Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = catalytic bromination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1698 KB  
Review
Enantioselective Iodination and Bromination for the Atroposelective Construction of Axially Chiral Compounds
by Xilong Wang, Shunwei Zhao, Yao Zhang, Dongya Bai, Fengbo Qu, Zhiyi Song, Hui Chen and Tingting Liu
Catalysts 2025, 15(7), 679; https://doi.org/10.3390/catal15070679 - 12 Jul 2025
Cited by 1 | Viewed by 1306
Abstract
Axially chiral compounds play a pivotal role in organic synthesis, materials science, and pharmaceutical development. Among the various strategies for their construction, enantioselective iodination and bromination have emerged as powerful and versatile approaches, enabling the introduction of halogen functionalities that serve as valuable [...] Read more.
Axially chiral compounds play a pivotal role in organic synthesis, materials science, and pharmaceutical development. Among the various strategies for their construction, enantioselective iodination and bromination have emerged as powerful and versatile approaches, enabling the introduction of halogen functionalities that serve as valuable synthetic handles for further transformations. This review highlights recent advances in atroposelective iodination and bromination, with a particular focus on the synthesis of axially chiral biaryl and heterobiaryl frameworks. Key catalytic systems are discussed, including transition metal complexes, small-molecule organocatalysts, and high-valent metal catalysts in combination with chiral ligands or transient directing groups. Representative case studies are presented to elucidate mechanistic pathways, stereochemical induction models, and synthetic applications. Despite notable progress, challenges remain, such as expanding substrate scope, improving atom economy, and achieving high levels of regio- and stereocontrol in complex molecular settings. This review aims to provide a comprehensive overview of these halogenation strategies and offers insights to guide future research in the atroposelective synthesis of axially chiral molecules. Full article
(This article belongs to the Special Issue Asymmetric Catalysis: Recent Progress and Future Perspective)
Show Figures

Scheme 1

22 pages, 7139 KB  
Article
Alkaline Solvothermal Debromination of Commercial Brominated Polystyrene
by Mario Ferreiro González, Fernanda Cabañas Gac and Gregory S. Patience
Recycling 2025, 10(3), 105; https://doi.org/10.3390/recycling10030105 - 1 Jun 2025
Cited by 1 | Viewed by 1086
Abstract
Government regulations have required consumer products—electrical and electronic components, toys, furniture, clothing, and cars— to meet ever-increasing flame resistance standards, and industry has met these norms by adding brominated fire retardants. However, end-of-life treatment and up-cycling of these plastics is challenging as the [...] Read more.
Government regulations have required consumer products—electrical and electronic components, toys, furniture, clothing, and cars— to meet ever-increasing flame resistance standards, and industry has met these norms by adding brominated fire retardants. However, end-of-life treatment and up-cycling of these plastics is challenging as the brominated compounds are endocrine disruptors, bioaccumulators, and persist in the environment. Pyrolysis, catalytic cracking, or combustion, to recover its fuel value, produces toxic brominated dibenzodioxins and dibenzofurans Here, we demonstrated the efficacy of a solvothermal treatment that extracts up to 99% of the bromine from high-impact polystyrene (HIPS) and polystyrene (PS) in electrical and electronic waste (e-waste). The process operated between 160 °C and 230 °C with ethylene glycol or triethylene glycol as the solvent and NaOH or KOH as the extraction agent (0.5 M to 2 M). The reaction rates depended on the particle size: 60 mm plastic chunks took up to between 4 and 24 h to react while fibers 3 mm in diameter reacted in less than 5 min. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Graphical abstract

