Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (625)

Search Parameters:
Keywords = catastrophic event

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

20 pages, 313 KiB  
Review
Ophthalmological Complications of Aesthetic Medicine Procedures: A Narrative Review
by Lucía De-Pablo-Gómez-de-Liaño, Fernando Ly-Yang, Bárbara Burgos-Blasco and José Ignacio Fernández-Vigo
J. Clin. Med. 2025, 14(15), 5399; https://doi.org/10.3390/jcm14155399 - 31 Jul 2025
Viewed by 197
Abstract
Minimally invasive cosmetic procedures, such as dermal fillers, botulinum toxin injections, autologous fat grafting, intense pulsed light (IPL) treatments, and platelet-rich plasma (PRP) treatments, are increasingly popular worldwide due to their convenience and aesthetic benefits. While generally considered safe, these procedures can result [...] Read more.
Minimally invasive cosmetic procedures, such as dermal fillers, botulinum toxin injections, autologous fat grafting, intense pulsed light (IPL) treatments, and platelet-rich plasma (PRP) treatments, are increasingly popular worldwide due to their convenience and aesthetic benefits. While generally considered safe, these procedures can result in rare but serious ophthalmological complications. The most catastrophic adverse events include central retinal artery occlusion and ischemic optic neuropathy, which may lead to irreversible vision loss. Other complications include diplopia, ptosis, dry eye, and orbital cellulitis, with varying degrees of severity and reversibility. Awareness of potential ocular risks, appropriate patient selection, and adherence to safe injection techniques are crucial for preventing complications. This narrative review summarizes the incidence, mechanisms, clinical features, risk factors, diagnostic approaches, and management strategies of ocular complications associated with aesthetic medical procedures. A narrative literature review was conducted, emphasizing data from clinical studies, case series, and expert consensus published between 2015 and 2025. Special attention is given to anatomical danger zones, the pathophysiological pathways of filler embolization, and the roles of hyaluronidase and hyperbaric oxygen therapy in acute management. Although many complications are self-limited or reversible, prompt recognition and intervention are critical to prevent permanent sequelae. The increasing prevalence of these procedures demands enhanced education, informed consent, and interdisciplinary collaboration between aesthetic providers and ophthalmologists. Full article
(This article belongs to the Section Ophthalmology)
24 pages, 6552 KiB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Viewed by 384
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Viewed by 266
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

20 pages, 1137 KiB  
Review
Unveiling the Effects of Natural Disasters and Nuclear Energy on the Secondary Sex Ratio: A Comprehensive Review
by Iasonas Dermitzakis, Paschalis Theotokis, Efthymia Delilampou, Evangelos Axarloglou, Sofia Gargani, Dimosthenis Miliaras, Maria Eleni Manthou and Soultana Meditskou
Life 2025, 15(7), 1127; https://doi.org/10.3390/life15071127 - 17 Jul 2025
Viewed by 360
Abstract
The secondary sex ratio (SSR), defined as the ratio of male to female births in a population, has long been a subject of scientific inquiry due to its potential as a health indicator. The interplay between catastrophic events and the delicate balance of [...] Read more.
The secondary sex ratio (SSR), defined as the ratio of male to female births in a population, has long been a subject of scientific inquiry due to its potential as a health indicator. The interplay between catastrophic events and the delicate balance of male and female births presents a nuanced and compelling study area. Natural disasters, such as earthquakes, hurricanes, floods, and volcanic eruptions, have been known to disrupt ecosystems and human populations, leading to both short-term and long-term consequences. Studies have suggested a potential influence of these disasters on the SSR, with varying degrees of impact observed across different regions and disaster types. Similarly, nuclear accidents, such as the infamous Chernobyl disaster, have sparked interest in their potential effects on human health and development. The release of radioactive materials into the environment can have far-reaching consequences, including impacts on reproductive outcomes. Through a rigorous examination of the existing literature, the present review aims to synthesize current knowledge on the impacts of natural disasters and nuclear accidents on the SSR and unravel the mechanisms that explain SSR fluctuations. By shedding light on the diverse influences shaping the SSR, this narrative review contributes to a deeper appreciation of the intricate interplay between environmental, biological, and societal factors that determines the SSR, calling for targeted strategies to mitigate potential adverse effects on sex ratios in the aftermath of such events. Full article
(This article belongs to the Special Issue From Stem Cells to Embryos, Congenital Anomalies and Epidemiology)
Show Figures

