Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (453)

Search Parameters:
Keywords = cell-size heterogeneity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1396 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 (registering DOI) - 1 Aug 2025
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
20 pages, 1220 KiB  
Systematic Review
The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review
by Gianna Dipalma, Grazia Marinelli, Arianna Fiore, Liviana Balestriere, Claudio Carone, Silvio Buongiorno, Francesco Inchingolo, Giuseppe Minervini, Andrea Palermo, Angelo Michele Inchingolo and Alessio Danilo Inchingolo
Surgeries 2025, 6(3), 65; https://doi.org/10.3390/surgeries6030065 (registering DOI) - 30 Jul 2025
Viewed by 99
Abstract
Background: Mesenchymal stem cells (MSCs), multipotent and immune-regulatory cells derived from tissues such as bone marrow, dental pulp, and periodontal ligament, emerged as promising agents in regenerative dentistry. Their clinical applications include endodontic tissue regeneration, periodontal healing, and alveolar bone repair, addressing [...] Read more.
Background: Mesenchymal stem cells (MSCs), multipotent and immune-regulatory cells derived from tissues such as bone marrow, dental pulp, and periodontal ligament, emerged as promising agents in regenerative dentistry. Their clinical applications include endodontic tissue regeneration, periodontal healing, and alveolar bone repair, addressing critical challenges in dental tissue restoration. Methods: A systematic review was conducted following PRISMA guidelines and registered in PROSPERO. We searched PubMed, Scopus, and Web of Science databases for open-access, English-language clinical trials and observational studies published from 2015 to 2025. Studies focusing on the application of MSCs in dental tissue regeneration were included based on predefined eligibility criteria. Results: Out of 2400 initial records, 13 studies met the inclusion criteria after screening and eligibility assessment. Most studies investigated MSCs derived from dental pulp and periodontal ligament for regenerating periodontal tissues and alveolar bone defects. The majority reported improved clinical outcomes; however, variations in MSC sources, delivery methods, sample sizes, and follow-up periods introduced methodological heterogeneity. Conclusions: MSCs show significant potential in enhancing bone and periodontal regeneration in dental practice. Nonetheless, the current evidence is limited by small sample sizes, short follow-up, and inconsistent methodologies. Future large-scale, standardized clinical trials are required to validate MSC-based regenerative therapies and optimize treatment protocols. Full article
Show Figures

Figure 1

21 pages, 8405 KiB  
Article
Distinct Mitochondrial DNA Deletion Profiles in Pediatric B- and T-ALL During Diagnosis, Remission, and Relapse
by Hesamedin Hakimjavadi, Elizabeth Eom, Eirini Christodoulou, Brooke E. Hjelm, Audrey A. Omidsalar, Dejerianne Ostrow, Jaclyn A. Biegel and Xiaowu Gai
Int. J. Mol. Sci. 2025, 26(15), 7117; https://doi.org/10.3390/ijms26157117 - 23 Jul 2025
Viewed by 407
Abstract
Mitochondria are critical for cellular energy, and while large deletions in their genome (mtDNA) are linked to primary mitochondrial diseases, their significance in cancer is less understood. Given cancer’s metabolic nature, investigating mtDNA deletions in tumors at various stages could provide insights into [...] Read more.
Mitochondria are critical for cellular energy, and while large deletions in their genome (mtDNA) are linked to primary mitochondrial diseases, their significance in cancer is less understood. Given cancer’s metabolic nature, investigating mtDNA deletions in tumors at various stages could provide insights into disease origins and treatment responses. In this study, we analyzed 148 bone marrow samples from 129 pediatric patients with B-cell (B-ALL) and T-cell (T-ALL) acute lymphoblastic leukemia at diagnosis, remission, and relapse using long-range PCR, next-generation sequencing, and the Splice-Break2 pipeline. Both T-ALL and B-ALL exhibited significantly more mtDNA deletions than did the controls, with T-ALL showing a ~100-fold increase and B-ALL a ~15-fold increase. The T-ALL samples also exhibited larger deletions (median size > 2000 bp) and greater heterogeneity, suggesting increased mitochondrial instability. Clustering analysis revealed distinct deletion profiles between ALL subtypes and across disease stages. Notably, large clonal deletions were detected in some B-ALL remission samples, including one affecting up to 88% of mtDNA molecules, which points toward treatment-driven selection or toxicity. A multivariate analysis confirmed that disease type, timepoint, and WHO subtype significantly influenced mtDNA deletion metrics, while age and gender did not. These findings suggest that mtDNA deletion profiling could serve as a biomarker for pediatric ALL and may indicate mitochondrial toxicity contributing to late effects in survivors. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

