Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = catabolite intermediates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1846 KiB  
Review
Defining NAD(P)(H) Catabolism
by Jyothi Dhuguru, Ryan W. Dellinger and Marie E. Migaud
Nutrients 2023, 15(13), 3064; https://doi.org/10.3390/nu15133064 - 7 Jul 2023
Cited by 12 | Viewed by 4547
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense [...] Read more.
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

18 pages, 1720 KiB  
Article
Hesperidin Bioavailability Is Increased by the Presence of 2S-Diastereoisomer and Micronization—A Randomized, Crossover and Double-Blind Clinical Trial
by Anna Crescenti, Antoni Caimari, Juan María Alcaide-Hidalgo, Roger Mariné-Casadó, Rosa M. Valls, Judit Companys, Patricia Salamanca, Lorena Calderón-Pérez, Laura Pla-Pagà, Anna Pedret, Antoni Delpino-Rius, Pol Herrero, Iris Samarra, Lluís Arola, Rosa Solà and Josep M. Del Bas
Nutrients 2022, 14(12), 2481; https://doi.org/10.3390/nu14122481 - 15 Jun 2022
Cited by 14 | Viewed by 4069
Abstract
Hesperidin is a flavanone abundantly found in citrus fruits for which health beneficial effects have been reported. However, hesperidin shows a low bioavailability among individuals. The aim of this study was to evaluate the effects of the micronization process and 2R- and 2S-hesperidin [...] Read more.
Hesperidin is a flavanone abundantly found in citrus fruits for which health beneficial effects have been reported. However, hesperidin shows a low bioavailability among individuals. The aim of this study was to evaluate the effects of the micronization process and 2R- and 2S-hesperidin diastereoisomers ratio on hesperidin bioavailability. In a first phase, thirty healthy individuals consumed 500 mL of orange juice with 345 mg of hesperidin, and the levels of hesperidin metabolites excreted in urine were determined. In the second phase, fifteen individuals with intermediate hesperidin metabolite levels excreted in urine were randomized in a crossover, postprandial and double-blind intervention study. Participants consumed 500 mg of the hesperidin-supplemented Hesperidin epimeric mixture (HEM), the micronized Hesperidin epimeric mixture (MHEM) and micronized 2S-Hesperidin (M2SH) in each study visit with 1 week of washout. Hesperidin metabolites and catabolites were determined in blood and urine obtained at different timepoints over a 24 h period. The bioavailability—relative urinary hesperidin excretion (% of hesperidin ingested)—of M2SH (70 ± 14%) formed mainly by 2S-diastereoisomer was significantly higher than the bioavailability of the MHEM (55 ± 15%) and HEM (43 ± 8.0%), which consisted of a mixture of both hesperidin diastereoisomers. Relative urinary excretion of hesperidin metabolites for MHEM (9.2 ± 1.6%) was significantly higher compared to the HEM (5.2 ± 0.81%) and M2SH (3.6 ± 1.0%). In conclusion, the bioavailability of 2S-hesperidin extract was higher compared to the standard mixture of 2S-/2R-hesperidin extract due to a greater formation of hesperidin catabolites. Furthermore, the micronization process increased hesperidin bioavailability. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

18 pages, 1691 KiB  
Article
4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR)—A Novel Oncometabolite Modulating Cancer-Endothelial Interactions in Breast Cancer Metastasis
by Patrycja Koszalka, Barbara Kutryb-Zajac, Paulina Mierzejewska, Marta Tomczyk, Joanna Wietrzyk, Pawel K. Serafin, Ryszard T. Smolenski and Ewa M. Slominska
Int. J. Mol. Sci. 2022, 23(10), 5774; https://doi.org/10.3390/ijms23105774 - 21 May 2022
Cited by 5 | Viewed by 2523
Abstract
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) [...] Read more.
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