15 pages, 779 KB  
Article
Balancing Yields and Sustainability: An Eco-Friendly Approach to Losartan Synthesis Using Green Palladium Nanoparticles
by Edith M. Antunes, Yusuf A. Adegoke, Sinazo Mgwigwi, John J. Bolton, Sarel F. Malan and Denzil R. Beukes
Molecules 2025, 30(11), 2314; https://doi.org/10.3390/molecules30112314 - 25 May 2025
Viewed by 1793
Abstract
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield [...] Read more.
This study presents a sustainable, environmentally friendly synthetic route for the production of key intermediates in losartan using palladium nanoparticles (PdNPs) derived from a brown seaweed, Sargassum incisifolium, as a recyclable nanocatalyst. A key intermediate, biaryl, was synthesized with an excellent yield (98%) via Suzuki–Miyaura coupling between 2-bromobenzonitrile and 4-methylphenylboronic acid, catalyzed using bio-derived PdNPs under mild conditions. Subsequent bromination using N-bromosuccinimide (NBS) under LED light, followed by imidazole coupling and tetrazole ring formation, allowed for the production of losartan with an overall yield of 27%. The PdNP catalyst exhibited high stability and recyclability, as well as strong catalytic activity, even at lower loadings, and nitrosamine formation was not detected. While the overall yield was lower than that of traditional industrial methods, this was due to the deliberate avoidance of the use of toxic reagents, hazardous solvents, and protection/deprotection steps commonly used in conventional routes. This trade-off marks a shift in pharmaceutical process development, where environmental and safety considerations are increasingly prioritized in line with green chemistry and regulatory frameworks. This study provides a foundation for green scaling up strategies, incorporating sustainability principles into drug synthesis. Full article
(This article belongs to the Special Issue Organic Molecules in Drug Discovery and Development)
Show Figures

Graphical abstract

18 pages, 5810 KB  
Article
Electrochemical Reduction Performance and Mechanism of 2,2′,4,4′-Tetrabromodiphenyl Ether (BDE-47) with Pd/Metal Foam Electrodes
by Chenghao Liang, He Liu, Jiahao Liang, Xiaodong Du, Xueqin Tao and Guining Lu
Processes 2025, 13(3), 853; https://doi.org/10.3390/pr13030853 - 14 Mar 2025
Viewed by 1114
Abstract
Polybrominated diphenyl ethers (PBDEs), a type of brominated flame retardant, are of global concern due to their environmental persistence, bioaccumulation, toxicity, and resistance to conventional remediation methods. In this study, the electrochemical reduction of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) with Pd/Metal foam electrodes (Ni, Cu, [...] Read more.
Polybrominated diphenyl ethers (PBDEs), a type of brominated flame retardant, are of global concern due to their environmental persistence, bioaccumulation, toxicity, and resistance to conventional remediation methods. In this study, the electrochemical reduction of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) with Pd/Metal foam electrodes (Ni, Cu, and Ag) was investigated. The effect of Pd loadings was explored, and the results show that Pd loading enhances the debromination performance, with 15.16%Pd/Ni foam exhibiting the best efficiency, followed by 9.37%Pd/Cu and 10.26%Pd/Ag. The degradation mechanisms for Pd/Ni and Pd/Ag are primarily hydrogen atom transfer, while for Pd/Cu, electron transfer dominates. Among the reduction products, Pd/Ni foam shows the highest debromination capability. The impact of electrolytes, current intensity, and bromination degrees of PBDEs was evaluated for 15.16%Pd/Ni. The results reveal that the presence of electrolytes inhibits BDE-47 degradation; the degradation rate of BDE-47 increases with current density, peaks at 4 mA, and decreases as current rises; and 15.16%Pd/Ni foam can effectively degrade PBDEs with varying bromination levels. Additionally, cycling tests show a decrease in efficiency from 94.3% (first cycle) to 56.58% (fourth cycle), attributed to Pd loss and structural damage. The findings offer valuable insights for developing efficient, sustainable catalytic materials for the electrochemical degradation of PBDEs and other persistent organic pollutants. Full article
(This article belongs to the Special Issue Advances in Remediation of Contaminated Sites: 2nd Edition)
Show Figures

