The Effect of Electrode Materials on the Fusion Rate in Multi-State Fusion Reactors
Abstract
1. Introduction
2. Experimental Setup and Conditions
2.1. Apparatus
2.2. Sample Preparations
3. Results and Discussion
3.1. Paschen’s Curve
3.2. Influence of Electrode Temperatures on Fusion Rate Measurements
3.3. Effect of the Input Power on the Fusion Rate
3.4. Effect of the Anode Material on the Fusion Rate
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirsch, R.L. Inertial-Electrostatic Confinement of Ionized Fusion Gases. J. Appl. Phys. 1967, 38, 4522–4534. [Google Scholar] [CrossRef]
- Miley, G.H.; Sved, J. The IEC—A Plasma-Target-Based Neutron Source. Appl. Radiat. Isot. 1997, 48, 1557–1561. [Google Scholar] [CrossRef]
- Ashley, R.P.; Kulcinski, G.L.; Santarius, J.F.; Krupakar Murali, S.; Piefer, G.R.; Cipiti, B.; Radel, R.F.; Weidner, J. Recent Progress in Steady State Fusion Using D-3He. Fusion Sci. Technol. 2003, 44, 564–566. [Google Scholar] [CrossRef]
- Takakura, K.; Sako, T.; Miyadera, H.; Yoshioka, K.; Karino, Y.; Nakayama, K.; Sugita, T.; Uematsu, D.; Okutomo, K.; Hasegawa, J.; et al. Neutron Radiography Using Inertial Electrostatic Confinement (IEC) Fusion. Plasma Fusion. Res. 2018, 13, 6–9. [Google Scholar] [CrossRef]
- Sakabe, T.; Kenjo, S.; Ogino, Y.; Mukai, K.; Bakr, M.; Yagi, J.; Konishi, S. Effects of Metal Hydride Coatings at the Electrodes on Neutron Production Rate in a Discharge-Type Fusion Neutron Source. IEEE Trans. Plasma Sci. 2022, 50, 4500–4505. [Google Scholar] [CrossRef]
- Ranson, N.; Pigeon, V.; Claire, N.; Khachan, J. Measurements and Modeling of Ion Divergence from a Gridded Inertial Electrostatic Confinement Device Using Laser Induced Fluorescence. Phys. Plasmas 2020, 27, 103501. [Google Scholar] [CrossRef]
- Sakabe, T.; Ishii, T.; Mukai, K.; Yagi, J. Cathode cooling effects on the neutron production rate in the glow discharge type of fusion neutron source. J. Appl. Phys. 2024, 136, 044501. [Google Scholar] [CrossRef]
- Magneto, S.V. Inertial Fusion and Powerful Plasma Installations (A Review). Appl. Sci. 2023, 13, 6658. [Google Scholar] [CrossRef]
- Steinetz, B.M.; Benyo, T.L.; Chait, A.; Hendricks, R.C.; Forsley, L.P.; Baramsai, B.; Ugorowski, P.B.; Becks, M.D.; Pines, V.; Pines, M.; et al. Novel nuclear reactions observed in bremsstrahlung-irradiated deuterated metals. Phys. Rev. C 2020, 101, 044609. [Google Scholar] [CrossRef]
- Ahmed, R.; Saad Hassan, G.; Scott, T.; Bakr, M. Assessment of Five Concrete Types as Candidate Shielding Materials for a Compact Radiation Source Based on the IECF. Materials 2023, 16, 2845. [Google Scholar] [CrossRef] [PubMed]
- Voytchev, M.; Radev, R. Developing and using international standards for neutron ambient dose equivalent rate meters. Radiat. Phys. Chem. 2024, 221, 111787. [Google Scholar] [CrossRef]
- Anikeev, A.V.; Bagryansky, P.A.; Beklemishev, A.D.; Ivanov, A.A.; Kolesnikov, E.Y.; Korzhavina, M.S.; Korobeinikova, O.A.; Lizunov, A.A.; Maximov, V.V.; Murakhtin, S.V.; et al. Progress in Mirror-Based Fusion Neutron Source Development. Materials 2015, 8, 8452–8459. [Google Scholar] [CrossRef] [PubMed]