21 pages, 3381 KiB  
Article
Untargeted Metabolome Analysis Reveals Reductions in Maternal Hepatic Glucose and Amino Acid Content That Correlate with Fetal Organ Weights in a Mouse Model of Fetal Alcohol Spectrum Disorders
by Nipun Saini, Manjot S. Virdee, Kaylee K. Helfrich, Sze Ting Cecilia Kwan, Sandra M. Mooney and Susan M. Smith
Nutrients 2022, 14(5), 1096; https://doi.org/10.3390/nu14051096 - 5 Mar 2022
Cited by 10 | Viewed by 3152
Abstract
Prenatal alcohol exposure (PAE) causes fetal growth restrictions. A major driver of fetal growth deficits is maternal metabolic disruption; this is under-investigated following PAE. Untargeted metabolomics on the dam and fetus exposed to alcohol (ALC) revealed that the hepatic metabolome of ALC and [...] Read more.
Prenatal alcohol exposure (PAE) causes fetal growth restrictions. A major driver of fetal growth deficits is maternal metabolic disruption; this is under-investigated following PAE. Untargeted metabolomics on the dam and fetus exposed to alcohol (ALC) revealed that the hepatic metabolome of ALC and control (CON) dams were distinct, whereas that of ALC and CON fetuses were similar. Alcohol reduced maternal hepatic glucose content and enriched essential amino acid (AA) catabolites, N-acetylated AA products, urea content, and free fatty acids. These alterations suggest an attempt to minimize the glucose gap by increasing gluconeogenesis using AA and glycerol. In contrast, ALC fetuses had unchanged glucose and AA levels, suggesting an adequate draw of maternal nutrients, despite intensified stress on ALC dams. Maternal metabolites including glycolytic intermediates, AA catabolites, urea, and one-carbon-related metabolites correlated with fetal liver and brain weights, whereas lipid metabolites correlated with fetal body weight, indicating they may be drivers of fetal weight outcomes. Together, these data suggest that ALC alters maternal hepatic metabolic activity to limit glucose availability, thereby switching to alternate energy sources to meet the high-energy demands of pregnancy. Their correlation with fetal phenotypic outcomes indicates the influence of maternal metabolism on fetal growth and development. Full article
Show Figures

Figure 1

16 pages, 1822 KiB  
Article
A Method to Monitor the NAD+ Metabolome—From Mechanistic to Clinical Applications
by Maria Pilar Giner, Stefan Christen, Simona Bartova, Mikhail V. Makarov, Marie E. Migaud, Carles Canto and Sofia Moco
Int. J. Mol. Sci. 2021, 22(19), 10598; https://doi.org/10.3390/ijms221910598 - 30 Sep 2021
Cited by 20 | Viewed by 6365
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) [...] Read more.
Nicotinamide adenine dinucleotide (NAD+) and its reduced form (NADH) are coenzymes employed in hundreds of metabolic reactions. NAD+ also serves as a substrate for enzymes such as sirtuins, poly(ADP-ribose) polymerases (PARPs) and ADP-ribosyl cyclases. Given the pivotal role of NAD(H) in health and disease, studying NAD+ metabolism has become essential to monitor genetic- and/or drug-induced perturbations related to metabolic status and diseases (such as ageing, cancer or obesity), and its possible therapies. Here, we present a strategy based on liquid chromatography-tandem mass spectrometry (LC-MS/MS), for the analysis of the NAD+ metabolome in biological samples. In this method, hydrophilic interaction chromatography (HILIC) was used to separate a total of 18 metabolites belonging to pathways leading to NAD+ biosynthesis, including precursors, intermediates and catabolites. As redox cofactors are known for their instability, a sample preparation procedure was developed to handle a variety of biological matrices: cell models, rodent tissues and biofluids, as well as human biofluids (urine, plasma, serum, whole blood). For clinical applications, quantitative LC-MS/MS for a subset of metabolites was demonstrated for the analysis of the human whole blood of nine volunteers. Using this developed workflow, our methodology allows studying NAD+ biology from mechanistic to clinical applications. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

21 pages, 1306 KiB  
Review
Pathogenesis and Molecular Mechanisms of Anderson–Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies
by Antonino Tuttolomondo, Irene Simonetta, Renata Riolo, Federica Todaro, Tiziana Di Chiara, Salvatore Miceli and Antonio Pinto
Int. J. Mol. Sci. 2021, 22(18), 10088; https://doi.org/10.3390/ijms221810088 - 18 Sep 2021
Cited by 51 | Viewed by 10819
Abstract
Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises [...] Read more.
Anderson–Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson–Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy–lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