Figure 1

15 pages, 10220 KB  
Article
Revolutionary ZVI-Entrapped Sol–Gel Silica Matrices: Efficient Catalytic Reduction of High-Concentration Halo-Organic Compounds—Addressing Bromoacetic Acid Contamination in Industrial Wastewaters
by Gifty Sara Rolly, Dan Meyerstein, Ariela Burg, Dror Shamir and Yael Albo
Gels 2024, 10(11), 718; https://doi.org/10.3390/gels10110718 - 7 Nov 2024
Cited by 1 | Viewed by 1266
Abstract
The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds [...] Read more.
The de-halogenation of highly concentrated halo-organic compounds using Zero Valent Iron entrapped in silica matrices as a catalyst was investigated. This study aimed to evaluate the effectiveness of the Zero Valent Iron-entrapped organically modified silica matrices in transforming highly concentrated hazardous halogenated compounds into environmentally benign materials in the presence of BH4. The Zero Valent Iron-entrapped silica gel matrices were synthesized using the sol–gel method. The de-halogenation products were analyzed using high-performance liquid chromatography. The results suggest that the Zero Valent Iron-entrapped silica matrices are effective catalysts in the de-halogenation reaction of halo-organics by BH4 with 100% efficiency. The current work also highlights the complete de-bromination of harmful wastewater generated by the bromoacetic acid manufacturing industry using Zero Valent Iron-entrapped silica matrices. Therefore, Zero Valent Iron-entrapped silica matrices can be considered potential candidates for the catalytic removal of highly concentrated halo-organic compounds from contaminated water. This technology can play a crucial role in reducing the environmental impact of hazardous substances. Full article
(This article belongs to the Special Issue Gel-Based Adsorbent Materials for Environmental Remediation)
Show Figures

Graphical abstract

19 pages, 1992 KB  
Review
Thermal and Catalytic Recycling of Plastics from Waste Electrical and Electronic Equipment—Challenges and Perspectives
by Dimitris S. Achilias, Maria-Anna Charitopoulou and Stefano Vecchio Ciprioti
Polymers 2024, 16(17), 2538; https://doi.org/10.3390/polym16172538 - 7 Sep 2024
Cited by 10 | Viewed by 2860
Abstract
The amount of end-of-life electrical and electronic devices has been widely increased, globally. This emphasizes how recycling waste electric and electronic equipment (WEEE) is essential in order to reduce the amount of WEEE that is disposed of directly in the environment. Plastics account [...] Read more.
The amount of end-of-life electrical and electronic devices has been widely increased, globally. This emphasizes how recycling waste electric and electronic equipment (WEEE) is essential in order to reduce the amount of WEEE that is disposed of directly in the environment. Plastics account for a big percentage in WEEE, almost 20%. As a result, the application of recycling methods on plastics gathered from WEEE is of great importance since, in this way, landfill disposal can be reduced. Nevertheless, despite the advantages, there are a lot of difficulties, such as the variety of different plastics present in the plastic mix and the existence of various additives in the plastic parts, for instance, brominated flame retardants that need special attention during their treatments, which restricts their wide application. Considering all these, this review aims to provide readers with all the current techniques and perspectives that are available for both the thermal and the catalytic recycling of plastics retrieved from WEEE. Apart from the up-to-date information on the recycling methods, in this review, emphasis is also given on the advantages each method offers and also on the difficulties and the limitations that may prevent them from being applied on a large scale. Current challenges are critically examined, including the use of mechanical or thermo-chemical recycling, the treatment of individual polymers or polymer blends and the separation of harmful additives before recycling or not. Finally, emerging technologies are briefly discussed. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