Graphical abstract

29 pages, 609 KiB  
Review
The Utility of Metabolomics in Spinal Cord Injury: Opportunities for Biomarker Discovery and Neuroprotection
by Prince Last Mudenda Zilundu, Anesuishe Blessings Gatsi, Tapiwa Chapupu and Lihua Zhou
Int. J. Mol. Sci. 2025, 26(14), 6864; https://doi.org/10.3390/ijms26146864 - 17 Jul 2025
Viewed by 354
Abstract
Brachial plexus root avulsion [BPRA] and concomitant spinal cord injury [SCI] represent devastating injuries that come with limited hope for recovery owing to the adult spinal cord’s loss of intrinsic ability to spontaneously regenerate. BPRA/SCI is an enormous public health issue the world [...] Read more.
Brachial plexus root avulsion [BPRA] and concomitant spinal cord injury [SCI] represent devastating injuries that come with limited hope for recovery owing to the adult spinal cord’s loss of intrinsic ability to spontaneously regenerate. BPRA/SCI is an enormous public health issue the world over, and its catastrophic impact goes beyond the patient, the family, businesses, and national health budgets, draining billions of dollars annually. The rising population and economic growth have seen the incidence of SCI surging. Genomic, transcriptomic, and proteomic studies have yielded loads of information on the various molecular events that precede, regulate, and support both regenerative and degenerative pathways post-SCI. Metabolomics, on the other hand, comes in as the search for a cure and the objective monitoring of SCI severity and prognosis remains on the horizon. Despite the large number of review articles on metabolomics and its application fields such as in cancer and diabetes research, there is no comprehensive review on metabolite profiling to study disease mechanisms, biomarkers, or neuroprotection in SCI. First, we present a short review on BPRA/SCI. Second, we discuss potential benefits of metabolomics as applied in BPRA/SCI cases. Next, a look at the analytical techniques that are used in metabolomics. Next, we present an overview of the studies that have used metabolomics to reveal SCI metabolic fingerprints and point out areas of further investigation. Finally, we discuss future research directions. Full article
(This article belongs to the Special Issue Current Insights on Neuroprotection)
Show Figures

Figure 1

20 pages, 1822 KiB  
Review
Pinna nobilis, the Vanishing Giant: A Comprehensive Review on the Decline of a Mediterranean Icon
by Ilenia Azzena, Chiara Locci, Noemi Pascale, Ilaria Deplano, Riccardo Senigaglia, Fabio Scarpa, Marco Casu and Daria Sanna
Animals 2025, 15(14), 2044; https://doi.org/10.3390/ani15142044 - 11 Jul 2025
Viewed by 438
Abstract
This review addresses the critical conservation challenges faced by Pinna nobilis, the noble pen shell, a keystone umbrella species in Mediterranean marine ecosystems. Since 2016, the species has experienced catastrophic population declines due to mass mortality events likely driven by protozoan, bacterial, [...] Read more.
This review addresses the critical conservation challenges faced by Pinna nobilis, the noble pen shell, a keystone umbrella species in Mediterranean marine ecosystems. Since 2016, the species has experienced catastrophic population declines due to mass mortality events likely driven by protozoan, bacterial, and viral infections. Despite these severe circumstances, small resilient populations persist in select estuaries and coastal lagoons across the Mediterranean, offering potential for recovery. We provide a comprehensive overview on research dedicated to Pinna nobilis’ biology, genetic variation, disease dynamics, and environmental factors influencing its survival, with a focus on refugia where populations still endure. Remarkably, recent studies have revealed signs of resistance in certain individuals and the potential for hybridisation with Pinna rudis. In this context, the possible impact of the increasing occurrence of hybridisation between Pinna nobilis and Pinna rudis on the conservation of their genetic diversity should be carefully considered. This review highlights the importance of ongoing conservation efforts including habitat restoration, protection of remaining populations, assessment of past and present genetic variability, and the development of captive breeding programmes. We aim to elucidate the need for continued studies on Pinna nobilis’ biodiversity, particularly its evolutionary dynamics, genetic makeup, and the interplay of environmental variables influencing its survival and persistence. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 826 KiB  
Article
Two-Level System for Optimal Flood Risk Coverage in Spain
by Sonia Sanabria García and Joaquin Torres Sempere
Water 2025, 17(13), 1997; https://doi.org/10.3390/w17131997 - 3 Jul 2025
Viewed by 320
Abstract
This study evaluates the current Spanish insurance framework for catastrophic flood risk, administered by the Consorcio de Compensación de Seguros (CCS), based on nationwide loss data reported by the CCS for the period 1996–2020. The analysis of historical claims data enables a clear [...] Read more.
This study evaluates the current Spanish insurance framework for catastrophic flood risk, administered by the Consorcio de Compensación de Seguros (CCS), based on nationwide loss data reported by the CCS for the period 1996–2020. The analysis of historical claims data enables a clear differentiation between frequent, low-cost events and infrequent, high-impact catastrophes. While the CCS has fulfilled a critical role in post-disaster compensation, the findings highlight the parallel need for ex ante risk mitigation strategies. The study proposes a more efficient, two-tier risk coverage model. Events whose impacts can be managed through standard insurance mechanisms should be underwritten by private insurers using actuarially fair premiums. In contrast, events with catastrophic implications—due to their scale or financial impact—should be addressed through general solidarity mechanisms, centrally managed by the CCS. Such a risk segmentation would improve the financial sustainability of the system and create fiscal space for prevention-oriented incentives. The current design of the CCS scheme may generate moral hazard, as flood exposure is not explicitly priced into the premium structure. Empirical findings support a shift towards a more transparent, incentive-aligned model that combines collective risk sharing with individual risk responsibility—an essential balance for effective climate adaptation and long-term resilience. Full article
(This article belongs to the Special Issue Water: Economic, Social and Environmental Analysis)
Show Figures