13 pages, 3480 KiB  
Article
The Bacterial Soft Rot Pathogens, Pectobacterium carotovorum and P. atrosepticum, Respond to Different Classes of Virulence-Inducing Host Chemical Signals
by Paul A. Agyemang, Md Niamul Kabir, Caleb M. Kersey and C. Korsi Dumenyo
Horticulturae 2020, 6(1), 13; https://doi.org/10.3390/horticulturae6010013 - 10 Feb 2020
Cited by 23 | Viewed by 9691
Abstract
Soft rot bacteria of the Pectobacterium and Dickeya genera are Gram-negative phytopathogens that produce and secrete plant cell wall-degrading enzymes (PCWDE), the actions of which lead to rotting and decay of their hosts in the field and in storage. Host chemical signals are [...] Read more.
Soft rot bacteria of the Pectobacterium and Dickeya genera are Gram-negative phytopathogens that produce and secrete plant cell wall-degrading enzymes (PCWDE), the actions of which lead to rotting and decay of their hosts in the field and in storage. Host chemical signals are among the factors that induce the bacteria into extracellular enzyme production and virulence. A class of compounds (Class I) made up of intermediate products of cell wall (pectin) degradation induce exoenzyme synthesis through KdgR, a global negative regulator of exoenzyme production. While the KdgR mutant of P. carotovorum is no longer inducible by Class I inducers, we demonstrated that exoenzyme production is induced in this strain in the presence of extracts from hosts including celery, potato, carrot, and tomato, suggesting that host plants contain another class of compounds (Class II inducers) different from the plant cell wall-degradative products that work through KdgR. The Class II inducers are thermostable, water-soluble, diffusible, and dialysable through 1 kDa molecular weight cut off pore size membranes, and could be a target for soft rot disease management strategies. Full article
(This article belongs to the Special Issue Postharvest Pathogens and Disease Management of Horticultural Crops)
Show Figures

Figure 1

15 pages, 1130 KiB  
Article
The Absence of Pyruvate Kinase Affects Glucose-Dependent Carbon Catabolite Repression in Bacillus subtilis
by Joana Sousa, Philipp Westhoff, Karen Methling and Michael Lalk
Metabolites 2019, 9(10), 216; https://doi.org/10.3390/metabo9100216 - 4 Oct 2019
Cited by 13 | Viewed by 4635
Abstract
Pyruvate is a key intermediate of diverse metabolic pathways of central carbon metabolism. In addition to being the end product of glycolysis, pyruvate is an essential carbon distribution point to oxidative metabolism, amino acid and fatty acid syntheses, and overflow metabolite production. Hence, [...] Read more.
Pyruvate is a key intermediate of diverse metabolic pathways of central carbon metabolism. In addition to being the end product of glycolysis, pyruvate is an essential carbon distribution point to oxidative metabolism, amino acid and fatty acid syntheses, and overflow metabolite production. Hence, a tight regulation of pyruvate kinase (Pyk) activity is of great importance. This study aimed to analyze targeted metabolites from several pathways and possible changes in Bacillus subtilis lacking Pyk. Wild type and Δpyk cells were cultivated in chemically defined medium with glucose and pyruvate as carbon sources, and the extracted metabolites were analyzed by 1H-NMR, GC-MS, HPLC-MS, and LC-MS/MS. The results showed that the perturbation created in the pyruvate node drove an adaptation to new conditions by altering the nutritional compounds’ consumption. In Δpyk, pyruvate, which is subject to glucose-dependent carbon catabolite repression, did not comply with the hierarchy in carbon source utilization. Other metabolic alterations were observed such as the higher secretion of the overflow metabolites acetoin and 2,3-butanediol by Δpyk. Our results help to elucidate the regulatory transport of glucose and pyruvate in B. subtilis and possible metabolic reroute to alternative pathways in the absence of Pyk. Full article
Show Figures