12 pages, 3331 KiB  
Article
Oral Undifferentiated Pleomorphic Sarcoma: A Novel SPECC1L::TERT Gene Fusion and a Comprehensive Literature Review
by Mario Della Mura, Joana Sorino, Eugenio Maiorano, Gerardo Cazzato, Anna Colagrande, Alfonso Manfuso, Concetta Caporusso, Chiara Copelli and Eliano Cascardi
Genes 2025, 16(7), 830; https://doi.org/10.3390/genes16070830 - 17 Jul 2025
Viewed by 310
Abstract
Background: Undifferentiated pleomorphic sarcoma (UPS) is a rare, high-grade soft-tissue sarcoma characterized by a patternless proliferation of bizarre pleomorphic tumor cells lacking identifiable lineage differentiation. Its occurrence in the oral cavity is exceptionally uncommon and poses significant diagnostic challenges due to its morphological [...] Read more.
Background: Undifferentiated pleomorphic sarcoma (UPS) is a rare, high-grade soft-tissue sarcoma characterized by a patternless proliferation of bizarre pleomorphic tumor cells lacking identifiable lineage differentiation. Its occurrence in the oral cavity is exceptionally uncommon and poses significant diagnostic challenges due to its morphological overlap with a wide spectrum of other malignancies. Material and Methods: We report a novel case of oral UPS in a 54-year-old woman, characterized by an exceptionally large size and a rapidly progressive clinical course. The diagnostic evaluation included clinical, radiological, histopathological, immunohistochemical, and molecular analyses conducted within a multidisciplinary framework. A comprehensive review of the literature on oral UPS was also performed. Results: The patient underwent an aggressive demolitive surgical approach due to the extent of the lesion. Molecular analysis revealed a previously unreported SPECC1L::TERT gene fusion. The literature review highlighted the rarity of oral UPS, its geographic predilection for Central and East Asia, possible associations with traumatic events, and its heterogeneous clinical and histopathological presentations. Conclusions: This case underscores the critical importance of a thorough diagnostic workup to ensure the accurate diagnosis and appropriate management of this rare and aggressive tumor. Multidisciplinary evaluation is essential, especially in anatomically complex and diagnostically challenging presentations such as oral UPS. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

33 pages, 1902 KiB  
Review
Sending the Signal to Bone: How Tumor-Derived EVs Orchestrate Pre-Metastatic Niche Formation and Skeletal Colonization
by Alhomam Dabaliz, Hagar Mahmoud, Raffi AlMutawa and Khalid S. Mohammad
Biomedicines 2025, 13(7), 1640; https://doi.org/10.3390/biomedicines13071640 - 4 Jul 2025
Viewed by 757
Abstract
Bone is a preferred site for disseminated tumor cells, yet the molecular mechanisms that prepare the skeletal microenvironment for metastatic colonization are only beginning to be understood. At the heart of this process are extracellular vesicles (EVs), nano-sized, lipid-encapsulated particles secreted by cancer [...] Read more.
Bone is a preferred site for disseminated tumor cells, yet the molecular mechanisms that prepare the skeletal microenvironment for metastatic colonization are only beginning to be understood. At the heart of this process are extracellular vesicles (EVs), nano-sized, lipid-encapsulated particles secreted by cancer cells and stromal components. This review consolidates current findings that position EVs as key architects of the bone-metastatic niche. We detail the biogenesis of EVs and their organotropic distribution, focusing on how integrin patterns and bone-specific ligands guide vesicle homing to mineralized tissues. We then outline the sequential establishment of the pre-metastatic niche, driven by EV-mediated processes including fibronectin deposition, stromal cell reprogramming, angiogenesis, neurogenesis, metabolic reconfiguration, and immune modulation, specifically, the expansion of myeloid-derived suppressor cells and impaired lymphocyte function. Within the bone microenvironment, tumor-derived EVs carrying microRNAs and proteins shift the balance toward osteoclastogenesis, inhibit osteoblast differentiation, and disrupt osteocyte signaling. These alterations promote osteolytic destruction or aberrant bone formation depending on tumor type. We also highlight cutting-edge imaging modalities and single-EV omics technologies that resolve EV heterogeneity and identify potential biomarkers detectable in plasma and urine. Finally, we explore therapeutic approaches targeting EVs, such as inhibition of nSMase2 or Rab27A, extracorporeal EV clearance, and delivery of engineered, bone-targeted vesicles, while addressing translational challenges and regulatory considerations. This review offers a roadmap for leveraging EV biology in predicting, preventing, and treating skeletal metastases by integrating advances across basic biology, bioengineering, and translational science. Full article
Show Figures

