Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = casting surface quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 18567 KiB  
Article
Mitigation of Black Streak Defects in AISI 304 Stainless Steel via Numerical Simulation and Reverse Optimization Algorithm
by Xuexia Song, Xiaocan Zhong, Wanlin Wang and Kun Dou
Materials 2025, 18(14), 3414; https://doi.org/10.3390/ma18143414 - 21 Jul 2025
Viewed by 187
Abstract
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag [...] Read more.
The formation mechanism of black streak defects in hot-rolled steel sheets was investigated to address the influence of the process parameters on the surface quality during the production of 304 stainless steels. Macro-/microstructural characterization revealed that the defect regions contained necessary mold slag components (Ca, Si, Al, Mg, Na, K) which originated from the initial stage of solidification in the mold region of the continuous casting process, indicating obvious slag entrapment during continuous casting. On this basis, a three-dimensional coupled finite-element model for the molten steel flow–thermal characteristics was established to evaluate the effects of typical casting parameters using the determination of the critical slag entrapment velocity as the criterion. Numerical simulations demonstrated that the maximum surface velocity improved from 0.29 m/s to 0.37 m/s with a casting speed increasing from 1.0 m/min to 1.2 m/min, which intensified the meniscus turbulence. However, the increase in the port angle and the depth of the submerged entry nozzle (SEN) effectively reduced the maximum surface velocity to 0.238 m/s and 0.243 m/s, respectively, with a simultaneous improvement in the slag–steel interface temperature. Through MATLAB (version 2023b)-based reverse optimization combined with critical velocity analysis, the optimal mold slag properties were determined to be 2800 kg/m3 for the density, 4.756 × 10−6 m2/s for the kinematic viscosity, and 0.01 N/m for the interfacial tension. This systematic approach provides theoretical guidance for process optimization and slag design enhancement in industrial production. Full article
Show Figures

Figure 1

18 pages, 2268 KiB  
Article
Effects of a Novel Mechanical Vibration Technology on the Internal Stress Distribution and Macrostructure of Continuously Cast Billets
by Shuai Liu, Jianliang Zhang, Hui Zhang and Minglin Wang
Metals 2025, 15(7), 794; https://doi.org/10.3390/met15070794 - 14 Jul 2025
Viewed by 209
Abstract
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of [...] Read more.
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of this vibration technology is provided by a new type of vibration equipment (Vibration roll) independently developed and designed. Firstly, an investigation is conducted into the impacts of vibration acceleration, vibration frequency, and the contact area between the Vibration roll (VR) and the billet surface on the internal stress distribution within the billet shell, respectively. Secondly, the billet with and without vibration treatment was sampled and analyzed through industrial tests. The results show that the area ratio of equiaxed dendrites in transverse specimens treated with vibration technology was 11.96%, compared to 6.55% in untreated specimens. Similarly, for longitudinal samples, the linear ratio of equiaxed dendrites was observed to be 34.56% in treated samples and 22.95% in untreated samples. Compared to the specimens without mechanical vibration, the billet treated with mechanical vibration exhibits an increase in the area ratio and linear ratio of equiaxed dendrite ratio by 5.41% and 11.61%, respectively. Moreover, the probability of bridging at the end of solidification of the billet treated by vibration technology was significantly reduced, and the central porosity and shrinkage cavities of the billet were significantly improved. This study provides the first definitive evidence that the novel mechanical vibration technology can enhance the quality of the billet during the continuous casting process. Full article
Show Figures

