Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,651)

Search Parameters:
Keywords = caspase assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1469 KB  
Article
Molecular Investigation of the Effects of Two Antiepileptic Drugs (Valproic Acid and Levetiracetam) on Alveolar Bone Under Orthodontic Force
by Nurhan Bayindir-Durna, Metin Uckan, Seyma Aydin and Selcuk Ozdemir
Medicina 2026, 62(1), 178; https://doi.org/10.3390/medicina62010178 - 15 Jan 2026
Abstract
Background and Objectives: This study aims to analyze the effects of levetiracetam (LEV) and valproic acid (VPA) administration on oxidative stress, inflammation, apoptosis, extracellular matrix dynamics, and bone remodeling parameters in rat alveolar bone exposed to orthodontic force. Materials and Methods: Four experimental [...] Read more.
Background and Objectives: This study aims to analyze the effects of levetiracetam (LEV) and valproic acid (VPA) administration on oxidative stress, inflammation, apoptosis, extracellular matrix dynamics, and bone remodeling parameters in rat alveolar bone exposed to orthodontic force. Materials and Methods: Four experimental groups were designed for this study: Control, Force, Force + LEV, and Force + VPA. LEV (150 mg/kg/day) or VPA (300 mg/kg/day) was administered intraperitoneally to the experimental groups daily for 6 weeks. At the end of the experimental period, the alveolar bone tissues were used for molecular analyses. RT-PCR analysis was performed to assess the expression levels of antioxidant markers [superoxide dismutase, (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione (GSH)], inflammatory cytokines [tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β)], apoptosis-related genes (Bax, Bcl-2, and Caspase-3), matrix remodeling genes [matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and metallopeptidase inhibitor 1 (TIMP-1)], and bone metabolism regulators [receptor activator of nuclear factor kappa-Β ligand (RANKL) and osteoprotegerin (OPG)]. Oxidative stress and inflammatory measurements were also confirmed via ELISA assays. Results: The results demonstrated that orthodontic force application increased oxidative stress, inflammation, and apoptosis compared to the Control group, disrupted extracellular matrix homeostasis, and increased bone resorption, while LEV administration (LEV + Force) markedly mitigated these abnormalities. In other words, LEV administration increased levels of antioxidant markers, decreased levels of inflammatory cytokines and pro-apoptotic genes, restored extracellular matrix balance (decrease in MMP-2 and MMP-9 with concurrent upregulation of TIMP-1), and limited tissue destruction (decrease in RANKL along with elevation in OPG). In contrast to LEV, VPA did not correct these molecular alterations induced by orthodontic force and, in several parameters, further exacerbated them. Conclusions: In conclusion, molecular data from the animal model indicate that LEV plays a protective role against orthodontic force by reducing excess levels of oxidative stress, apoptosis, and inflammation and homeostatic pathways. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

31 pages, 6047 KB  
Article
HPLC-ESI-QTOF-MS/MS-Guided Profiling of Bioactive Compounds in Fresh and Stored Saffron Corms Reveals Potent Anticancer Activity Against Colorectal Cancer
by Sanae Baddaoui, Ennouamane Saalaoui, Oussama Khibech, Diego Salagre, Álvaro Fernández-Ochoa, Samira Mamri, Nahida Aktary, Muntajin Rahman, Amama Rani, Abdeslam Asehraou, Bonglee Kim and Ahmad Agil
Pharmaceuticals 2026, 19(1), 149; https://doi.org/10.3390/ph19010149 - 14 Jan 2026
Abstract
Background: Saffron (Crocus sativus L.) corms, often discarded as agricultural by-products, are a promising and sustainable source of bioactive metabolites with potential therapeutic relevance. However, their anticancer potential remains largely underinvestigated. Objectives: This study aimed to compare the phytochemical composition [...] Read more.
Background: Saffron (Crocus sativus L.) corms, often discarded as agricultural by-products, are a promising and sustainable source of bioactive metabolites with potential therapeutic relevance. However, their anticancer potential remains largely underinvestigated. Objectives: This study aimed to compare the phytochemical composition of hydroethanolic extracts from fresh (HEEF) and stored (HEES) saffron corms and to evaluate their anticancer effectiveness against colorectal cancer cells. Methods: Phytochemical profiling was performed using HPLC-ESI-QTOF-MS/MS. Cytotoxicity against T84 and SW480 colorectal cancer cell lines was determined by the crystal violet assay. Apoptosis-related protein modulation was assessed by Western blotting. Additionally, molecular docking, molecular dynamics simulations, and MM/GBSA calculations were used to investigate ligand–target binding affinities and stability. Results: Both extracts contained diverse primary and secondary metabolites, including phenolic acids, flavonoids, triterpenoids, lignans, anthraquinones, carotenoids, sugars, and fatty acids. HEES showed higher relative abundance of key bioactive metabolites than HEEF, which was enriched mainly in primary metabolites. HEES showed significantly greater dose-dependent cytotoxicity, particularly against SW480 cells after 24 h (IC50 = 34.85 ± 3.35). Apoptosis induction was confirmed through increased expression of caspase-9 and p53 in T84 cells. In silico studies revealed strong and stable interactions of major metabolites, especially 3,8-dihydroxy-1-methylanthraquinone-2-carboxylic acid with COX2 and crocetin with VEGFR2. Conclusions: Stored saffron corms possess a richer bioactive profile and show enhanced anticancer effects in vitro compared with fresh saffron corms, suggesting that they may represent a promising source of compounds for the future development of colorectal cancer therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