Graphical abstract

17 pages, 8009 KiB  
Article
Metformin-Sensitized Chemotherapy of Docetaxel Nanoemulsions Based on a Sequential Administration
by Junlei Zhang, Jiapeng Mao, Yilong Hu, Xingze Huang, Jian You and Lihua Luo
Pharmaceutics 2025, 17(7), 812; https://doi.org/10.3390/pharmaceutics17070812 - 23 Jun 2025
Viewed by 288
Abstract
Background: Chemotherapy has a broad-spectrum anti-tumor effect and is still the core strategy for cancer treatment. However, the side effects caused by its cytotoxicity, the chemoresistance caused by tumor heterogeneity and abnormal microenvironment seriously restrict the efficacy of chemotherapy. Metformin presents the ability [...] Read more.
Background: Chemotherapy has a broad-spectrum anti-tumor effect and is still the core strategy for cancer treatment. However, the side effects caused by its cytotoxicity, the chemoresistance caused by tumor heterogeneity and abnormal microenvironment seriously restrict the efficacy of chemotherapy. Metformin presents the ability to sensitize chemotherapy by interfering with metabolic processes of tumor cells. However, as a dynamic process, metabolic intervention requires a specific time sequence law to optimize its role. Methods: Different administration sequences were screened by in vitro experiments to determine the optimal sequence of metformin and docetaxel. The anti-tumor effect of administration sequence in vivo was investigated in mouse models. The therapeutic advantages were comprehensively evaluated by tumor size, weight change, and survival rate. The immunofluorescent staining and transcriptome analysis were performed to study the mechanisms of the sequential administration strategy. Results: Compared with the subsequent administration and concurrent administration, pretreatment with metformin exhibited a stronger ability toward cell cycle arrest and tumor inhibition with low-dose docetaxel. Moreover, this pre-administration sequence could enhance the anti-tumor immune responses and prevent postoperative recurrence. Conclusions: The optimized chemotherapy sensitization mediated by metabolic intervention required an appropriate administration sequence, which also strengthened the anti-tumor immune responses. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

12 pages, 2749 KiB  
Systematic Review
KRAS Mutations as Predictive Biomarkers for First-Line Immune Checkpoint Inhibitor Monotherapy in Advanced NSCLC: A Systematic Review and Meta-Analysis
by Filip Marković, Jelena Milin-Lazović, Nikola Nikolić, Aleksa Golubović, Mihailo Stjepanović and Milica Kontić
Curr. Oncol. 2025, 32(6), 365; https://doi.org/10.3390/curroncol32060365 - 19 Jun 2025
Viewed by 673
Abstract
Recent research suggests a link between KRAS mutations and the effectiveness of ICIs, as KRAS-driven tumors may possess unique immunogenic features that influence the tumor microenvironment. These mutations can increase tumor mutation burden (TMB) and neoantigen load, potentially leading to improved responses to [...] Read more.
Recent research suggests a link between KRAS mutations and the effectiveness of ICIs, as KRAS-driven tumors may possess unique immunogenic features that influence the tumor microenvironment. These mutations can increase tumor mutation burden (TMB) and neoantigen load, potentially leading to improved responses to ICIs. This meta-analysis aims to consolidate existing evidence on the impact of KRAS mutations as a predictive factor for survival and treatment outcomes in patients with advanced NSCLC treated with ICIs. A comprehensive search strategy was designed by a biostatistician and pulmonologist, targeting PubMed, Web of Science, and Scopus databases up to May 2022. The outcomes assessed included overall survival (OS) and progression-free survival (PFS), reported as log hazard ratios (HRs) with corresponding standard errors (SEs). A pooled estimate of the HR effect size was calculated using Review Manager (RevMan, Cochrane Collaboration, London, UK). Heterogeneity among studies was evaluated using the Cochran Q test and the I2 statistic. Ultimately, 10 articles were deemed suitable for inclusion in the systematic review from a total of 8722 screened titles and abstracts. The presence of KRAS+ mutations had a significant prognostic factor for better OS in NSCLC patients treated with checkpoint inhibitors (HR = 0.89, 95% CI: 0.79–0.99) and for better PFS in NSCLC patients treated with checkpoint inhibitors (HR = 0.72, 95% CI: 0.59–0.87). In conclusion, our study indicates that KRAS mutations may serve as a potential positive predictive biomarker in patients with advanced non-small-cell lung cancer treated with immune checkpoint inhibitor monotherapy. Full article
(This article belongs to the Section Thoracic Oncology)
Show Figures

