Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (535)

Search Parameters:
Keywords = cathodic and anodic processes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
13 pages, 3844 KB  
Article
Atypical Analysis of a Graphite-Based Anode Prepared Using Aqueous Processes
by Kuan-Yi Liao, Chia-Chin Chang, Yuh-Lang Lee and Ten-Chin Wen
Molecules 2025, 30(19), 3947; https://doi.org/10.3390/molecules30193947 - 1 Oct 2025
Abstract
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used [...] Read more.
In order to form a solid electrolyte interphase (SEI) layer using aqueous processes, a graphite anode called MG-AQP was designed by wrapping and crosslinking graphite particles with aqueous composites (AQCs), which contained zwitterionic polymer, zwitterion molecules, and lithium salts. First, MG-AQP was used to fabricate a full lithium-ion battery (LIB) cell with Li[Ni0.8Mn0.1Co0.1]O2 (NMC811) as the cathode, denoted as LIB-MG-AQP//NMC811, to demonstrate its performance via a 0.5 C-rate break-in and 1 C-rate cycling. Accordingly, this showed that LIB-MG-AQP exhibits outstanding cyclic stability. To evaluate its electrochemical performance, MG-AQP and lithium metal were used to fabricate a half cell named LIBs-MG-AQP. According to the initial cyclic voltammetry curve, almost no surface reaction for forming an SEI layer exists in LIBs-MG-AQP, illustrating its high initial coulombic efficiency of 92% at a 0.5 C-rate break-in. These outstanding results are due to the fact that the AQC has fewer cracks, thus blocking solvent molecules from passing from the electrolyte into the graphite anode. This study provides new insights to optimize graphite anodes via 0.5 C-rate break-in rather than conventional SEI formation to save time and energy. Full article
(This article belongs to the Special Issue Carbon-Based Electrochemical Materials for Energy Storage)
Show Figures

Figure 1

25 pages, 12591 KB  
Article
Electrochemical Synthesis of Mesoporous Alumina as an Adsorbent of Corrosion Inhibitors for Active Corrosion Protection in Organic Coatings
by Abenchara M. Betancor-Abreu, Javier Izquierdo, Raquel Rodríguez-Raposo, Ricardo A. Liria-Romero, Juan J. Santana and Ricardo M. Souto
Materials 2025, 18(18), 4375; https://doi.org/10.3390/ma18184375 - 19 Sep 2025
Viewed by 250
Abstract
This work describes a simple and economical electrochemical route for the generation of mesoporous alumina (MA) particles that can serve as containers for corrosion inhibitors for the active corrosion protection elements of metals when dispersed in organic coatings. The synthesis of precursor slurries [...] Read more.
This work describes a simple and economical electrochemical route for the generation of mesoporous alumina (MA) particles that can serve as containers for corrosion inhibitors for the active corrosion protection elements of metals when dispersed in organic coatings. The synthesis of precursor slurries was carried out in an electrochemical reactor with aluminum electrodes operating alternately as anodes and cathodes to facilitate metal dissolution and prevent passivation of the electrode surface. The obtained slurries were thermally treated to produce mesoporous alumina particles with adsorbent characteristics suitable for loading corrosion inhibitors. Benzotriazole (BTA) and 8-hydroxyquinoline (8HQ) were chosen as corrosion inhibitors. Dispersed in a commercial polymer matrix and applied to the coating of mild steel samples, the loaded MA improved the corrosion resistance of the coated metal exposed to a simulated marine environment. When physical damage is intentionally caused to expose the underlying metal, the polymer matrix containing BTA-loaded alumina particles retards the corrosion process due to the swelling of the inhibitor from the particles to the exposed bare metal in the scratch. Electrochemical impedance spectroscopy (EIS) measurements showed a marked increase in low-frequency impedance in coatings containing alumina particles, with the BTA-loaded system providing the most durable protection over extended immersion times (with a 50% improvement in corrosion resistance of steel exposed within the scratch). This demonstrates the potential of this approach for long-term corrosion protection applications. Full article
(This article belongs to the Special Issue Advanced Coating Research for Metal Surface Protection)
Show Figures