Figure 1

26 pages, 41871 KiB  
Article
Episodic vs. Sea Level Rise Coastal Flooding Scenarios at the Urban Scale: Extreme Event Analysis and Adaptation Strategies
by Sebastian Spadotto, Saverio Fracaros, Annelore Bezzi and Giorgio Fontolan
Water 2025, 17(13), 1991; https://doi.org/10.3390/w17131991 - 2 Jul 2025
Viewed by 498
Abstract
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. [...] Read more.
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. Here, a thorough investigation is conducted in Grado, one of the most significant coastal and historical towns in the Friuli Venezia Giulia region of Italy. Grado is located on a barrier island of the homonymous lagoon, the northernmost of the Adriatic Sea, and is prone to flooding from both the sea and the back lagoon. The mean and maximum sea levels from the historical dataset of Venice (1950–2023) were analysed using the Gumbel-type distribution, allowing for the identification of annual extremes based on their respective return periods (RPs). Grado and Trieste sea level datasets (1991–2023) were used to calibrate the statistics of the extremes and to calculate the local component (subsidence) of relative SLR. The research examined the occurrence of annual exceedance of the minimum threshold water level of 110 cm, indicating Grado’s initial notable marine ingression. The study includes a detailed analysis of flood impacts on the urban fabric, categorised into sectors based on the promenade elevation on the lagoon side, the most vulnerable to flooding. Inundated areas were obtained using a high-resolution digital terrain model through a GIS-based technique, assessing both the magnitude and exposure of the urban environment to flood risk due to storm surges, also considering relative SLR projections for 2050 and 2100. Currently, approximately 42% of Grado’s inhabited area is inundated with a sea level threshold value of 151 cm, which occurs during surge episodes with a 30-year RP. By 2100, with an optimistic forecast (SSP1-2.6) of local SLR of around +53 cm, the same threshold will be met with a surge of ca. 100 cm, which occurs once a year. Thus, extreme levels linked with more catastrophic events with current secular RPs will be achieved with a multi-year frequency, inundating more than 60% of the urbanized area. Grado, like Venice, exemplifies trends that may impact other coastal regions and historically significant towns of national importance. As a result, the generated simulations, as well as detailed analyses of urban sectors where coastal flooding may occur, are critical for medium- to long-term urban planning aimed at adopting proper adaptation measures. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

25 pages, 16597 KiB  
Article
Earthquake Destruction and Resilience in Ancient Helike, Gulf of Corinth, Greece: A Case Study of Past Human–Environment Relationship
by Dora Katsonopoulou, Ioannis Koukouvelas and Mariza Kormann
Land 2025, 14(7), 1392; https://doi.org/10.3390/land14071392 - 2 Jul 2025
Viewed by 834
Abstract
Geoarchaeological work and excavations of the Helike Project over the last 30 years in the Helike coastal plain, Gulf of Corinth, have yielded abundant evidence on ancient settlements, as well as the surrounding landscape and environmental changes that resulted from geological phenomena and [...] Read more.
Geoarchaeological work and excavations of the Helike Project over the last 30 years in the Helike coastal plain, Gulf of Corinth, have yielded abundant evidence on ancient settlements, as well as the surrounding landscape and environmental changes that resulted from geological phenomena and catastrophic events. The research methods applied by the Helike Project followed a multidisciplinary approach, including combined archaeological excavations and palaeoseismological trenching, geophysical prospection, archaeometric, environmental, and soil micromorphology analyses, and computer-based landscape modelling. A wealth of settlement remains that were unearthed across the plain, ranging in date from the Early Helladic period (3rd millennium BC) to the Late Antiquity (5th century AD), indicates that the ancient inhabitants of the area chose to always resettle in the area by adjusting their ways of living to the geomorphology and natural hazards, prevailing each time. Our results show that disasters in the area increased between the Geometric and Roman times due to severe earthquakes that occurred approximately every 300 years. In particular, archaeological and geological finds recovered from the Late Classical–Hellenistic Helike settlement, which was revived in the western part of the plain shortly after the disastrous 373 BC earthquake, have enriched our knowledge regarding the historical seismicity of the region and past human–environment relationships. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