16 pages, 497 KB  
Review
Advanced Electrochemical Detection of Tetrabromobisphenol A and Hexabromocyclododecane via Modified Carbon Electrodes with Inorganic Nanoparticles: A Short Review
by Gururaj Kudur Jayaprakash and Kaustubha Mohanty
Electrochem 2024, 5(3), 314-329; https://doi.org/10.3390/electrochem5030020 - 30 Jul 2024
Cited by 3 | Viewed by 1931
Abstract
The escalating concern over environmental pollutants, particularly brominated flame retardants (BFRs), demands sophisticated detection methodologies for compounds like Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD). Amidst these challenges, advancements in electrochemical detection have notably focused on the integration of inorganic modifiers within carbon electrodes. [...] Read more.
The escalating concern over environmental pollutants, particularly brominated flame retardants (BFRs), demands sophisticated detection methodologies for compounds like Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecane (HBCD). Amidst these challenges, advancements in electrochemical detection have notably focused on the integration of inorganic modifiers within carbon electrodes. Inorganic nanoparticles, known for their catalytic and surface-enhancing properties, play a pivotal role in augmenting the sensitivity and selectivity of electrode-based detection systems. These modifiers, encompassing materials such as graphene, CeO2 nanocubes, and metal-organic frameworks, among others, have revolutionized the capabilities of carbon-based electrodes in accurately identifying specific BFRs. Full article
Show Figures

Figure 1

13 pages, 30203 KB  
Article
Catalytic Pyrolysis of Waste-Printed Circuit Boards Using a Cu/Fe Bimetal Synergistic Effect to Enhance Debromination
by Jiahui Wang, Zhen Xi, Bo Niu, Ruitong Gao and Zhenming Xu
Sustainability 2024, 16(7), 3009; https://doi.org/10.3390/su16073009 - 4 Apr 2024
Cited by 38 | Viewed by 2977
Abstract
Deep and efficient debromination is a critical step in achieving environmentally friendly recycling and ensuring the sustainability of waste-printed circuit boards (WPCBs) because of their high toxicity and carcinogenicity. To this end, this study used a copper–iron (Cu/Fe) bimetal as a debromination agent [...] Read more.
Deep and efficient debromination is a critical step in achieving environmentally friendly recycling and ensuring the sustainability of waste-printed circuit boards (WPCBs) because of their high toxicity and carcinogenicity. To this end, this study used a copper–iron (Cu/Fe) bimetal as a debromination agent to remove bromides from WPCBs using in situ catalytic pyrolysis technology. The results show that the maximum debromination efficiency was 97.14% under the following conditions: a Cu mole ratio of 0.20 (Cu/Fe-0.20), a Cu/Fe-0.20 dosage of 0.4, a pyrolysis temperature of 600 °C, and a retention time of 10 min. The main bromine species in pyrolysis oil and gas were bromophenol, bromomethane, HBr, and Br2. The conversion of bromine species and the debromination of the Cu/Fe-0.20 bimetal were analyzed in real time using a thermogravimetry-coupled Fourier transform infrared and mass spectrometer (TG-FTIR-MS). Using the Cu/Fe bimetal synergistic effect, we determined that the debromination mechanism could be used for bromide conversion and fixing. The Cu in the Cu/Fe-0.20 transformed the organic Br (bromophenol and bromomethane) into inorganic Br (HBr and Br2) by providing empty orbitals for lone pairs of electrons. Then, the generated HBr and Br2 reacted with Fe in the Cu/Fe-0.20 and were fixed in pyrolysis residue. This study provides theoretical support and a practical method for WPCB deep debromination and recycling. Full article
Show Figures