Figure 1

27 pages, 6141 KiB  
Article
Pore-Throat Structure, Fractal Characteristics, and Main Controlling Factors in Extremely Low-Permeability Sandstone Reservoirs: The Case of Chang 3 Section in Huachi Area, Ordos Basin
by Huanmeng Zhang, Chenyang Wang, Jinkuo Sui, Yujuan Lv, Ling Guo and Zhiyu Wu
Fractal Fract. 2025, 9(7), 439; https://doi.org/10.3390/fractalfract9070439 - 3 Jul 2025
Viewed by 282
Abstract
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification [...] Read more.
The pore-throat structure of the extremely low-permeability sandstone reservoir in the Huachi area of the Ordos Basin is complex and highly heterogeneous. Currently, there are issues such as unclear understanding of the micro-pore-throat structural characteristics, primary controlling factors of reservoir quality, and classification boundaries of the reservoir in the study area, which seriously restricts the exploration and development effectiveness of the reservoir in this region. It is necessary to use a combination of various analytical techniques to comprehensively characterize the pore-throat structure and establish reservoir classification evaluation standards in order to better understand the reservoir. This study employs a suite of analytical and testing techniques, including cast thin sections (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), as well as high-pressure mercury injection (HPMI) and constant-rate mercury injection (CRMI), and applies fractal theory for analysis. The research findings indicate that the extremely low-permeability sandstone reservoir of the Chang 3 section primarily consists of arkose and a minor amount of lithic arkose. The types of pore-throat are diverse, with intergranular pores, feldspar dissolution pores, and clay interstitial pores and microcracks being the most prevalent. The throat types are predominantly sheet-type, followed by pore shrinkage-type and tubular throats. The pore-throat network of low-permeability sandstone is primarily composed of nanopores (pore-throat radius r < 0.01 μm), micropores (0.01 < r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore-throat structure was quantitatively characterized by fractal theory. Nanopores do not exhibit ideal fractal characteristics. By splicing high-pressure mercury injection and constant-rate mercury injection at a pore-throat radius of 0.12 μm, a more detailed characterization of the full pore-throat size distribution can be achieved. The average fractal dimensions for micropores (Dh2), mesopores (Dc3), and macropores (Dc4) are 2.43, 2.75, and 2.95, respectively. This indicates that the larger the pore-throat size, the rougher the surface, and the more complex the structure. The degree of development and surface roughness of large pores significantly influence the heterogeneity and permeability of the reservoir in the study area. Dh2, Dc3, and Dc4 are primarily controlled by a combination of pore-throat structural parameters, sedimentary processes, and diagenetic processes. Underwater diversion channels and dissolution are key factors in the formation of effective storage space. Based on sedimentary processes, reservoir space types, pore-throat structural parameters, and the characteristics of mercury injection curves, the study area is divided into three categories. This classification provides a theoretical basis for predicting sweet spots in oil and gas exploration within the study area. Full article
Show Figures

Figure 1

20 pages, 4557 KiB  
Article
Assessment of the Feasibility of Using Additive Manufacturing from Metal Powder to Produce Compact Heat Exchangers
by Katarzyna Chliszcz, Dorota Laskowska, Waldemar Kuczyński, Błażej Bałasz, Maciej Kasperowaicz and Kevin Moj
Materials 2025, 18(13), 3035; https://doi.org/10.3390/ma18133035 - 26 Jun 2025
Viewed by 520
Abstract
The miniaturization of heat exchangers requires advanced manufacturing methods, as conventional techniques such as milling or casting are insufficient for producing complex microscale geometries. This study investigates the feasibility of using selective laser melting (SLM) with 316L stainless steel powder to fabricate compact [...] Read more.
The miniaturization of heat exchangers requires advanced manufacturing methods, as conventional techniques such as milling or casting are insufficient for producing complex microscale geometries. This study investigates the feasibility of using selective laser melting (SLM) with 316L stainless steel powder to fabricate compact heat exchangers with minichannels. The exchanger was designed using Autodesk Inventor 2023.3 software and produced under optimized process parameters. Measurements using a hydrostatic balance demonstrated that the applied process parameters resulted in a relative material density of 99.5%. The average microhardness in the core region of the SLM-fabricated samples was 255 HV, and the chemical composition of the final material differed only slightly from that of the feedstock material (stainless steel powder). Dimensional accuracy, surface quality, and internal structure integrity were assessed using computed tomography, optical microscopy, and contact profilometry. The fabricated component demonstrated high geometric fidelity and channel permeability, with local surface deformations associated with the absence of support structures. The average surface roughness (Ra) of the minichannels was 11.11 ± 1.63 µm. The results confirm that SLM technology enables the production of functionally viable heat exchangers with complex geometries. However, limitations remain regarding dimensional accuracy, powder removal, and surface roughness. These findings highlight the potential of metal additive manufacturing for heat transfer applications while emphasizing the need for further research on performance testing under real operating conditions, especially involving two-phase flow. Full article
Show Figures