Figure 1

17 pages, 1675 KiB  
Article
Gene Copy Number Dictates Extracellular Vesicle Cargo
by Sumeet Poudel, Zhiyong He, Jerilyn Izac and Lili Wang
Int. J. Mol. Sci. 2025, 26(12), 5496; https://doi.org/10.3390/ijms26125496 - 8 Jun 2025
Viewed by 666
Abstract
Extracellular vesicles (EVs) are membrane-surrounded vesicles that carry heterogeneous cellular components, including proteins, nucleic acids, lipids, and metabolites. EVs’ intravesicular and surface contents possess many biomarkers of physiological and pathological importance. Because of the heterogeneous cargo, EVs can mediate local and distal cell–cell [...] Read more.
Extracellular vesicles (EVs) are membrane-surrounded vesicles that carry heterogeneous cellular components, including proteins, nucleic acids, lipids, and metabolites. EVs’ intravesicular and surface contents possess many biomarkers of physiological and pathological importance. Because of the heterogeneous cargo, EVs can mediate local and distal cell–cell communication. However, the way in which the genome signature regulates EV cargo has not been well studied. This study aimed to understand how genetics impact EV cargo loading. EVs were isolated from vector copy number cells with a fluorescent reporter (GFP) with varying inserted transgene copies and from NIST SRM 2373 cells (MDA-MB-231, MDA-MB-453, SK-BR-3, and BT-474), which contain varying copies of the HER2 gene. Spectradyne nCS1 was utilized to count EVs and measure size distribution. Imaging Flow Cytometry was used to analyze the surface protein content of single EVs and for total EV counts. The RNA content of the EVs was measured using ddPCR. Our results from stable reporter cell lines and breast cancer cell lines suggest that the gene copy number dictates the protein cargo of the EVs but not the RNA content. Increasing copies of a reporter gene (GFP) or a naturally occurring gene (HER2) from breast cancer cells correlated with increasing EV counts positive for the protein cargo compared to total EV counts until a copy threshold was reached. This study has broad implications for understanding EV biology in the context of cancer biology, diagnostics, EV biology/manufacturing, and therapeutic delivery. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