Figure 1

19 pages, 5104 KB  
Article
Coordination Compound (2,3,5-Triphenyltetrazolium)2[CuBr4] as Catalyst for the Curing Process of Epoxy Vinyl Ester Binders
by Alexander E. Protsenko, Alexandra N. Protsenko, Olga G. Shakirova and Daria D. Zhelevskaya
Int. J. Mol. Sci. 2023, 24(14), 11808; https://doi.org/10.3390/ijms241411808 - 22 Jul 2023
Cited by 3 | Viewed by 2052
Abstract
This article presents a study on the synthesis and catalytic properties of copper complex (TPhTz)2[CuBr4] (here TPhTz is 2,3,5-triphenyltetrazolium). The obtained complex was characterized by various spectroscopic methods. The catalytic properties of the complex were evaluated in the curing [...] Read more.
This article presents a study on the synthesis and catalytic properties of copper complex (TPhTz)2[CuBr4] (here TPhTz is 2,3,5-triphenyltetrazolium). The obtained complex was characterized by various spectroscopic methods. The catalytic properties of the complex were evaluated in the curing of an epoxy vinyl ester system and their effectiveness was compared with that of cobalt octoate (its synonyms are known as Co(Oct)2, cobalt(II) 2-ethylhexanoate, cobalt isocaprylate, etc.). The catalyst was added at an amount of 2 w.%. The results showed that a 8 w.% solution of the complex provides catalytic properties with an activation energy of 54.7 kJ/mol, which is 25.2 kJ/mol higher than a standard curing system with Co(Oct)2. Thus, the solution of (TPhTz)2[CuBr4] in THF/DMSO accelerates the initiator decay process at room temperature, but for a longer time. The authors suggest that the curing mechanism may be accelerated by the appearance of (TPhTz)2[CuIBr3] and free bromine in the system. A strength test of fiberglass-reinforced plastic revealed that the addition of this complex did not lead to a decrease in flexural strength and hardness. Thus, use of the complex allowed for the production of polymer composite products using vacuum-assisted resin transfer molding where an extended injection time was needed. Full article
(This article belongs to the Special Issue The Design, Synthesis and Study of Metal Complexes)
Show Figures

Graphical abstract

10 pages, 862 KB  
Article
Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
by Berrak Erkmen, Adem Ozdogan, Ayhan Ezdesir and Gokhan Celik
Polymers 2023, 15(4), 859; https://doi.org/10.3390/polym15040859 - 9 Feb 2023
Cited by 15 | Viewed by 7969
Abstract
Plastics are engineering marvels that have found widespread use in all aspects of modern life. However, poor waste management practices and inefficient recycling technologies, along with their extremely high durability, have caused one of the major environmental problems facing humankind: waste plastic pollution. [...] Read more.
Plastics are engineering marvels that have found widespread use in all aspects of modern life. However, poor waste management practices and inefficient recycling technologies, along with their extremely high durability, have caused one of the major environmental problems facing humankind: waste plastic pollution. The upcycling of waste plastics to chemical feedstock to produce virgin plastics has emerged as a viable option to mitigate the adverse effects of plastic pollution and close the gap in the circular economy of plastics. Pyrolysis is considered a chemical recycling technology to upcycle waste plastics. Yet, whether pyrolysis as a stand-alone technology can achieve true circularity or not requires further investigation. In this study, we analyzed and critically evaluated whether oil obtained from the non-catalytic pyrolysis of virgin polypropylene (PP) can be used as a feedstock for naphtha crackers to produce olefins, and subsequently polyolefins, without undermining the circular economy and resource efficiency. Two different pyrolysis oils were obtained from a pyrolysis plant and compared with light and heavy naphtha by a combination of physical and chromatographic methods, in accordance with established standards. The results demonstrate that pyrolysis oil consists of mostly cyclic olefins with a bromine number of 85 to 304, whereas light naphtha consists of mostly paraffinic hydrocarbons with a very low olefinic content and a bromine number around 1. Owing to the compositional differences, pyrolysis oil studied herein is completely different than naphtha in terms of hydrocarbon composition and cannot be used as a feedstock for commercial naphtha crackers to produce olefins. The findings are of particular importance to evaluating different chemical recycling opportunities with respect to true circularity and may serve as a benchmark to determine whether liquids obtained from different polyolefin recycling technologies are compatible with existing industrial steam crackers’ feedstock. Full article
(This article belongs to the Special Issue Advanced Recycling of Plastic Waste: An Approach for Circular Economy)
Show Figures