Figure 1

20 pages, 3408 KiB  
Article
Friction Stress Analysis of Slag Film in Mold of Medium-Carbon Special Steel Square Billet
by Xingjuan Wang, Xulin Si, Liguang Zhu, Tianshuo Wei and Xuelong Zheng
Metals 2025, 15(7), 702; https://doi.org/10.3390/met15070702 - 24 Jun 2025
Viewed by 232
Abstract
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between [...] Read more.
Non-uniform friction and lubrication are the key factors affecting the surface quality of the casting billet. Based on the three-layer structure of the casting powder in the mold, the frictional stress in the mold was calculated and analyzed by using the relationship between the frictional stress and the thickness and viscosity of the liquid slag film, and the lubrication state between the cast billet and the mold was evaluated. Based on the actual production data of 40Mn2 steel and combined with the numerical simulation results of the solidification and shrinkage process of the molten steel in the mold by ANSYS 2022 R1 software, the frictional stress on the cast billet in the mold was calculated. It was found that within the range of 44~300 mm from the meniscus, the friction between the cast billet and the mold was mainly liquid friction, and the friction stress value increased from 0 to 145 KPa. Within 300–720 mm from the meniscus, the billet shell is in direct contact with the mold. The friction between the cast billet and the mold is mainly solid-state friction, and the friction stress value increases from 10.6 KPa to 26.6 KPa. It indicates that the excessive frictional stress inside the mold causes poor lubrication of the cast billet. By reducing the taper of the mold and optimizing the physical and chemical properties of the protective powder, within the range of 44~550 mm from the meniscus, the friction between the cast billet and the mold is mainly liquid friction, and the friction stress value varies within the range of 0–200 Pa. It reduces the frictional stress inside the mold, improves the lubrication between the billet shell and the mold, and completely solves the problem of mesh cracks on the surface of 40Mn2 steel cast billets. Full article
(This article belongs to the Special Issue Numerical Modelling of Metal-Forming Processes)
Show Figures

Figure 1

11 pages, 2056 KiB  
Article
Clinical Application of Patient-Specific Bolus Based on Molding and Casting Method in Radiotherapy
by Jaeman Son, Seonghee Kang, Jegal Jin, Hyojun Park, Inbum Lee, Yoonsuk Huh, Chang Heon Choi, Jung-in Kim and Hong-Gyun Wu
J. Clin. Med. 2025, 14(11), 3796; https://doi.org/10.3390/jcm14113796 - 28 May 2025
Viewed by 402
Abstract
Background/Objectives: The use of a patient-specific bolus in radiation therapy is critical for achieving precise dose delivery, particularly for irregular anatomical surfaces. Conventional boluses often suffer from poor conformity and air gaps, leading to suboptimal dose distribution. This study aimed to develop [...] Read more.
Background/Objectives: The use of a patient-specific bolus in radiation therapy is critical for achieving precise dose delivery, particularly for irregular anatomical surfaces. Conventional boluses often suffer from poor conformity and air gaps, leading to suboptimal dose distribution. This study aimed to develop and evaluate a novel bolus fabrication method using the mold-and-casting (M&C) technique, which integrates 3D printing and flexible silicone materials to address these limitations. Methods: The proposed workflow includes CT imaging, 3D modeling, mold fabrication via 3D printing, and silicone casting to produce a patient-specific bolus. The process is followed by quality assurance steps and clinical application. Geometric accuracy was assessed through surface matching and cross-sectional comparisons, and dosimetric performance was evaluated using in vivo measurements with MOSFET detectors. The biocompatibility of the silicone material was tested according to standardized cytotoxicity, skin sensitization, and irritation protocols. Results: The fabricated boluses demonstrated high geometric fidelity, with volumetric and surface discrepancies of less than 3% compared to the planned structures. Dosimetric evaluations indicated that maximum dose differences remained within the clinically acceptable range of ±5%, confirming accurate dose delivery. Biocompatibility tests confirmed that the silicone material is safe for clinical use. Conclusions: The M&C method offers a streamlined approach to patient-specific bolus fabrication that integrates well into existing clinical workflows. Compared to traditional sheet boluses, it significantly reduces air gaps and enhances surface dose uniformity. These findings support the clinical potential of this technique to improve both precision and efficiency in radiation therapy. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