28 pages, 4731 KiB  
Article
Time-Resolved Visualization of Cyanotoxin Synthesis via Labeling by the Click Reaction in the Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii
by Rainer Kurmayer and Rubén Morón Asensio
Toxins 2025, 17(6), 278; https://doi.org/10.3390/toxins17060278 - 3 Jun 2025
Viewed by 905
Abstract
In non-ribosomal peptide synthesis of cyanobacteria, promiscuous adenylation domains allow the incorporation of clickable non-natural amino acids into peptide products—namely into microcystins (MCs) or into anabaenopeptins (APs): 4-azidophenylalanine (Phe-Az), N-propargyloxy-carbonyl-L-lysine (Prop-Lys), or O-propargyl-L-tyrosine (Prop-Tyr). Subsequently, chemo-selective labeling is used to visualize [...] Read more.
In non-ribosomal peptide synthesis of cyanobacteria, promiscuous adenylation domains allow the incorporation of clickable non-natural amino acids into peptide products—namely into microcystins (MCs) or into anabaenopeptins (APs): 4-azidophenylalanine (Phe-Az), N-propargyloxy-carbonyl-L-lysine (Prop-Lys), or O-propargyl-L-tyrosine (Prop-Tyr). Subsequently, chemo-selective labeling is used to visualize the clickable cyanopeptides using Alexa Fluor 488 (A488). In this study, the time-lapse build up or decline of azide- or alkyne-modified MCs or APs was visualized during maximum growth, specifically MC biosynthesis in Microcystis aeruginosa and AP biosynthesis in Planktothrix agardhii. Throughout the time-lapse build up or decline, the A488 signal occurred with heterogeneous intracellular distribution. There was a fast increase or decrease in the A488 signal for either Prop-Tyr or Prop-Lys, while a delayed or unobservable A488 signal for Phe-Az was related to increased cell size as well as a reduction in growth and autofluorescence. The proportion of clickable MC/AP in peptide extracts as recorded by a chemical–analytical technique correlated positively with A488 labeling intensity quantified via laser-scanning confocal microscopy for individual cells or via flow cytometry at the population level. It is concluded that chemical modification of MC/AP can be used to track intracellular dynamics in biosynthesis using both analytical chemistry and high-resolution imaging. Full article
Show Figures

Graphical abstract

13 pages, 1811 KiB  
Systematic Review
Systematic Review on Upper Urinary Tract Carcinoma in Kidney Transplant Recipients
by Alberto Piana, Alicia López-Abad, Battista Lanzillotta, Alessio Pecoraro, Thomas Prudhomme, Hakan Bahadır Haberal, Michele Di Dio, Beatriz Bañuelos Marco, Muhammet Irfan Dönmez, Alberto Breda and Angelo Territo
J. Clin. Med. 2025, 14(11), 3927; https://doi.org/10.3390/jcm14113927 - 3 Jun 2025
Viewed by 614
Abstract
Objectives: Upper urinary tract urothelial cell carcinoma (UTUC) in kidney transplant recipients (KTRs) presents distinct clinical challenges due to the complexities of managing both cancer and the long-term immunosuppressive therapy required to preserve graft function. UTUC in this population often presents at advanced [...] Read more.
Objectives: Upper urinary tract urothelial cell carcinoma (UTUC) in kidney transplant recipients (KTRs) presents distinct clinical challenges due to the complexities of managing both cancer and the long-term immunosuppressive therapy required to preserve graft function. UTUC in this population often presents at advanced stages, contributing to poorer outcomes compared to immunocompetent individuals. Methods: This systematic review (SR) evaluates the incidence, clinical presentation, treatment approaches, and survival outcomes of UTUC in KTRs, based on 16 retrospective studies including 526 patients. Results: The present study highlights a predominance of female patients (ranging from 50% to 91.6%) and significant variability in time to diagnosis (from 7 to 181 months post-transplant). Tumor characteristics also showed considerable heterogeneity, with high-grade and advanced-stage (T3–T4) tumors being more common. The standard treatment for UTUC in KTRs remains radical nephroureterectomy (RNU), with additional resection of the bladder (TURB) when bladder cancer (BC) coexists. Survival outcomes vary significantly, with 5-year overall survival (OS) rates ranging from 16.7% to 90.9%, strongly influenced by tumor stage at diagnosis. This SR further reports high rates of bladder recurrence (18.8% to 61.2%) and challenges in balancing effective cancer treatment with graft preservation. The variability in immunosuppressive regimens across studies complicates the assessment of their role in UTUC progression. The limitations of the current evidence include small sample sizes, retrospective designs, and inconsistent follow-up durations. Conclusions: This SR underscores the need for tailored treatment strategies and improved long-term surveillance. Future research should focus on prospective studies with larger cohorts, exploring the impact of immunosuppression and novel therapies on UTUC outcomes in KTRs. Full article
(This article belongs to the Special Issue Kidney Transplantation: Current Challenges and Future Perspectives)
Show Figures