Graphical abstract

32 pages, 6905 KB  
Review
Recent Advances in MXene-Based Composites for Their Efficiency in the Degradation of Antibiotics and Water Splitting
by Syed Irfan, Sadaf Bashir Khan, Sheikha Lardhi and S. AlFaify
Molecules 2025, 30(18), 3712; https://doi.org/10.3390/molecules30183712 - 12 Sep 2025
Viewed by 509
Abstract
The increasing occurrence of antibiotics in water bodies all over the world has raised concerns because of the prospect that they might have genotoxic and antibiotic-resistant consequences in both people and aquatic creatures. In particular, it has been discovered that the construction of [...] Read more.
The increasing occurrence of antibiotics in water bodies all over the world has raised concerns because of the prospect that they might have genotoxic and antibiotic-resistant consequences in both people and aquatic creatures. In particular, it has been discovered that the construction of hybrid photocatalytic composite materials has greater antibiotic degradation efficiencies. The hybrid photocatalysts deliver improved photoabsorbance, charge separation, transfer, and redox characteristics, as well as enhanced photostability and rapid recovery, due to their optimal characteristic qualities, including superior structural, surface, and interfacial properties. Additionally, metal-based electrocatalysts have garnered notable attention in the field of water splitting as they are low-cost, standard and have the potential to be used in green and clean technology. MXene, a family of two-dimensional transition metal carbides and nitrides, was discovered in 2011 due to its high conductivity, large surface area, and abundance of catalytically active sites. By making hybrid structures of MXene with other materials, which have shown better electrocatalytic activity than pure MXenes. The two half-cell processes involved in water electrolysis are the oxygen generation at the anode site and the hydrogen production at the cathode site. This review paper provides a summary of the latest advancements in the design of several hybrid systems, catalysts and their effectiveness in degrading a range of newly discovered antibiotic pharmaceutical pollutants in aquatic settings, as well as recent developments on the use of MXenes and MXene-based hybrid structures such as OER, HER, and bifunctional electrocatalysts for general water splitting. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

14 pages, 6680 KB  
Article
In Situ Engineered Plastic–Crystal Interlayers Enable Li-Rich Cathodes in PVDF-HFP-Based All-Solid-State Polymer Batteries
by Fei Zhou, Jinwei Tan, Feixiang Wang and Meiling Sun
Batteries 2025, 11(9), 334; https://doi.org/10.3390/batteries11090334 - 6 Sep 2025
Viewed by 872
Abstract
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial [...] Read more.
All-solid-state lithium batteries (ASSLBs) employing Li-rich layered oxide (LLO) cathodes are regarded as promising next-generation energy storage systems owing to their outstanding energy density and intrinsic safety. Polymer-in-salt solid electrolytes (PISSEs) offer advantages such as high room-temperature ionic conductivity, enhanced Li anode interfacial compatibility, and low processing costs; however, their practical deployment is hindered by poor oxidative stability especially under high-voltage conditions. In this study, we report the rational design of a bilayer electrolyte architecture featuring an in situ solidified LiClO4-doped succinonitrile (LiClO4–SN) plastic–crystal interlayer between a Li1.2Mn0.6Ni0.2O2 (LMNO) cathode and a poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based PISSE. This PISSE/SN–LiClO4 configuration exhibits a wide electrochemical stability window up to 4.7 V vs. Li+/Li and delivers a high ionic conductivity of 5.68 × 10−4 S cm−1 at 25 °C. The solidified LiClO4-SN layer serves as an effective physical barrier, shielding the PVDF-HFP matrix from direct interfacial contact with LMNO and thereby suppressing its oxidative decomposition at elevated potentials. As a result, the bilayer polymer-based cells with the LMNO cathode demonstrate an initial discharge capacity of ∼206 mAh g−1 at 0.05 C and exhibit good cycling stability with 85.7% capacity retention after 100 cycles at 0.5 C under a high cut-off voltage of 4.6 V. This work not only provides a promising strategy to enhance the compatibility of PVDF-HFP-based electrolytes with high-voltage cathodes through the facile in situ solidification of plastic interlayers but also promotes the application of LMNO cathode material in high-energy ASSLBs. Full article
Show Figures