12 pages, 756 KiB  
Article
Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites
by Yogesh S. Sable, Hanumant M. Dharmadhikari, Sunil A. More and Ioannis E. Sarris
J. Compos. Sci. 2025, 9(6), 259; https://doi.org/10.3390/jcs9060259 - 25 May 2025
Cited by 1 | Viewed by 522
Abstract
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The [...] Read more.
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The experiment used a stir casting aluminum alloy with a 7.5% silicon carbide metal matrix composite (MMC), adjusting parameters like the wire tension (WT), servo voltage (SV), peak current (IP), pulse on time (TON), and pulse off time (TOFF). An ANN model was created to forecast the surface roughness. The study developed an ANN model to forecast surface roughness in Al/SiC composites during WEDM, demonstrating its accuracy in identifying the link between surface finish and input parameters, thereby improving the surface quality. The ANN model accurately predicted the surface roughness based on WEDM parameters, with strong correlations between predictions and actual data, demonstrating its ability to estimate surface quality accurately. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

15 pages, 6253 KiB  
Article
Performance and Mechanism on Sand Mold Ultrasonic Milling
by Bailiang Zhuang, Zhongde Shan, Zhuozhi Zhu, Di Ding and Qi Zhao
Coatings 2025, 15(6), 633; https://doi.org/10.3390/coatings15060633 - 25 May 2025
Viewed by 396
Abstract
Sand mold milling plays a critical role in digital mold-free casting, but it is prone to damage such as corner collapse, collapse, and cracks during the machining process. To address this issue, ultrasonic vibration was used for sand mold milling in this study. [...] Read more.
Sand mold milling plays a critical role in digital mold-free casting, but it is prone to damage such as corner collapse, collapse, and cracks during the machining process. To address this issue, ultrasonic vibration was used for sand mold milling in this study. By incorporating the solid–liquid transition model for sand mold cutting and considering the deformation characteristics of the shear zone, a prediction model for ultrasonic milling forces in sand mold was developed and experimentally validated. The results demonstrate that increasing the spindle speed and decreasing the feed rate lead to a decrease in cutting force. At high speeds, there is a 15% error between the dynamic milling force model and experimental values. Compared with conventional processing methods, ultrasonic processing reduces cutting force by 19.5% at a frequency of 25.8 kHz and amplitude of 2.97 μm, minimizes defects like sand particle detachment pits on the surface of sand mold, significantly improves surface quality, and enables precise, stable, high-precision, and efficient sand mold processing. Full article
(This article belongs to the Special Issue Cutting Performance of Coated Tools)
Show Figures

Figure 1

17 pages, 5507 KiB  
Article
Insight into Various Casting Material Selections in Rapid Investment Casting for Making EDM Electrodes
by Thanh Tan Nguyen, Van-Thuc Nguyen, Van Tron Tran, Anh Thi Le, Thanh Duy Nguyen, Quoc Dung Huynh, Minh Tri Ho, Minh Phung Dang, Hieu Giang Le and Van Thanh Tien Nguyen
Micromachines 2025, 16(5), 595; https://doi.org/10.3390/mi16050595 - 20 May 2025
Viewed by 497
Abstract
Investment casting is a precision casting technology that can produce complex shapes from various materials, particularly difficult-to-cast and difficult-to-machine metallic alloys. Meanwhile, electrical discharge machining (EDM) is a well-known technique for producing ultra-precise mechanical parts, and electrode quality is crucial. Few studies have [...] Read more.
Investment casting is a precision casting technology that can produce complex shapes from various materials, particularly difficult-to-cast and difficult-to-machine metallic alloys. Meanwhile, electrical discharge machining (EDM) is a well-known technique for producing ultra-precise mechanical parts, and electrode quality is crucial. Few studies have explored how rapid prototyping (RP) pattern generation and investment casting influence the final product’s shape, dimensions, and surface roughness. This study investigates EDM electrode fabrication using investment casting and RP-generated epoxy resin patterns. We examine the effects of electrode materials (CuZn5, CuZn30, and FeCr24) on surface roughness, alongside the impact of ceramic shell thickness and RP pattern shrinkage on electrode quality. The EDM electrodes have a shrinkage of 0.8–1.9% and a surface roughness of 3.20–6.35 μm, depending on the material selections. Additionally, the probability of shell cracking decreases with increasing shell thickness, achieving stability at 16.00 mm. This research also applies investment casting electrodes to process DC53 steel. The results indicate that the surface roughness of the workpiece after EDM machining with different electrode materials is in the range of 4.71 µm to 9.88 µm. The result expands the use of investment casting in electrode fabrication, enabling the production of high-precision electrodes with complex profiles and challenging materials, potentially reducing both time and cost. Full article
Show Figures