- Bowden-Reid, R.; Khachan, J. An Inertial Electrostatic Confinement Fusion System Based on Graphite. Phys. Plasmas 2021, 28, 042703. [Google Scholar] [CrossRef]
- Bakr, M.; Ohgaki, H. Influence of the Cathode Material Properties in Reducing the Back-Bombardment Effect in Thermionic RF Gun. IEEE Trans. Electron Devices 2018, 65, 5053–5061. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Kamislioglu, M. An Investigation into Gamma Radiation Shielding Parameters of the (Al:Si) and (Al+Na): Si-Doped International Simple Glasses (ISG) Used in Nuclear Waste Management, Deploying Phy-X/PSD and SRIM Software. J. Mater. Sci. Mater. Electron. 2021, 32, 12690–12704. [Google Scholar] [CrossRef]
- Prokuratov, I.A.; Mikhailov, Y.V.; Lemeshko, B.D.; Il’ichev, I.V.; Zyablitseva, E.D. Neutron Source Based on a Sealed Inertial Electrostatic Plasma Confinement Chamber with Deuterium-Tritium Filling. Vacuum 2025, 241, 114606. [Google Scholar] [CrossRef]
- Mikhailov, Y.V.; Prokuratov, I.A.; Lemeshko, B.D.; Morozov, V.M.; Dulatov, A.K.; Charaev, O.A.; Rukoliansky, A.O.; Andreev, V.G.; Litvinov, I.N. Pressure Change Dynamics of Plasma Focus Chambers as a Part of the Pulse Neutron Generators. Curr. Appl. Phys. 2022, 39, 8–17. [Google Scholar] [CrossRef]
- Wang, S.; Yin, W.; Liu, B.; Li, H.; Sun, Y.; Cao, C.; Wu, Y.; Huo, H.-Y.; Zhu, S.-L.; Lou, B.-C.; et al. A Moveable Neutron Imaging Facility Using D–T Neutron Source Based on a Compact Accelerator. Appl. Radiat. Isot. 2021, 169, 109564. [Google Scholar] [CrossRef] [PubMed]
- Nonsrirach C, Likhitparinya T, Toomjangreed C, and Sukjai Y; Electrostatic and particle interaction modeling of Inertial Electrostatic Confinement (IEC) fusion reactor. AIP Conf. Proc. 2024, 3086, 060004. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakr, M.; Wallace-Smith, T.; Mukai, K.; Martin, E.; Thomas, O.L.; Liu, H.-Y.; Lemon-Morgan, D.; Holland, E.; Firestone, T.; Scott, T.B. The Effect of Electrode Materials on the Fusion Rate in Multi-State Fusion Reactors. Materials 2025, 18, 3734. https://doi.org/10.3390/ma18163734
Bakr M, Wallace-Smith T, Mukai K, Martin E, Thomas OL, Liu H-Y, Lemon-Morgan D, Holland E, Firestone T, Scott TB. The Effect of Electrode Materials on the Fusion Rate in Multi-State Fusion Reactors. Materials. 2025; 18(16):3734. https://doi.org/10.3390/ma18163734
Chicago/Turabian StyleBakr, Mahmoud, Tom Wallace-Smith, Keisuke Mukai, Edward Martin, Owen Leighton Thomas, Han-Ying Liu, Dali Lemon-Morgan, Erin Holland, Talmon Firestone, and Thomas B. Scott. 2025. "The Effect of Electrode Materials on the Fusion Rate in Multi-State Fusion Reactors" Materials 18, no. 16: 3734. https://doi.org/10.3390/ma18163734
APA StyleBakr, M., Wallace-Smith, T., Mukai, K., Martin, E., Thomas, O. L., Liu, H.-Y., Lemon-Morgan, D., Holland, E., Firestone, T., & Scott, T. B. (2025). The Effect of Electrode Materials on the Fusion Rate in Multi-State Fusion Reactors. Materials, 18(16), 3734. https://doi.org/10.3390/ma18163734