Graphical abstract

14 pages, 3161 KB  
Article
Efficient Electrolytic Refining of Crude Solder Assisted by Additives in a Fluosilicic Acid System
by Yuantao Yang, Zhaoyi Wang, Xuanbing Wang, Wanli Xu, Haibin Yuan, Qingdong Liu, Ruidong Xu and Linjing Yang
Materials 2025, 18(17), 4122; https://doi.org/10.3390/ma18174122 - 2 Sep 2025
Viewed by 727
Abstract
Current electrolytic refining processes for crude solder commonly employ fluosilicic acid (H2SiF6) as the electrolyte with bone glue and β-naphthol additives yet suffer from poor electrolyte stability, coarse cathode crystallization, low current efficiency, and high energy consumption, adversely affecting [...] Read more.
Current electrolytic refining processes for crude solder commonly employ fluosilicic acid (H2SiF6) as the electrolyte with bone glue and β-naphthol additives yet suffer from poor electrolyte stability, coarse cathode crystallization, low current efficiency, and high energy consumption, adversely affecting product quality and economic viability. In order to solve these limitations, electrochemical techniques, XRD, SEM, and ICP-OES were used to study the effects of gelatin and sodium lignosulfonate on the deposition overpotential and cathode morphology, as well as the effects of process parameters on current efficiency and energy consumption. A novel approach was developed using an H2SiF6 system enhanced by gelatin and sodium lignosulfonate for crude solder refining. After optimization, 120 h electrolysis achieved a current efficiency >97.8%, smooth/dense cathode surface, average cell voltage of 0.24 V, and energy consumption of 98.15 kWh/t. Efficient deposition of 81.2% Sn and 75.2% Pb on the cathode was realized, while >93.3% of Sb, Bi, Ag, Cu, and As were enriched in anode slime to facilitate valuable metal recovery, and >90.6% of In/Al concentrated in the electrolyte enabled effective Sn-Pb impurity separation. This study provides theoretical and technical foundations for advancing sustainable and economical electrolytic refining of crude solder. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

21 pages, 3827 KB  
Article
Investigation of Low-Temperature Molten Oxide Electrolysis of a Mixture of Hematite and Zinc Oxide
by Joongseok Kim, In-Ho Jung, Jungshin Kang and Kyung-Woo Yi
Materials 2025, 18(17), 4116; https://doi.org/10.3390/ma18174116 - 2 Sep 2025
Viewed by 767
Abstract
To develop a CO2-free process for recovering Fe and Zn metals from electric arc furnace (EAF) dust, this study investigated the molten oxide electrolysis of various Fe2O3–ZnO mixtures in a B2O3–Na2O [...] Read more.
To develop a CO2-free process for recovering Fe and Zn metals from electric arc furnace (EAF) dust, this study investigated the molten oxide electrolysis of various Fe2O3–ZnO mixtures in a B2O3–Na2O electrolyte. Electrolysis was conducted using an Fe cathode and Pt anode at 1173 K by applying cell voltages that were determined based on thermodynamic calculations and cyclic voltammetry measurements. When electrolysis was conducted at a cell voltage of 1.1 V, the selective reduction of Fe oxide to Fe metal was observed without ZnO reduction. However, when 1.6 V was applied, the co-reduction of Fe oxide and ZnO to the Fe–Zn alloy was observed. In the vacuum distillation of the Fe–Zn alloy at 1000–1200 K, Zn metal with a purity of ≥99.996% was obtained with a recovery efficiency of ≥99.9%, under certain conditions. This study demonstrates the feasibility of recovering Fe and Zn from EAF dust using low-temperature molten oxide electrolysis and subsequent vacuum distillation. Full article
Show Figures