Figure 1

33 pages, 11005 KiB  
Article
Temporal and Spatial Distribution of 2022–2023 River Murray Major Flood Sediment Plume
by Evan Corbett, Sami W. Rifai, Graziela Miot da Silva and Patrick A. Hesp
Remote Sens. 2025, 17(10), 1711; https://doi.org/10.3390/rs17101711 - 14 May 2025
Viewed by 756
Abstract
This study examined a sediment plume from Australia’s largest river, The River Murray, which was produced during a major flood event in 2022–2023. This flood resulted from successive La Niña events, causing high rainfall across the Murray–Darling Basin and ultimately leading to a [...] Read more.
This study examined a sediment plume from Australia’s largest river, The River Murray, which was produced during a major flood event in 2022–2023. This flood resulted from successive La Niña events, causing high rainfall across the Murray–Darling Basin and ultimately leading to a significant riverine flow through South Australia. The flood was characterised by a significant increase in riverine discharge rates, reaching a peak of 1305 m³/s through the Lower Lakes barrage system from November 2022 to February 2023. The water quality anomaly within the coastal region (<~150 km offshore) was effectively quantified and mapped utilising the diffuse attenuation coefficient at 490 nm (Kd490) from products derived from MODIS Aqua Ocean Color satellite imagery. The sediment plume expanded and intensified alongside the increased riverine discharge rates, which reached a maximum spatial extent of 13,681 km2. The plume typically pooled near the river’s mouth within the northern corner of Long Bay, before migrating persistently westward around the Fleurieu Peninsula through Backstairs Passage into Gulf St Vincent, occasionally exhibiting brief eastward migration periods. The plume gradually subsided by late March 2023, several weeks after riverine discharge rates returned to pre-flood levels, indicating a lag in attenuation. The assessment of the relationship and accuracy between the Kd490 product and the surface-most in situ turbidity, measured using conductivity, temperature, and depth (CTD) casts, revealed a robust positive linear correlation (R2 = 0.85) during a period of high riverine discharge, despite temporal and spatial discrepancies between the two datasets. The riverine discharge emerged as an important factor controlling the spatial extent and intensities of the surface sediment plume, while surface winds also exerted an influence, particularly during higher wind velocity events, as part of a broader interplay with other drivers. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 8633 KiB  
Article
Experimental Study on Seismic Performance of Vertical Connection Nodes of Prefabricated Concrete Channel
by Guangyao Zhang, Zhiqi Wang, Wenliang Ma, Zhihao Wang, Luming Li, Yanping Zhou, Yibo Li and Yuxia Suo
Buildings 2025, 15(10), 1581; https://doi.org/10.3390/buildings15101581 - 8 May 2025
Viewed by 433
Abstract
The prefabricated concrete channel, constructed by integrating factory-based prefabrication with on-site assembly, offers enhanced quality, reduced construction time, and minimized environmental impact. To promote its application in water conservancy projects, an innovative concrete joint combining semi-grouting sleeves and shear-resistant steel plates was proposed. [...] Read more.
The prefabricated concrete channel, constructed by integrating factory-based prefabrication with on-site assembly, offers enhanced quality, reduced construction time, and minimized environmental impact. To promote its application in water conservancy projects, an innovative concrete joint combining semi-grouting sleeves and shear-resistant steel plates was proposed. Its seismic performance was assessed through a 1:3 scale low-cycle reversed loading test, focusing on failure mode, hysteretic behavior, skeleton curves, stiffness degradation, ductility, and energy dissipation. Results show that the joint primarily exhibits bending–shear failure, with cracks initiating at the sidewall–base slab interface. Also, the sidewall and base slab are interconnected through semi-grouting sleeves, while the concrete bonding is achieved via grouting and surface chiseling at the joint interface. The results indicated that the innovative concrete joint connection exhibits satisfied seismic performance. The shear-resistant steel plate significantly improves shear strength and enhances water sealing. Compared with cast-in-place specimens, the prefabricated joint shows a 16.04% lower equivalent viscous damping coefficient during failure due to reinforcement slippage, while achieving 16.34% greater cumulative energy dissipation and 52.00% higher ductility. These findings provide theoretical and experimental support for the broader adoption of prefabricated channels in water conservancy engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 5431 KiB  
Article
Investigations on Changes in the Surface Geometrical Texture Caused by the Use of Corrosion Product Removers
by Aleksandra Ochal, Daniel Grochała, Rafał Grzejda and Agnieszka Elżbieta Kochmańska
Coatings 2025, 15(5), 539; https://doi.org/10.3390/coatings15050539 - 30 Apr 2025
Viewed by 313
Abstract
In addition to ensuring the functionality of objects used in the household, transport or industry at large, applied design focuses on aesthetic qualities related to the external form and condition of a surface. At the same time, there is a trend for plastic, [...] Read more.
In addition to ensuring the functionality of objects used in the household, transport or industry at large, applied design focuses on aesthetic qualities related to the external form and condition of a surface. At the same time, there is a trend for plastic, rubber or aluminium objects made by moulding (both injection and casting) to look as if they were made of natural materials. This effect is ensured by properly designed and manufactured surface textures in the mould seats. However, the working surfaces of the moulds often corrode as a result of inadequate maintenance and storage. The aim of this study was to find out how popular agents on the market dedicated to corrosion product removal would change the surface geometrical texture. During the prepared experimental plan, it was also decided to investigate the properties in this respect of one of the popular drinks (i.e., cola) which is sometimes used in workshop practice as an alternative corrosion product removal agent. Based on the results of the study, conclusions were drawn about the short- and long-term effects of the corrosion product removal agents. Full article
(This article belongs to the Special Issue Anti-corrosion Coatings of Metals and Alloys—New Perspectives)
Show Figures