Figure 1

14 pages, 1109 KiB  
Systematic Review
Impaired Overall Survival of Melanoma Patients Due to Antibiotic Use Prior to Immune Checkpoint Inhibitor Therapy: Systematic Review and Meta-Analysis
by Thilo Gambichler, Sera S. Weyer-Fahlbusch, Jan Overbeck, Nessr Abu Rached, Jürgen C. Becker and Laura Susok
Cancers 2025, 17(11), 1872; https://doi.org/10.3390/cancers17111872 - 3 Jun 2025
Viewed by 749
Abstract
Background: The gut microbiome plays a pivotal role in shaping systemic immunity and modulating anti-tumor responses. Preclinical and clinical studies have shown that higher gut microbial diversity and the presence of specific commensal taxa correlate with improved responses to immune checkpoint inhibitors (ICI) [...] Read more.
Background: The gut microbiome plays a pivotal role in shaping systemic immunity and modulating anti-tumor responses. Preclinical and clinical studies have shown that higher gut microbial diversity and the presence of specific commensal taxa correlate with improved responses to immune checkpoint inhibitors (ICI) in melanoma. Conversely, broad-spectrum antibiotics can induce dysbiosis, reducing T cell activation and cytokine production, and have been linked to diminished ICI efficacy in several cancer types. Methods: We conducted a systematic review and meta-analysis of seven retrospective cohorts (total n = 5213) comparing overall survival in cutaneous melanoma (CM) patients who did or did not receive systemic antibiotics within six weeks before ICI initiation. From each study, we extracted hazard ratios (HRs) for death, antibiotic-to-ICI interval, ICI regimen (PD-1 monotherapy vs. PD-1 + CTLA-4 combination), cohort size, and country. Pooled log-HRs were estimated under fixed-effect and random-effects (REML) models. Statistical heterogeneity was quantified by Cochran’s Q and I2 statistics, and τ2. We performed leave-one-out sensitivity analyses, generated a Baujat plot to identify influential studies, applied trim-and-fill to assess publication bias, and ran meta-regressions for regimen, antibiotic timing, sample size, and geography. Results: Under the fixed-effect model, antibiotic exposure corresponded to a pooled HR of 1.26 (95% CI 1.13–1.41; p < 0.001). The random-effects model yielded a pooled HR of 1.55 (95% CI 1.21–1.98; p = 0.0005) with substantial heterogeneity (Q = 25.1; I2 = 76%). Prediction intervals (0.78–3.06) underscored between-study variability. Leave-one-out analyses produced HRs from 1.50 to 1.75, confirming robustness, and the Baujat plot highlighted two cohorts as primary heterogeneity drivers. Trim-and-fill adjusted the HR to 1.46 (95% CI 1.08–1.97). In subgroup analyses, combination therapy studies (k = 4) showed a pooled HR of ~1.9 (I2 = 58%) versus ~1.3 (I2 = 79%) for monotherapy. Meta-regression attributed the largest variance to the regimen (R2 = 32%; β(monotherapy) = −0.35; p = 0.13). Conclusions: Pre-ICI antibiotic use in CM is consistently associated with a 26–55% increase in mortality risk, particularly with PD-1 + CTLA-4 combinations, reinforcing the mechanistic link between microbiome integrity and ICI success. Looking ahead, integrating prospective microbiome profiling into clinical trials will be critical to personalize ICI therapy, clarify causality, and identify microbial biomarkers for optimal treatment selection. Prospective, microbiome-integrated trials promise to refine melanoma immunotherapy by tailoring antibiotic stewardship and microbial interventions to enhance patient outcomes. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Germany)
Show Figures

