papillomavirus (HPV) infection in the cervix and the preinvasive lesions it causes are significant risk factors for cervical cancer. Therefore, a treatment strategy is necessary to facilitate the clearance of HPV and prevent the progression of preinvasive lesions without causing [...] Read more.
Objectives: Persistent Human Papillomavirus (HPV) infection in the cervix and the preinvasive lesions it causes are significant risk factors for cervical cancer. Therefore, a treatment strategy is necessary to facilitate the clearance of HPV and prevent the progression of preinvasive lesions without causing cervical tissue destruction. This study aimed to evaluate the effectiveness of a vaginal adsorbent gel composed of a hydroxyethyl cellulose matrix formulation containing dispersed silicon dioxide, antioxidant sodium selenite, deflamin, and citric acid in patients with HPV infection. Methods: The study was designed as a retrospective cohort study and involved 449 women infected with HPV. For the purposes of the study, the patients were divided into two groups: the treatment group (TG) comprised 207 patients who used the vaginal gel daily for a period of three months, while the control group (CG), consisting of 242 patients, received no treatment under an “active surveillance” protocol. The study’s endpoints encompassed the domains of cytology, histology, and HPV clearance. Results: The regression rate of smear pathologies was 24.8% in the control group and 29.0% in the group using the vaginal adsorbent gel. In the first year, the histological regression rate in cervical biopsies was 49.3% in the treatment group and 19.4% in the control group, with a significant difference between groups (p < 0.001). Moreover, the clearance rate of HPV types was found to be significantly higher in the group using the vaginal adsorbent gel. Conclusions: The findings of this study suggest that the outpatient treatment approach can effectively prevent the oncogenic progression of cervical dysplasia. This alternative method has been shown to be efficacious in preventing the progression of cervical dysplasia and promoting regression. Furthermore, the efficacy of this gel in eradicating HPV has been demonstrated within a 12-month period. Full article
Show Figures

Figure 1

11 pages, 2180 KiB  
Article
Impact of Mild Acid and Alkali Treatments on Cotton Fibers with Nonlinear Optical Imaging and SEM Analysis
by Huipeng Gao, Xiaoxiao Li, Rui Li, Chao Wang, Hsiang-Chen Chui and Quan Zhang
Photonics 2025, 12(7), 688; https://doi.org/10.3390/photonics12070688 - 8 Jul 2025
Viewed by 280
Abstract
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the [...] Read more.
This study investigates the structural effects of dilute acid and alkali treatments on cotton fibers, aiming to understand the influence of chemical pretreatment on cellulose morphology. Cotton samples were exposed to 1% sulfuric acid and 1% sodium hydroxide at 90 °C, and the resulting changes were evaluated using scanning electron microscopy and nonlinear optical imaging techniques. The results indicate that sulfuric acid causes significant fiber degradation, leading to fragmentation and reduced fiber thickness. In contrast, sodium hydroxide treatment results in a roughened, flaky surface while preserving the overall structural integrity, with fibers appearing fluffier and more accessible to enzymatic processes. Untreated cotton fibers maintained a smooth and uniform surface, confirming the chemical specificity of the observed changes. These findings are crucial for optimizing biomass pretreatment methods, demonstrating that dilute chemical treatments primarily affect macrostructural features without significantly disrupting the cellulose microfibrils. The study provides valuable insights for the development of efficient biorefining processes and sustainable bio-based materials, highlighting the importance of selecting appropriate chemical conditions to enhance enzymatic hydrolysis and biomass conversion while maintaining the core structure of cellulose. This research contributes to advancing the understanding of cellulose’s structural resilience under mild chemical pretreatment conditions. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

11 pages, 2099 KiB  
Article
Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel
by Marius Horvath and Katalin Sinkó
Gels 2025, 11(7), 522; https://doi.org/10.3390/gels11070522 - 5 Jul 2025
Viewed by 283
Abstract
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic [...] Read more.
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic to ceramic). The aim was to utilize the composite layers as thermal and electric insulation coating. The investigation put some effort into the enhancement of mechanical strength and the elasticity of the thin layer as well as a reduction in its water solubility. The removal of the alkali content leads successfully to a significant reduction in water solubility (97 wt% → 1–3 wt%). Adhesion properties were measured using a specialized measurement technique developed in our laboratory. Treatments of the substrate surface, such as alkaline or acidic etching (i.e., Na2CO3, HF, water glass), mechanical roughening, or the application of a thin alkali-containing primer layer, strongly increase adhesion. SEM analyses revealed the interactions between the matrix and the reinforcement phase and their morphology. Full article
(This article belongs to the Special Issue Advances and Current Applications in Gel-Based Membranes)
Show Figures

Figure 1

22 pages, 4077 KiB  
Article
Strong Amphoteric Adsorption of Reactive Red-141 onto Modified Orange Peel Derivatives: Optimization, Characterization, and Mechanism
by Behlul Koc-Bilican, Ismail Bilican and Hakan Çelebi
Polymers 2025, 17(13), 1875; https://doi.org/10.3390/polym17131875 - 4 Jul 2025
Viewed by 522
Abstract
This study investigates the adsorption performance of Reactive Red-141 (ReR-141) using three modified orange peel derivatives: raw orange peel (ROP), oil-free orange peel (NOOP), and cellulose extract (CE). The adsorbents were prepared through sequential treatments and characterized by scanning electron microscopy, energy-dispersive X-ray [...] Read more.
This study investigates the adsorption performance of Reactive Red-141 (ReR-141) using three modified orange peel derivatives: raw orange peel (ROP), oil-free orange peel (NOOP), and cellulose extract (CE). The adsorbents were prepared through sequential treatments and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy to investigate their surface morphology and functional groups. Batch adsorption experiments were conducted under varying conditions of pH, temperature, time, and adsorbent amount. NOOP displayed the highest adsorption capacity (99.72% removal efficiency), followed by CE (86.99%) and ROP (77.55%), under optimal conditions. The adsorption kinetics followed a PSO model, while the equilibrium data were best described by Langmuir, indicating monolayer adsorption. Thermodynamic factors confirmed that the process was self-generated and primarily determined by physisorption. Desorption studies using 0.2 M NaOH demonstrated that NOOP retained 98.16% efficiency after three cycles, indicating its strong reusability. The adsorption mechanism is determined by different interactions, such as electrostatic forces, H-bonding, and π–π stacking. These findings suggest that orange peel derivatives, particularly NOOP, serve as optimal and environmentally sustainable adsorbents for the yield of ReR-141 from synthetic aqueous media. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

Back to TopTop