Figure 1

13 pages, 2691 KB  
Article
N-Doped Carbon/CeO2 Composite as a Biomimetic Catalyst for Antibacterial Application
by Nan Wang, Xiaofan Zhai, Fang Guan, Ruiyong Zhang, Baorong Hou and Jizhou Duan
Int. J. Mol. Sci. 2023, 24(3), 2445; https://doi.org/10.3390/ijms24032445 - 26 Jan 2023
Cited by 17 | Viewed by 2612
Abstract
Exploring new and high efficiency mimic enzymes is a vital and novel strategy for antibacterial application. Haloperoxidase-like enzymes have attracted wide attention thanks to their amazing catalytic property for hypohalous acid generation from hydrogen peroxide and halides. However, few materials have displayed halogenating [...] Read more.
Exploring new and high efficiency mimic enzymes is a vital and novel strategy for antibacterial application. Haloperoxidase-like enzymes have attracted wide attention thanks to their amazing catalytic property for hypohalous acid generation from hydrogen peroxide and halides. However, few materials have displayed halogenating catalytic performance until now. Herein, we synthesized N-doped C/CeO2 (N-C/CeO2) composite materials by a combination of the liquid and solid-state method. N-C/CeO2 can possess haloperoxidase-like catalytic activity by catalyzing the bromination of organic signaling compounds (phenol red) with H2O2 at a wide range of temperatures (20 °C to 55 °C), with a solution color changing from yellow to blue. Meanwhile, it exhibits high catalytic stability/recyclability in the catalytic reaction. The synthesized N-C/CeO2 composite can effectively catalyze the oxidation of Br with H2O2 to produce HBrO without the presence of phenol red. The produced HBrO can resist typical marine bacteria like Pseudomonas aeruginosa. This study provides an efficient biomimetic haloperoxidase and a novel sustainable method for antibacterial application. Full article
Show Figures

Figure 1

32 pages, 10203 KB  
Article
Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor
by Augusto Fernando de Freitas Costa, Caio Campos Ferreira, Simone Patrícia Aranha da Paz, Marcelo Costa Santos, Luiz Gabriel Santos Moreira, Neyson Martins Mendonça, Fernanda Paula da Costa Assunção, Ana Carolina Gomes de Albuquerque de Freitas, Roseane Maria Ribeiro Costa, Isaque Wilkson de Sousa Brandão, Carlos Emmerson Ferreira da Costa, Sílvio Alex Pereira da Mota, Douglas Alberto Rocha de Castro, Sergio Duvoisin, Luiz Eduardo Pizarro Borges, Nélio Teixeira Machado and Lucas Pinto Bernar
Energies 2023, 16(1), 541; https://doi.org/10.3390/en16010541 - 3 Jan 2023
Cited by 7 | Viewed by 4801
Abstract
This study investigated thermal cracking and catalytic upgrading of waste from electric and electronic equipment (WEEE) plastics on a semi-batch reactor coupled to a heated catalyst fixed bed (2-stage vapor cracking). The catalyst used is a Si–Al ash obtained from commercial activated carbon [...] Read more.
This study investigated thermal cracking and catalytic upgrading of waste from electric and electronic equipment (WEEE) plastics on a semi-batch reactor coupled to a heated catalyst fixed bed (2-stage vapor cracking). The catalyst used is a Si–Al ash obtained from commercial activated carbon pellets treated with concentrated NaOH solution and calcination. The purpose of the study was to characterize the waste stream through its thermogravimetry analysis and pyrolysis products, study the effect of temperature (350–500 °C) and catalyst quantity (0.0–7.5 %.wt) on yields of reaction products, physical chemical properties, and chemical composition of bio-oil in order to understand and evaluate production of fuels and chemical feedstock by recycling of WEEE plastic through catalytic upgrading. Time-fractioned samples were taken in determined reaction times (15, 30, 45, and 60 min) to study the evolution of cracking reactions during experiment runs through changes to chemical composition (GC/MS). A comparison with other previous work is also presented to show similarities between different feedstocks using the same thermal unit. The results indicate composition of brominated acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and high impact polystyrene (HIPS) for the WEEE plastic. The temperature of 350 °C produced better results when considering acid value but presented lower bio-oil yields (38%) and high gas yields (42%). Catalytic upgrading experiments revealed the increased presence of polycyclic aromatic hydrocarbons (PAH) with an increase in viscosity of bio-oil, increase in char yield (from 11% to 24%), and decrease in gas yields (15% to 5%). Chemical composition showed presence of aromatic hydrocarbons such as styrene, methyl-styrene, and diphenyl-propane and nitrogenated compounds such as benzene-butane-nitrile, phenolic compounds, PAHs, and brominated compounds. WEEE plastic pyrolysis is a challenging subject due to contaminant presence and varying composition, and chemical composition evaluation according to reaction time provides interesting insights into the evolution of semi-batch pyrolysis/catalytic upgrading experiments. Standardization and reproducibility of the tool should be conducted to continue the evaluation of pyrolysis and catalytic upgrading of a wide range of feedstocks. Full article
(This article belongs to the Special Issue Advances in Biodiesel for Application in Diesel Engines)
Show Figures