12 pages, 1459 KB  
Article
Targeting CDK11 in Rhabdoid Tumor of the Kidney
by Yuki Murakami, Kamhung Lam, Shinsuke Fukui, Elizabeth Helmke, Kenneth A. Iczkowski, Yueju Li and Noriko Satake
Cancers 2026, 18(2), 261; https://doi.org/10.3390/cancers18020261 - 14 Jan 2026
Abstract
Background: Rhabdoid tumor of the kidney (RTK) is a highly aggressive pediatric malignancy characterized by biallelic SMARCB1 loss, resulting in aberrant MYC pathway activation and cell cycle regulation. MYC-activated tumors are vulnerable in splicing functions and sensitive to splicing inhibitors. Therefore, in this [...] Read more.
Background: Rhabdoid tumor of the kidney (RTK) is a highly aggressive pediatric malignancy characterized by biallelic SMARCB1 loss, resulting in aberrant MYC pathway activation and cell cycle regulation. MYC-activated tumors are vulnerable in splicing functions and sensitive to splicing inhibitors. Therefore, in this study, cyclin-dependent kinase 11 (CDK11), which regulates both cell cycle and RNA splicing, was tested as a therapeutic target in RTK. Methods: CDK11A/B expression was analyzed using the TARGET-RT database. The therapeutic efficacy of the CDK11 inhibitor OTS964 was evaluated in two RTK cell lines (G401 and JMU-RTK-2) and a JMU-RTK-2 xenograft mouse model. Cytotoxicity, apoptosis, cell cycle, and RNA splicing were examined using the Sulforhodamine B assay, immunoblotting, flow cytometry, and RT-PCR. Results: CDK11B, but not CDK11A, was significantly upregulated in RTK and correlated with the poor survival. OTS964 inhibited RTK cell growth in vitro with the IC50 of 33.1 nM (G401) and 19.3 nM (JMU-RTK-2) and significantly prolonged survival in vivo (median survival: 46.5 vs. 37.0 days, p < 0.01) without marked toxicity. Mechanistically, OTS964 induced G2/M cell cycle arrest and p53 upregulation, disrupted RNA splicing via SF3B1 dephosphorylation, and ultimately led to apoptosis through caspase-3 activation. Conclusions: CDK11 inhibition by OTS964 effectively suppresses RTK growth through cell cycle arrest and RNA splicing inhibition, leading to apoptosis. OTS964 shows potent anti-tumor activity and tolerability, supporting CDK11 as a promising therapeutic target for RTK and related SMARCB1-deficient cancers. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