Graphical abstract

34 pages, 6812 KB  
Review
Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review
by Zhiming Qiang, Junjun Hu and Beibei Jiang
Polymers 2025, 17(17), 2340; https://doi.org/10.3390/polym17172340 - 28 Aug 2025
Viewed by 1022
Abstract
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion [...] Read more.
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion (TSE), and resonant acoustic mixing (RAM), are introduced with the aim of providing a fundamental understanding of the subsequent material design. Subsequently, the discussion focuses on the application of mechanochemical methods in the construction of solid-state electrolytes, anode materials, and cathode materials, especially the research progress of mechanical energy-induced polymerization strategies in building flexible composite electrolytes and enhancing interfacial stability. Through the analysis of representative work, it is demonstrated that mechanochemical methods are gradually evolving from traditional physical processing tools to functional synthesis platforms with chemical reaction capabilities. This review systematically organizes its development and research trends in the field of all-solid-state battery materials and explores potential future breakthrough directions. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

10 pages, 1835 KB  
Article
Evaluation of a Pilot-Scale Water Treatment System with Passive Aerated, Membraneless Microbial Fuel Cell
by Zabdiel A. Juarez, Víctor Ramírez, Carlos Hernández-Benítez, Luis A. Godínez, Irma Robles Gutierrez and Francisco J. Rodríguez-Valadez
Catalysts 2025, 15(8), 765; https://doi.org/10.3390/catal15080765 - 9 Aug 2025
Viewed by 749
Abstract
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive [...] Read more.
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive aerated membraneless microbial fuel cell (PAML-MFC) system consisting of 10 individual units, designed to treat 1000 L/day of real wastewater, using granular activated carbon anodes and cathodes. The pilot-scale water treatment system under study combines design and materials to result in low-cost operation. After 300 days of treating real wastewater originally characterized by a chemical oxygen demand (COD) value of 500 mg/L on average, it was found that the PAML-MFC under study removed 60 to 80% of the COD contained in real wastewater. Under these conditions, the individual MFCs reached an average power density below 1 mW/m3. Full article
Show Figures

Figure 1

13 pages, 2593 KB  
Article
The Effect of Electrode Materials on the Fusion Rate in Multi-State Fusion Reactors
by Mahmoud Bakr, Tom Wallace-Smith, Keisuke Mukai, Edward Martin, Owen Leighton Thomas, Han-Ying Liu, Dali Lemon-Morgan, Erin Holland, Talmon Firestone and Thomas B. Scott
Materials 2025, 18(16), 3734; https://doi.org/10.3390/ma18163734 - 9 Aug 2025
Viewed by 615
Abstract
This study assesses how different anode materials influence neutron production rates (NPRs) in multi-state fusion (MSF) reactors, with a particular focus on the effects of deuterium (D) pre-loading on the anode surface. Three types of mesh anodes were assessed: stainless steel (SS), zirconium [...] Read more.
This study assesses how different anode materials influence neutron production rates (NPRs) in multi-state fusion (MSF) reactors, with a particular focus on the effects of deuterium (D) pre-loading on the anode surface. Three types of mesh anodes were assessed: stainless steel (SS), zirconium (Zr), and D pre-loaded zirconium (ZrD). MSF operates using two electrodes to confine ions to various fusion reactions, including D-D and D-T. The reactor features a negatively biased central cathode and a grounded anode within a vacuum vessel. Neutrons and protons are produced through the application of high voltage (tens of kV) and current (tens of mA) on the system to spark the plasma and start the fusion. Assessments at voltages up to 50 kV and currents up to 30 mA showed that Zr mesh anodes produced higher NPRs than SS ones, reaching 1.912 at 30 kV. This increased performance is attributed to surface fusion processes occurring in the anode. These processes were further modified by the deuterium pre-loading in the ZrD anode, as compared to SS and Zr with 1.832 at 30 kV. The findings suggest that material properties and deuterium pre-loading play significant roles in optimizing the efficiency of MSF reactors and the NPR. Future research may explore the long-term stability and durability of these anode materials under continuous operation conditions to fully harness their potential in fusion energy applications. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