Figure 1

13 pages, 10590 KB  
Article
Multi-Substituted Quinolines as HIV-1 Integrase Allosteric Inhibitors
by Long Phi Dinh, Jian Sun, Courtney D. Glenn, Krunal Patel, Julie A. Pigza, Matthew G. Donahue, Larry Yet and Jacques J. Kessl
Viruses 2022, 14(7), 1466; https://doi.org/10.3390/v14071466 - 2 Jul 2022
Cited by 6 | Viewed by 2830
Abstract
Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To [...] Read more.
Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To further our understanding of the important binding features of multi-substituted quinoline-based ALLINIs, we have examined the IN multimerization and antiviral properties of substitution patterns at the 6 or 8 position. We found that the binding properties of these ALLINIs are negatively impacted by the presence of bulky substitutions at these positions. In addition, we have observed that the addition of bromine at either the 6 (6-bromo) or 8 (8-bromo) position conferred better antiviral properties. Finally, we found a significant loss of potency with the 6-bromo when tested with the ALLINI-resistant IN A128T mutant virus, while the 8-bromo analog retained full effectiveness. Full article
(This article belongs to the Special Issue Retroviral Integration)
Show Figures

Figure 1

22 pages, 5922 KB  
Article
Exploring the Anticancer Effects of Brominated Plastoquinone Analogs with Promising Cytotoxic Activity in MCF-7 Breast Cancer Cells via Cell Cycle Arrest and Oxidative Stress Induction
by Ayse Tarbin Jannuzzi, Ayse Mine Yilmaz Goler, Nilüfer Bayrak, Mahmut Yıldız, Hatice Yıldırım, Betul Karademir Yilmaz, Deepak Shilkar, Raghusrinivasan Jayaprakash Venkatesan, Venkatesan Jayaprakash and Amaç Fatih TuYuN
Pharmaceuticals 2022, 15(7), 777; https://doi.org/10.3390/ph15070777 - 22 Jun 2022
Cited by 8 | Viewed by 3838
Abstract
Plastoquinone analogs are privileged structures among the known antiproliferative natural product-based compound families. Exploiting one of these analogs as a lead structure, we report the investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute of Bethesda within the [...] Read more.
Plastoquinone analogs are privileged structures among the known antiproliferative natural product-based compound families. Exploiting one of these analogs as a lead structure, we report the investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute of Bethesda within the Developmental Therapeutics Program (DTP). These analogs exhibited growth inhibition in the micromolar range across leukemia, non-small cell lung cancer (EKVX, HOP-92, and NCI-H522), colon cancer (HCT-116, HOP-92), melanoma (LOX IMVI), and ovarian cancer (OVCAR-4) cell lines. One brominated PQ analog (BrPQ5) was selected for a full panel five-dose in vitro assay by the NCI’s Development Therapeutic Program (DTP) division to determine GI50, TGI, and LC50 parameters. The brominated PQ analog (BrPQ5) displayed remarkable activity against most tested cell lines, with GI50 values ranging from 1.55 to 4.41 µM. The designed molecules (BrPQ analogs) obeyed drug-likeness rules, displayed a favorable predictive