Figure 1

16 pages, 1854 KiB  
Article
The Development and Characterisation of A Porcine Large Intestinal Biological Scaffold by Perfusion Decellularisation
by Murali Somasundaram, Karin V. Greco, Gauraang Bhatnagar, Simon Gabe, Paul Sibbons, Peter Friend and Tahera Ansari
Cells 2025, 14(11), 817; https://doi.org/10.3390/cells14110817 - 31 May 2025
Viewed by 664
Abstract
The rising incidence of colorectal cancer and ulcerative colitis underscores an urgent need for regenerative solutions to address functional deficits after colectomy. However, the creation of clinically applicable large intestine scaffolds remains underdeveloped. Here, we report the successful generation and thorough characterisation of [...] Read more.
The rising incidence of colorectal cancer and ulcerative colitis underscores an urgent need for regenerative solutions to address functional deficits after colectomy. However, the creation of clinically applicable large intestine scaffolds remains underdeveloped. Here, we report the successful generation and thorough characterisation of transplantable-sized porcine large intestinal scaffolds via perfusion decellularisation. This method effectively preserved extracellular matrix (ECM) structural and biochemical integrity while minimising immunogenicity through cellular component removal. Crucially, native vasculature remained intact, confirmed by histology, DNA quantification, and high-resolution CT angiography. Despite efficient decellularisation, challenges including residual nucleic acids, ECM heterogeneity, and partial microvascular occlusion were noted, echoing ongoing limitations in engineered, perfusable, full-thickness scaffolds. In vivo implantation demonstrated favourable biocompatibility and host integration; however, thrombosis occurred due to the lack of pre-seeded cells, emphasising the necessity of recellularisation for functional perfusion prior to implantation. This study addresses significant field limitations, presenting the first reproducible approach for structurally intact, perfusable, full-thickness large intestinal scaffolds of transplantable dimensions. Our innovations offer a strong foundation for future integration of patient-derived cells, stem cells, and organoids, progressing toward clinically viable, scalable, tissue-engineered large intestine constructs, from xenogeneic sources, relevant for regenerative medicine, disease modelling, and pharmacological screening. Full article
Show Figures

Figure 1

14 pages, 870 KiB  
Article
A Label-Free Liquid Chromatography–Tandem Mass Spectrometry Method for the Quantitative Analysis of Exosome Pharmacokinetics In Vivo
by Bingxuan Li and Fei Yu
Pharmaceutics 2025, 17(6), 699; https://doi.org/10.3390/pharmaceutics17060699 - 27 May 2025
Viewed by 508
Abstract
Background: Exosomes are nanoscale extracellular vesicles actively secreted by cells that play critical roles in disease biomarker discovery, drug delivery, and direct therapeutic applications. However, in vivo pharmacokinetic (PK) studies of exosomes remain limited, hindering their clinical translation. Due to their complex and [...] Read more.
Background: Exosomes are nanoscale extracellular vesicles actively secreted by cells that play critical roles in disease biomarker discovery, drug delivery, and direct therapeutic applications. However, in vivo pharmacokinetic (PK) studies of exosomes remain limited, hindering their clinical translation. Due to their complex and heterogeneous composition, most existing PK methods rely on chemical or genetic labeling, which may alter their native behavior and complicate accurate analysis. Methods: To address this challenge, we developed a label-free liquid chromatography–tandem mass spectrometry (LC-MS/MS) method to investigate the PK of naive exosome-based therapeutic modalities. Exosomes were isolated from rat plasma using size exclusion chromatography (SEC) and quantified using multiple reaction monitoring (MRM) targeting specific exosomal peptides as surrogate analytes. Following intravenous administration of exosomes via the tail vein, plasma concentrations were determined by peptide peak areas, and PK parameters were calculated using a non-compartmental model. Results: The method was rigorously validated for specificity, linearity, sensitivity, and reproducibility. Its feasibility was further confirmed by successfully characterizing the PK profile of HEK 293F-derived exosomes in rats. Conclusions: This analytical strategy enables direct, label-free quantification of exosomes in plasma and provides a robust platform for advancing exosome-based drug development and translational research. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