15 pages, 1134 KiB  
Article
Cross-Shore Microplastic Accumulation on Sri Lanka’s West Coast One Year After the Catastrophic X-Press Pearl Pollution Event
by Paula Masiá Lillo, Susantha Udagedara, Ross Williamson and Daniel Gorman
Microplastics 2025, 4(3), 37; https://doi.org/10.3390/microplastics4030037 - 1 Jul 2025
Viewed by 709
Abstract
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along [...] Read more.
Understanding how marine debris accumulates within coastal ecosystems is a crucial aspect of predicting its long-term environmental and biological consequences. The release and subsequent dispersion of 50 billion microplastic pellets from the fire and subsequent sinking of the container ship X-Press Pearl along the western coast of Sri Lanka in 2021 provides an important case study. Here, we present a three-dimensional assessment of pellet accumulation (number density) along affected beaches and compare this with other common microplastic particles one year following the incident. Surveys confirmed that pellets were still widely present in the surface sediments of ocean beaches, with some locations returning average densities of 588 pellets m2 (very high according to the global Pellet Pollution Index [PPI]). Profiling deeper into beach sediments showed pellets were present to depths of 30 cm; however, most were restricted to the top 10 cm. Our observations of persistent pellet contamination of beaches along Sri Lanka’s west coast emphasize the need for continued monitoring of these types of events to assess the magnitude and persistence of risks to the environment, wildlife, and human well-being. Full article
Show Figures

Figure 1

31 pages, 33353 KiB  
Article
Assessment of the October 2024 Cut-Off Low Event Floods Impact in Valencia (Spain) with Satellite and Geospatial Data
by Ignacio Castro-Melgar, Triantafyllos Falaras, Eleftheria Basiou and Issaak Parcharidis
Remote Sens. 2025, 17(13), 2145; https://doi.org/10.3390/rs17132145 - 22 Jun 2025
Viewed by 2284
Abstract
The October 2024 cut-off low event triggered one of the most catastrophic floods recorded in the Valencia Metropolitan Area, exposing significant vulnerabilities in urban planning, infrastructure resilience, and emergency preparedness. This study presents a novel comprehensive assessment of the event, using a multi-sensor [...] Read more.
The October 2024 cut-off low event triggered one of the most catastrophic floods recorded in the Valencia Metropolitan Area, exposing significant vulnerabilities in urban planning, infrastructure resilience, and emergency preparedness. This study presents a novel comprehensive assessment of the event, using a multi-sensor satellite approach combined with socio-economic and infrastructure data at the metropolitan scale. It provides a comprehensive spatial assessment of the flood’s impacts by integrating of radar Sentinel-1 and optical Sentinel-2 and Landsat 8 imagery with datasets including population density, land use, and critical infrastructure layers. Approximately 199 km2 were inundated, directly affecting over 90,000 residents and compromising vital infrastructure such as hospitals, schools, transportation corridors, and agricultural lands. Results highlight the exposure of peri-urban zones and agricultural areas, reflecting the socio-economic risks associated with the rapid urban expansion into flood-prone plains. The applied methodology demonstrates the essential role of multi-sensor remote sensing in accurately delineating flood extents and assessing socio-economic impacts. This approach constitutes a transferable framework for enhancing disaster risk management strategies in other Mediterranean urban regions. As extreme hydrometeorological events become more frequent under changing climatic conditions, the findings underscore the urgent need for integrating remote sensing technologies, early warning systems, and nature-based solutions into regional governance to strengthen resilience, reduce vulnerabilities, and mitigate future flood risks. Full article
Show Figures