25 pages, 18497 KB  
Article
Carvacrol Selectively Induces Mitochondria-Related Apoptotic Signaling in Primary Breast Cancer-Associated Fibroblasts
by Nail Besli, Nilufer Ercin, Merve Tokocin, Sümeyra Emine Boluk, Rabia Kalkan Cakmak, Kamil Ozdogan, Talar Vartanoglu Aktokmakyan, Mehtap Toprak, Gulcin Ercan, Merve Beker, Ulkan Celik, Emir Capkinoglu and Yusuf Tutar
Pharmaceuticals 2026, 19(1), 142; https://doi.org/10.3390/ph19010142 - 14 Jan 2026
Abstract
Background/Objectives: Cancer-associated fibroblasts (CAFs) are key stromal mediators of breast tumor progression and therapy resistance. Carvacrol, a dietary monoterpenic phenol, exhibits antiproliferative activity in cancer cells, but its effects on primary human breast CAFs remain unclear. This study aimed to determine whether [...] Read more.
Background/Objectives: Cancer-associated fibroblasts (CAFs) are key stromal mediators of breast tumor progression and therapy resistance. Carvacrol, a dietary monoterpenic phenol, exhibits antiproliferative activity in cancer cells, but its effects on primary human breast CAFs remain unclear. This study aimed to determine whether carvacrol selectively induces mitochondria-related apoptotic signaling in breast CAFs while sparing normal fibroblasts (NFs). Methods: Primary fibroblast cultures were established from invasive ductal carcinoma tissues (CAFs, n = 9) and nonmalignant breast tissues (NFs, n = 5) and validated by α-SMA and FAP immunofluorescence. Cells were exposed to 400 μM carvacrol. Apoptosis was assessed by TUNEL assay and BAX/BCL-XL Western blotting. Changes in signaling pathways were evaluated by analyzing PPARα/NF-κB, sirtuin (SIRT1, SIRT3), autophagy-related markers (LAMP2A, p62), and matrix metalloproteinases (MMP-2, MMP-3). In silico molecular docking and 100-ns molecular dynamics simulations were performed to examine interactions between carvacrol and caspase-3 and caspase-9. Results: Carvacrol induced a pronounced, time-dependent apoptotic response in CAFs, with TUNEL-based viability declining to approximately 10% of control levels by 12 h and a marked increase in the BAX/BCL-XL ratio. In contrast, NFs exhibited minimal TUNEL positivity and no significant change in BAX/BCL-XL. In CAFs, but not NFs, carvacrol reduced PPARα expression and NF-κB nuclear localization, increased SIRT1 and SIRT3 levels, selectively suppressed MMP-3 while partially normalizing MMP-2, and altered autophagy-related markers (decreased LAMP2A and accumulation of p62), consistent with autophagic stress and possible impairment of autophagic flux. Computational analyses revealed stable carvacrol binding to caspase-3 and caspase-9 with modest stabilization of active-site loops, supporting caspase-dependent, mitochondria-related apoptosis. Conclusions: Carvacrol selectively targets breast cancer-associated fibroblasts by inducing mitochondria-related apoptotic signaling while largely sparing normal fibroblasts. This effect is accompanied by coordinated modulation of PPARα/NF-κB, sirtuin, autophagy, and MMP pathways. These findings support further evaluation of carvacrol as a microenvironment-directed adjunct in breast cancer therapy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

10 pages, 1354 KB  
Article
Palmitic Acid Induces Inflammatory Environment and Is Involved in Pyroptosis in a Human Dental Pulp Cell Line
by Takashi Muramatsu, Akihide Yanagisawa, Keisuke Mitomo, Kana Takada, Masahiro Furusawa, Yoshihiro Abiko and Han-Sung Jung
Dent. J. 2026, 14(1), 51; https://doi.org/10.3390/dj14010051 - 12 Jan 2026
Viewed by 183
Abstract
Background/Objectives: We investigated whether palmitic acid (PA) induced the expression of inflammatory cytokines and was involved in pyroptosis in a human dental pulp cell line. Methods: Human dental pulp cells cultured in Minimum Essential Medium Alpha (αMEM) were treated with 1 [...] Read more.
Background/Objectives: We investigated whether palmitic acid (PA) induced the expression of inflammatory cytokines and was involved in pyroptosis in a human dental pulp cell line. Methods: Human dental pulp cells cultured in Minimum Essential Medium Alpha (αMEM) were treated with 1 µg/mL LPS and/or PA (100, 300 and 500 µM). As a control, αMEM was added in the culture medium. The WST-1 assay was performed to assess cell proliferation, and morphological changes in cells were examined. RNA expression of IL-1β, IL-6, TNF-α, caspase-4 and gasdermin d were detected by quantitative RT-PCR (qPCR). Results: The WST-1 assay showed that cell viability decreased by 36% at 300 µM and 47% at 500 µM PA compared to the control (p < 0.05). Cell morphology revealed slight shrinkage in 100, 300 and 500 µM PA groups. RNA expression of IL-1β and IL-6 in the PA groups was significantly higher than that in the control groups (p < 0.05), while RNA expression of TNF-α in the PA group was the same as that of control group. The mRNA expression of caspase-4 and gasdermin d in PA groups was significantly higher than that in control group (p < 0.05). Likewise, the concentration of IL-1β and IL-6 was significantly higher in both LPS and PA groups than that in the LPS or PA groups (p < 0.05). Conclusions: The results of this study suggest that PA induces the expression of inflammatory cytokines and is involved in pyroptosis in a human dental pulp cell line. Full article
(This article belongs to the Section Restorative Dentistry and Traumatology)
Show Figures