12 pages, 1867 KB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 610
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

35 pages, 638 KB  
Review
The Influence of Circadian Rhythms on Transcranial Direct Current Stimulation (tDCS) Effects: Theoretical and Practical Considerations
by James Chmiel and Agnieszka Malinowska
Cells 2025, 14(15), 1152; https://doi.org/10.3390/cells14151152 - 25 Jul 2025
Cited by 1 | Viewed by 1449
Abstract
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from [...] Read more.
Transcranial direct current stimulation (tDCS) can modulate cortical excitability in a polarity-specific manner, yet identical protocols often produce inconsistent outcomes across sessions or individuals. This narrative review proposes that much of this variability arises from the brain’s intrinsic temporal landscape. Integrating evidence from chronobiology, sleep research, and non-invasive brain stimulation, we argue that tDCS produces reliable, polarity-specific after-effects only within a circadian–homeostatic “window of efficacy”. On the circadian (Process C) axis, intrinsic alertness, membrane depolarisation, and glutamatergic gain rise in the late biological morning and early evening, whereas pre-dawn phases are marked by reduced excitability and heightened inhibition. On the homeostatic (Process S) axis, consolidated sleep renormalises synaptic weights, widening the capacity for further potentiation, whereas prolonged wakefulness saturates plasticity and can even reverse the usual anodal/cathodal polarity rules. Human stimulation studies mirror this two-process fingerprint: sleep deprivation abolishes anodal long-term-potentiation-like effects and converts cathodal inhibition into facilitation, while stimulating at each participant’s chronotype-aligned (phase-aligned) peak time amplifies and prolongs after-effects even under equal sleep pressure. From these observations we derive practical recommendations: (i) schedule excitatory tDCS after restorative sleep and near the individual wake-maintenance zone; (ii) avoid sessions at high sleep pressure or circadian troughs; (iii) log melatonin phase, chronotype, recent sleep and, where feasible, core temperature; and (iv) consider mild pre-heating or time-restricted feeding as physiological primers. By viewing Borbély’s two-process model and allied metabolic clocks as adjustable knobs for plasticity engineering, this review provides a conceptual scaffold for personalised, time-sensitive tDCS protocols that could improve reproducibility in research and therapeutic gain in the clinic. Full article
Show Figures

Figure 1

24 pages, 738 KB  
Review
Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing
by Zihao Li, Yanlong Li, Mengting Chen, Weishan Li and Xiaoming Wei
Batteries 2025, 11(8), 282; https://doi.org/10.3390/batteries11080282 - 23 Jul 2025
Viewed by 864
Abstract
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, [...] Read more.
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, non-contact fabrication, ambient-temperature processing, and robust interlayer bonding. It then systematically summarizes photocured battery components, involving electrolytes, membranes, anodes, and cathodes, highlighting their design strategies. This review examines the impact of photocured materials on the battery’s properties, such as its conductivity, lithium-ion transference number, and mechanical strength, while examining how vat-photopolymerization-derived 3D architectures optimize ion transport and electrode–electrolyte integration. Finally, it discusses current challenges and future directions for photocuring-based battery manufacturing, emphasizing the need for specialized energy storage resins and scalable processes to bridge lab-scale innovations with industrial applications. Full article
Show Figures