Figure 1

19 pages, 13911 KiB  
Article
Durability Comparison of SKD61 and FDAC Steel Mold Inserts in High-Pressure Die-Casting Process
by Hai Nguyen Le Dang, Van-Thuc Nguyen, Van Huong Hoang, Xuan Tien Vo and Van Thanh Tien Nguyen
Machines 2025, 13(5), 352; https://doi.org/10.3390/machines13050352 - 24 Apr 2025
Viewed by 531
Abstract
The high-pressure die-casting (HPDC) process involves injecting molten light metal into a steel mold under high pressure, resulting in parts with excellent surface quality and precise dimensions. However, this process subjects the mold to thermal fatigue and mechanical stress, which can lead to [...] Read more.
The high-pressure die-casting (HPDC) process involves injecting molten light metal into a steel mold under high pressure, resulting in parts with excellent surface quality and precise dimensions. However, this process subjects the mold to thermal fatigue and mechanical stress, which can lead to damage over time. This study investigated the wear characteristics of two types of inserts made from different steel materials, SKD61 steel and FDAC steel, under HPDC conditions. A thorough approach that combined computer simulations, experiments, and 3D scanning was employed to analyze wear patterns and dimensional changes after up to 300 casting cycles. The results indicate that the SKD61 steel outperformed the FDAC steel in terms of wear resistance and dimensional stability. The maximum deposition values of the SKD61 mold were only 0.009 mm, which was only 25% compared to the FDAC mold, indicating a significantly higher wear resistance. These findings are crucial for selecting and enhancing insert materials in HPDC, ultimately leading to higher-quality and more efficient casting. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