12 pages, 3124 KiB  
Article
Imaging Features and Clinical Characteristics of Granular Cell Tumors: A Single-Center Investigation
by Hui Gu, Lan Yu and Yu Wu
Diagnostics 2025, 15(11), 1336; https://doi.org/10.3390/diagnostics15111336 - 26 May 2025
Viewed by 530
Abstract
Background/Objectives: Granular cell tumors (GCTs) are rare neurogenic tumors with Schwann cell differentiation. Although most are benign, 1–2% exhibit malignant behavior. The imaging features of GCTs remain poorly characterized due to their rarity and anatomic variability. This study aims to elucidate the manifestations [...] Read more.
Background/Objectives: Granular cell tumors (GCTs) are rare neurogenic tumors with Schwann cell differentiation. Although most are benign, 1–2% exhibit malignant behavior. The imaging features of GCTs remain poorly characterized due to their rarity and anatomic variability. This study aims to elucidate the manifestations of GCTs in multimodal imaging across different anatomic locations. Methods: We retrospectively analyzed 66 histopathologically confirmed GCT cases (2011–2024), assessing their clinical presentations, pathological characteristics, and imaging findings from ultrasound (n = 31), CT (n = 14), MRI (n = 8), and endoscopy (n = 15). Two radiologists independently reviewed the imaging features (location, size, morphology, signal/density, and enhancement). Results: The cohort (mean age: 42 ± 12 years; 72.7% female) showed tendency in location towards soft tissue (48.4%), the digestive tract (30.3%), the respiratory system (7.6%), the breasts (7.6%), and the sellar region (6.1%). Six cases (9.1%) were malignant. The key imaging findings by modality were as follows: Ultrasound: Well-circumscribed hypoechoic masses in soft tissue (96.1%) and irregular margins in the breasts (80%, BI-RADS 4B) were found. MRI: The sellar GCTs exhibited T1-isointensity, variable T2-signals (with 50% showing “star-like crack signs”), and heterogeneous enhancements. The soft tissue GCTs were T1-hypointense (75%) with variable T2-signals. CT: Pulmonary/laryngeal GCTs appeared as well-defined hypodense masses with mild/moderate enhancements. Endoscopy: Submucosal/muscularis hypoechoic nodules with smooth surfaces were found. Malignant GCTs were larger (mean: 93 mm vs. 30 mm) but lacked pathognomonic imaging features. Three malignant cases demonstrated metastases. Conclusions: GCTs exhibit distinct imaging patterns based on their anatomical location. While certain features (e.g., star-like crack signs) are suggestive, imaging cannot reliably differentiate benign from malignant variants. Histopathological confirmation remains essential to diagnosis, particularly given the potential for malignant transformations (at 9.1% in our series). Multimodal imaging guides the localization and biopsy planning, but clinical–radiological–pathological correlation is crucial for the optimal management. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

15 pages, 5384 KiB  
Article
Clinical Differences Among Histological Categories of Sarcoma: Insights from 97,062 Patients
by Yiqun Han, Ahmed Shah, Yuan Yao, Robert W. Mutter and Meng Xu-Welliver
Cancers 2025, 17(10), 1706; https://doi.org/10.3390/cancers17101706 - 20 May 2025
Viewed by 619
Abstract
Objectives: To evaluate the clinical heterogeneity of sarcomas by examining associations between histological subtypes, metastatic patterns, treatment modalities, and survival outcomes. Methods: We analyzed data from 97,062 adult patients diagnosed with sarcoma between 2000 and 2020, using the Surveillance, Epidemiology, and End Results [...] Read more.
Objectives: To evaluate the clinical heterogeneity of sarcomas by examining associations between histological subtypes, metastatic patterns, treatment modalities, and survival outcomes. Methods: We analyzed data from 97,062 adult patients diagnosed with sarcoma between 2000 and 2020, using the Surveillance, Epidemiology, and End Results (SEER) database. Fourteen histological subtypes were included. Propensity score matching (PSM) was employed to adjust for baseline differences, and Cox proportional hazards models were used to identify prognostic variables. Results: The most prevalent subtypes were sarcoma not otherwise specified (31.9%), leiomyosarcoma (17.1%), and liposarcoma (13.9%). Metastatic patterns differed significantly by subtype; liver metastases were most common in sarcomas with small blue round cell (SBRC) features (8.9%) and stromal sarcoma (6.1%), while lung metastases were frequently observed in Ewing sarcoma (10.0%) and rhabdomyosarcoma (9.7%). Median overall survival (mOS) varied widely, ranging from 234 months in chondrosarcoma to 16–20 months in rhabdomyosarcoma and SBRC sarcoma. Overall, patients with primary sarcoma had significantly better survival than those with treatment-related disease (119.0 vs. 45.0 months, p < 0.0001), with this trend consistent across most subtypes. Treatment responses were subtype- and size-dependent. For instance, surgery plus radiotherapy improved outcomes in giant cell sarcoma regardless of tumor size, whereas chemotherapy provided benefit only in tumors larger than 5 cm. Combined surgery and radiotherapy offered additional survival benefit in select subtypes, including chordoma, leiomyosarcoma (>5 cm), and synovial sarcoma (<5 cm). Conclusions: Sarcomas exhibit substantial clinical and prognostic heterogeneity across histological subtypes. These findings underscore the importance of subtype-specific, individualized treatment strategies in optimizing patient outcomes. Full article
Show Figures

Figure 1

Back to TopTop