Figure 1

14 pages, 897 KiB  
Article
The Role of Testing and Vaccination in Mediating Social Vulnerability and COVID-19 Prevalence in Southern Nevada
by Andrea Lopez, Lung-Chang Chien, L.-W. Antony Chen, Courtney Coughenour, Erika Marquez and Szu-Ping Lee
Int. J. Environ. Res. Public Health 2025, 22(7), 980; https://doi.org/10.3390/ijerph22070980 - 21 Jun 2025
Viewed by 326
Abstract
The COVID-19 pandemic is a catastrophic event highlighting numerous health disparities. The social vulnerability index (SVI) has been widely utilized in COVID-19 research to assess vulnerable communities and to examine how social determinants influence various COVID-19 outcomes. This population-based study aims to determine [...] Read more.
The COVID-19 pandemic is a catastrophic event highlighting numerous health disparities. The social vulnerability index (SVI) has been widely utilized in COVID-19 research to assess vulnerable communities and to examine how social determinants influence various COVID-19 outcomes. This population-based study aims to determine whether COVID-19 testing and vaccination rates mediate the relationship between the SVI and COVID-19 prevalence. Mediation analysis was conducted using data from 535 census tracts in Clark County, Nevada. Findings indicate that COVID-19 testing rates were lower in areas with high SVI scores, potentially leading to more undetected cases. Moreover, COVID-19 testing, full vaccination, and follow-up vaccination rates significantly mediated the relationship between SVI and COVID-19 prevalence. These results suggest that greater location-based social vulnerability is associated with a sequential pathway of reduced testing and vaccination rates, contributing to underreported COVID-19 cases. Full article
(This article belongs to the Collection COVID-19 Research)
Show Figures

Figure 1

28 pages, 1303 KiB  
Article
Bridging the Gap: A Novel Approach to Flood Risk Assessment for Resilience
by Jelena Andreja Radaković, Dragana Makajić-Nikolić and Nebojša Nikolić
Water 2025, 17(13), 1848; https://doi.org/10.3390/w17131848 - 21 Jun 2025
Viewed by 951
Abstract
Flood disasters are growing more common and severe as a result of global warming and climate change. These factors intensify weather extremes, resulting in more unpredictable and disastrous floods around the world. Effective flood risk assessment is critical for reducing the socioeconomic and [...] Read more.
Flood disasters are growing more common and severe as a result of global warming and climate change. These factors intensify weather extremes, resulting in more unpredictable and disastrous floods around the world. Effective flood risk assessment is critical for reducing the socioeconomic and environmental consequences of catastrophic events. This work proposes a novel technique for flood risk assessment that combines Event Tree Analysis with Dempster–Shafer evidence theory and an optimization approach. The methodology assesses flood scenarios, as well as probabilities and outcomes, to predict risk pathways and uncertainties. Prevention measures, such as flood defenses, early warning systems, and sustainable land use practices, are evaluated for cost-effectiveness and their contribution to flood resilience. The findings emphasize the relevance of multi-layered mitigation techniques for lowering flood risks and increasing community resilience. The model presented in this paper is modular, and since it depends on expert judgement, it can be used in other geographical or regional settings with adjustments from local data and local expert assessments. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

10 pages, 1104 KiB  
Article
Comparative Analysis of Extreme Flood Characteristics in the Huai River Basin: Insights from the 2020 Catastrophic Event
by Youbing Hu, Shijin Xu, Kai Wang, Shuxian Liang, Cui Su, Zhigang Feng and Mengjie Zhao
Water 2025, 17(12), 1815; https://doi.org/10.3390/w17121815 - 17 Jun 2025
Viewed by 380
Abstract
Catastrophic floods in monsoon-driven river systems pose significant challenges to flood resilience. In July 2020, China’s Huai River Basin (HRB) encountered an unprecedented basin-wide flood event characterized by anomalous southward displacement of the rain belt. This event established a new historical record with [...] Read more.
Catastrophic floods in monsoon-driven river systems pose significant challenges to flood resilience. In July 2020, China’s Huai River Basin (HRB) encountered an unprecedented basin-wide flood event characterized by anomalous southward displacement of the rain belt. This event established a new historical record with the three typical hydrological stations (Wangjiaba, Runheji, and Lutaizi sections) along the mainstem of the Huai River exceeded their guaranteed water levels within 11 h and synchronously reached peak flood levels within a 9-h window, whereas the inter-station lag times during the 2003 and 2007 floods ranged from 24 to 48 h, causing a critical emergency in the flood defense. By integrating operational hydrological data, meteorological reports, and empirical rainfall-runoff model schemes for the Meiyu periods of 2003, 2007, and 2020, this research systematically dissects the 2020 flood’s spatial composition patterns. Comparative analyses across spatiotemporal rainfall distribution, intensity metrics, and flood peak response dynamics reveal distinct characteristics of southward-shifted torrential rain and flood variability. The findings provide critical technical guidance for defending against extreme weather events and unprecedented hydrological disasters, directly supporting revisions to flood control planning in the Huai River Ecological and Economic Zone. Full article
Show Figures

Figure 1

Back to TopTop