Figure 1

28 pages, 3974 KiB  
Review
Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection
by Katalin Sas, Elza Szabó and László Vécsei
Molecules 2018, 23(1), 191; https://doi.org/10.3390/molecules23010191 - 17 Jan 2018
Cited by 168 | Viewed by 14401
Abstract
In this review, the potential causes of ageing are discussed. We seek to gain insight into the main physiological functions of mitochondria and discuss alterations in their function and the genome, which are supposed to be the central mechanisms in senescence. We conclude [...] Read more.
In this review, the potential causes of ageing are discussed. We seek to gain insight into the main physiological functions of mitochondria and discuss alterations in their function and the genome, which are supposed to be the central mechanisms in senescence. We conclude by presenting the potential modulating role of the kynurenine pathway in the ageing processes. Mitochondrial dynamics are supposed to have important physiological roles in maintaining cell homeostasis. During ageing, a decrease in mitochondrial dynamics was reported, potentially compromising the function of mitochondria. Mitochondrial biogenesis not only encompasses mitochondrial dynamics, but also the regulation of transcription and translation of genes, and mitochondria are supposed to play a prominent role in cell death during senescence. Defects in the mtDNA replication machinery and failure in the repair of mtDNA might result in the accumulation of mutations, leading to mitochondrial dysfunction and bioenergetic failure of the cell. The role of reactive oxygen species (ROS) in the ageing processes is widely acknowledged. Exaggerated oxidative damage to mDNA is supposed to take place during senescence, including single-nucleotide base alterations, nucleotide base pair alterations, chain breaks and cross linkage. A broad repertoire for the repair of DNA faults has evolved, but they do not function efficiently during senescence. Poly (ADP-ribose) polymerase (PARP) is an enzyme that assists in DNA repair, i.e., it participates in the repair of single-stranded DNA nicks, initiating base excision repair (BER). In the case of extensive DNA damage, PARP-1 becomes overactivated and rapidly depletes the intracellular NAD+ and ATP pools. This results in a profound energy loss of the cell and leads to cell dysfunction, or even cell death. Alterations in the kynurenine system have been linked with ageing processes and several age-related disorders. The kynurenine pathway degrades tryptophan (TRP) to several metabolites, among others kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN). The end product of the route is NAD+. The first metabolic reaction is mediated by TRP-2,3-dioxygenase (TDO) or indolamine-2,3-dioxygenases (IDO), the latter being induced by inflammation, and it is thought to have a significant role in several disorders and in ageing. Research is currently focusing on the KYN pathway, since several intermediates possess neuro- and immunoactive properties, and hence are capable of modulating the activity of certain brain cells and inflammatory responses. During ageing, and in many age-associated disorders like obesity, dyslipidaemia, hypertension, insulin resistance and neurodegenerative diseases, low-grade, sustained inflammation and upregulation of IDO have been reported. However, TRP downstream catabolites create a negative feedback loop by weakening the activated immune system through several actions, including a decline in the Th1 response and an enhancement of Th2-type processes. The broad actions of the KYN-intermediates in brain excitation/inhibition and their role in regulating immune responses may provide the possibility of modifying the pathological processes in an array of age-associated diseases in the future. Full article
(This article belongs to the Special Issue Neuroprotective Agents)
Show Figures

Figure 1

13 pages, 4048 KiB  
Article
Effect of High-Carbohydrate Diet on Plasma Metabolome in Mice with Mitochondrial Respiratory Chain Complex III Deficiency
by Jayasimman Rajendran, Nikica Tomašić, Heike Kotarsky, Eva Hansson, Vidya Velagapudi, Jukka Kallijärvi and Vineta Fellman
Int. J. Mol. Sci. 2016, 17(11), 1824; https://doi.org/10.3390/ijms17111824 - 1 Nov 2016
Cited by 12 | Viewed by 6601
Abstract
Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) [...] Read more.
Mitochondrial disorders cause energy failure and metabolic derangements. Metabolome profiling in patients and animal models may identify affected metabolic pathways and reveal new biomarkers of disease progression. Using liver metabolomics we have shown a starvation-like condition in a knock-in (Bcs1lc.232A>G) mouse model of GRACILE syndrome, a neonatal lethal respiratory chain complex III dysfunction with hepatopathy. Here, we hypothesized that a high-carbohydrate diet (HCD, 60% dextrose) will alleviate the hypoglycemia and promote survival of the sick mice. However, when fed HCD the homozygotes had shorter survival (mean ± SD, 29 ± 2.5 days, n = 21) than those on standard diet (33 ± 3.8 days, n = 30), and no improvement in hypoglycemia or liver glycogen depletion. We investigated the plasma metabolome of the HCD- and control diet-fed mice and found that several amino acids and urea cycle intermediates were increased, and arginine, carnitines, succinate, and purine catabolites decreased in the homozygotes. Despite reduced survival the increase in aromatic amino acids, an indicator of liver mitochondrial dysfunction, was normalized on HCD. Quantitative enrichment analysis revealed that glycine, serine and threonine metabolism, phenylalanine and tyrosine metabolism, and urea cycle were also partly normalized on HCD. This dietary intervention revealed an unexpected adverse effect of high-glucose diet in complex III deficiency, and suggests that plasma metabolomics is a valuable tool in evaluation of therapies in mitochondrial disorders. Full article
(This article belongs to the Special Issue Metabolomic Technologies in Medicine)
Show Figures

Graphical abstract

15 pages, 1365 KiB  
Article
Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana
by Emilie Widemann, Ekaterina Smirnova, Yann Aubert, Laurence Miesch and Thierry Heitz
Plants 2016, 5(1), 4; https://doi.org/10.3390/plants5010004 - 6 Jan 2016
Cited by 30 | Viewed by 8108
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. [...] Read more.
The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an intermediate situation where young flower buds show detectable jasmonate oxidation (probably originating from stamen metabolism) which becomes exacerbated upon flower opening. Our data illustrate that in spite conserved enzymatic routes, the jasmonate metabolic grid shows considerable flexibility and dynamically equilibrates into specific blends in different physiological situations. Full article
(This article belongs to the Special Issue The Jasmonate Pathway)
Show Figures

Figure 1

Back to TopTop