20 pages, 6378 KiB  
Article
Study on the Mechanism of High-Pressure Spraying of Water-Based Release Agent by External Mixing
by Qian Zhang, Ziyang Liu, Yuhan Xu, Lei Huang, Dagui Wang, Liai Chen and Song Chen
Processes 2025, 13(4), 1224; https://doi.org/10.3390/pr13041224 - 17 Apr 2025
Viewed by 364
Abstract
In the casting and stamping process of automobile, ship, aerospace, and other fields, improving the atomization quality of the spray release agent can effectively solve the problems of difficult film removal, low efficiency, and poor surface finish, and greatly improve the efficiency of [...] Read more.
In the casting and stamping process of automobile, ship, aerospace, and other fields, improving the atomization quality of the spray release agent can effectively solve the problems of difficult film removal, low efficiency, and poor surface finish, and greatly improve the efficiency of production and manufacturing. The geometric model of the external mixing nozzle was constructed, and the calculation domain and grid were divided. The atomization flow field velocity, liquid film thickness, particle distribution, and cooling amount were calculated using fluid simulation software. Finally, an experimental platform was set up for verification. With the increase in the distance between the iron plate and the nozzle, the velocity of the flow field decreases from the nozzle exit to the periphery, and the frequency distribution of D60–70 increases gradually. With the increase in the pressure ratio (K), the particle velocity increases gradually, the liquid film thickness increases first, and then gently decreases, and the D60–70 frequency distribution decreases. The influence of gas pressure on atomized particle velocity and liquid film thickness is greater than that of liquid phase pressure, and the ion velocity reaches the peak value when K = 2. When K = 1.5, the average thickness increment of absolute liquid film is small, the atomized particle diameter changes the least, the frequency distribution of D65 particles is approximately the same, and the atomization effect is the most stable. When the spraying time is 1 s, the K value is larger, and the smaller the temperature drop will be. In 2–4 s, the change in K value has little influence on the cooling amount. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

18 pages, 2132 KiB  
Article
Intelligent Casting Quality Inspection Method Integrating Anomaly Detection and Semantic Segmentation
by Min-Chieh Chen, Shih-Yu Yen, Yue-Feng Lin, Ming-Yi Tsai and Ting-Hsueh Chuang
Machines 2025, 13(4), 317; https://doi.org/10.3390/machines13040317 - 13 Apr 2025
Viewed by 701
Abstract
Wind power generation plays an important role in renewable energy, and the core casting components have extremely high requirements for precision and quality. In actual practice, we found that an insufficient workforce limits traditional manual inspection methods and often creates difficulty in unifying [...] Read more.
Wind power generation plays an important role in renewable energy, and the core casting components have extremely high requirements for precision and quality. In actual practice, we found that an insufficient workforce limits traditional manual inspection methods and often creates difficulty in unifying quality judgment standards. Customized optical path design is often required, especially when conducting internal and external defect inspections, which increases overall operational complexity and reduces inspection efficiency. We developed an automated optical inspection (AOI) system to address these challenges. The system integrates a semantic segmentation neural network to handle external surface detection and an anomaly detection model to detect internal defects. In terms of internal defect detection, the GC-AD-Local model we tested achieved 100% accuracy on experimental images, and the results were relatively stable. In the external detection part, we compared five different semantic segmentation models and found that MobileNetV2 performed the best in terms of average accuracy (65.8%). It was incredibly stable when dealing with surface defects with significant shape variations, and the prediction results were more consistent, making it more suitable for introduction into actual production line applications. Overall, this AOI system boosts inspection efficiency and quality consistency, reduces reliance on manual experience, and is of great assistance in quality control and process intelligence for wind power castings. We look forward to further expanding the amount of data and improving the generalization capabilities of the model in the future, making the system more complete and suitable for practical applications. Full article
Show Figures

Figure 1

Back to TopTop