Absorption, Distribution, Metabolism, and Excretion (ADME) profile, and an in silico simulation predicted a possible BrPQ5 interaction with proteasome catalytic subunits. Furthermore, the in vitro cytotoxic activity of BrPQ5 was assessed, and IC50 values for U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145 prostate cancer, HCT-116 colon cancer, and VHF93 fibroblast cell lines were evaluated using an MTT assay. MCF-7 was the most affected cell line, and the effects of BrPQ5 on cell proliferation, cell cycle, oxidative stress, apoptosis/necrosis induction, and proteasome activity were further investigated in MCF-7 cells. The in vitro assay results showed that BrPQ5 caused cytotoxicity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction. However, BrPQ5 did not inhibit the catalytic activity of the proteasome. These results provide valuable insights for further discovery of novel antiproliferative agents. Full article
(This article belongs to the Special Issue Privileged Structures as Leads in Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 2312 KB  
Article
Electron-Deficient Ru(II) Complexes as Catalyst Precursors for Ethylene Hydrophenylation
by Xiaofan Jia, Songyuan Tian, Philip J. Shivokevich, W. Dean Harman, Diane A. Dickie and T. Brent Gunnoe
Inorganics 2022, 10(6), 76; https://doi.org/10.3390/inorganics10060076 - 31 May 2022
Cited by 5 | Viewed by 3638
Abstract
Ruthenium(II) complexes with the general formula TpRu(L)(NCMe)Ph (Tp = hydrido(trispyrazolyl)borate, L = CO, PMe3, P(OCH2)3CEt, P(pyr)3, P(OCH2)2(O)CCH3) have previously been shown to catalyze arene alkylation via Ru-mediated arene C–H [...] Read more.
Ruthenium(II) complexes with the general formula TpRu(L)(NCMe)Ph (Tp = hydrido(trispyrazolyl)borate, L = CO, PMe3, P(OCH2)3CEt, P(pyr)3, P(OCH2)2(O)CCH3) have previously been shown to catalyze arene alkylation via Ru-mediated arene C–H activation including the conversion of benzene and ethylene to ethylbenzene. Previous studies have suggested that the catalytic performance of these TpRu(II) catalysts increases with reduced electron-density at the Ru center. Herein, three new structurally related Ru(II) complexes are synthesized, characterized, and studied for possible catalytic benzene ethylation. TpRu(NO)Ph2 exhibited low stability due to the facile elimination of biphenyl. The Ru(II) complex (TpBr3)Ru(NCMe)(P(OCH2)3CEt)Ph (TpBr3 = hydridotris(3,4,5-tribromopyrazol-1-yl)borate) showed no catalytic activity for the conversion of benzene and ethylene to ethylbenzene, likely due to the steric bulk introduced by the bromine substituents. (Ttz)Ru(NCMe)(P(OCH2)3CEt)Ph (Ttz = hydridotris(1,2,4-triazol-1-yl)borate) catalyzed approximately 150 turnover numbers (TONs) of ethylbenzene at 120 °C in the presence of Lewis acid additives. Here, we compare the activity and features of catalysis using (Ttz)Ru(NCMe)(P(OCH2)3CEt)Ph to previously reported catalysis based on TpRu(L)(NCMe)Ph catalyst precursors. Full article
(This article belongs to the Special Issue Inorganics: 10th Anniversary)
Show Figures

Graphical abstract

Back to TopTop