Figure 1

15 pages, 4358 KB  
Article
Nickel-Rich Cathodes for Solid-State Lithium Batteries: Comparative Study Between PVA and PIB Binders
by José M. Pinheiro, Beatriz Moura Gomes, Manuela C. Baptista and M. Helena Braga
Molecules 2025, 30(14), 2974; https://doi.org/10.3390/molecules30142974 - 15 Jul 2025
Cited by 1 | Viewed by 672
Abstract
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn [...] Read more.
The growing demand for high-energy, safe, and sustainable lithium-ion batteries has increased interest in nickel-rich cathode materials and solid-state electrolytes. This study presents a scalable wet-processing method for fabricating composite cathodes for all-solid-state batteries. The cathodes studied herein are high-nickel LiNi0.90Mn0.05Co0.05O2, NMC955, the sulfide-based electrolyte Li6PS5Cl, and alternative binders—polyvinyl alcohol (PVA) and polyisobutylene (PIB)—dispersed in toluene, a non-polar solvent compatible with the electrolyte. After fabrication, the cathodes were characterized using SEM/EDX, sheet resistance, and Hall effect measurements. Electrochemical tests were additionally performed in all-solid-state battery half-cells comprising the synthesized cathodes, lithium metal anodes, and Li6PS5Cl as the separator and electrolyte. The results show that both PIB and PVA formulations yielded conductive cathodes with stable microstructures and uniform particle distribution. Electrochemical characterization exposed that the PVA-based cathode outperformed the PIB-based counterpart, achieving the theoretical capacity of 192 mAh·g−1 even at 1C, whereas the PIB cathode reached a maximum capacity of 145 mAh.g−1 at C/40. Post-mortem analysis confirmed the structural integrity of the cathodes. These findings demonstrate the viability of NMC955 as a high-capacity cathode material compatible with solid-state systems. Full article
Show Figures

Figure 1

16 pages, 1936 KB  
Article
Electrocoagulation of Spent Coolant by Dissimilar Fe-Al Combination
by Shu Pei Ng, Weiyi Wu, Min Qian, Yuelong Preston Zhu, Xinying Deng, Shuyun Chng, Yi Jin Tan, Yi Qing Kek, Shi Jun Zachary Yong, Li Wei Low and Wenjin Yan
Electrochem 2025, 6(3), 26; https://doi.org/10.3390/electrochem6030026 - 11 Jul 2025
Viewed by 518
Abstract
Electrocoagulation is rapidly gaining prominence in wastewater treatment due to its capabilities and less reliance on additional chemicals. While a lot of research efforts have been focused on the influence of the anode material, power supply, and reactor design, the contribution of the [...] Read more.
Electrocoagulation is rapidly gaining prominence in wastewater treatment due to its capabilities and less reliance on additional chemicals. While a lot of research efforts have been focused on the influence of the anode material, power supply, and reactor design, the contribution of the cathode to contaminant removal has been less explored. In this study, we investigated the performance of stainless steel (SS-304) and aluminium (Al-6061) electrodes in both similar and dissimilar configurations for a 120 min electrocoagulation treatment of spent machinery coolant. The anode–cathode configurations, including SS-SS, Al-Al, SS-Al and Al-SS, have been investigated. Additionally, we examined the effects of the initial pH and agitation methods on the process performance. Our findings indicated that the type of cathode could significantly affect the floc formation and contaminant removal. Notably, the combination of an Al anode and SS cathode (Al(A)-SS(C)) demonstrated a synergistic improvement in the Chemical Oxygen Demand (COD), with a removal of 84.3% within a short treatment time (<20 min). The final COD removal of 91.4% was achieved with a turbidity level close to 12 Nephelometric Turbidity Units (NTU). The Al anode readily released the Al ions and formed light flocs at the early stage of electrocoagulation, while the SS cathode generated heavy Fe hydroxides that mitigated the flotation effect. These results demonstrated the cathode’s significant contribution in electrocoagulation, leading to potential savings in the treatment time required. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

Back to TopTop