Figure 1

21 pages, 8145 KB  
Article
Scutellarein from Erigeron breviscapus Inhibits Apoptosis-Mediated Epithelial Barrier Disruption and Alleviates Cigarette Smoke-Induced Lung Injury
by Chuchu Xi, Hongrong Fu, Xu Qin, Yujing Wang, Kerui Ren, Mengmeng Song, Huaduan Liang, Fang Zhao and Zhengyu Cao
Pharmaceuticals 2026, 19(1), 113; https://doi.org/10.3390/ph19010113 - 8 Jan 2026
Viewed by 133
Abstract
Background/Objectives: Cigarette smoke (CS) drives pathogenesis across the spectrum of chronic respiratory disorders, exerting its detrimental effects primarily through oxidative stress and programmed cell death. Scutellarein (Scu), a botanical-origin flavonoid enriched in respiratory therapeutics-oriented Chinese medicinal herbs, demonstrates established anti-inflammatory applications. This [...] Read more.
Background/Objectives: Cigarette smoke (CS) drives pathogenesis across the spectrum of chronic respiratory disorders, exerting its detrimental effects primarily through oxidative stress and programmed cell death. Scutellarein (Scu), a botanical-origin flavonoid enriched in respiratory therapeutics-oriented Chinese medicinal herbs, demonstrates established anti-inflammatory applications. This study systematically evaluated the protective roles of Scu against CS-induced lung injury and explored the underlying mechanisms. Methods: Subacute CS-exposed mice were used to evaluate the therapeutic effects of Scu on lung injury. Immunofluorescence and quantitative PCR were used to examine the expression levels of junctional proteins and proinflammatory mediators. Apoptotic cell death was quantified using Annexin V-FITC/7-AAD staining. Transepithelial electrical resistance and dextran permeability assay were used to access the barrier integrity in alveolar epithelial MLE-12 cells. Western blotting was used to detect the changes in the signal pathway. Results: In CS-exposed mice, Scu administration dose-dependently reduced histopathological scores, pulmonary edema, changes in the alveolar structure, and inflammatory cell infiltration. In MLE-12 cells, Scu significantly suppressed cigarette smoke condensate (CSC)-induced inflammatory mediators, oxidative stress, caspase-3 activation, and apoptosis and preserved CSC-suppressed tight junction protein expression and barrier disruption. Scu also rescued CSC-altered expression levels of Hrk, Ecscr, and Myo5b and mitigated the CSC-suppressed PI3K/AKT/mTOR pathway. Conclusions: Scu alleviates CS-induced subacute lung injury through its antioxidant, anti-apoptotic effects to maintain epithelial barrier integrity likely via the mitigation of the CSC-suppressed PI3K/AKT/mTOR pathway. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

14 pages, 4071 KB  
Article
From Functional Food to Therapeutic Prospect: Mechanistic Study of Gypenoside XVII in HeLa Cells
by Sayed Sajid Hussain, Muhammad Maisam, Shoaib Younas, Feng Wang and Weijie Li
Molecules 2026, 31(2), 214; https://doi.org/10.3390/molecules31020214 - 8 Jan 2026
Viewed by 152
Abstract
Cervical cancer remains a prominent cause of cancer-related mortality among women worldwide because of chronic infection with high-risk human papillomavirus (HPV) and disparate access to prevention and treatment. The current research evaluates the anticancer activity of Gypenoside XVII, a bioactive saponin of Gynostemma [...] Read more.
Cervical cancer remains a prominent cause of cancer-related mortality among women worldwide because of chronic infection with high-risk human papillomavirus (HPV) and disparate access to prevention and treatment. The current research evaluates the anticancer activity of Gypenoside XVII, a bioactive saponin of Gynostemma pentaphyllum, in HeLa cells as a model of cervical cancer. MTT, Annexin V-PI, and Hoechst 33342 assays showed dose-dependent growth inhibition with typical apoptotic morphology. Flow cytometry revealed G0/G1 cell-cycle arrest, while pathway interrogation revealed participation of mitochondrial and death-receptor cascades, in agreement with caspase-9 and caspase-8 activation, respectively. Collectively, these findings position Gypenoside XVII as a natural-product bioactive with potential both as an anticancer lead and as a functional-food ingredient, deserving of further preclinical development. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

15 pages, 1696 KB  
Article
Luteolin Inhibits Bovine Viral Diarrhea Virus Replication by Disrupting Viral Internalization and Replication and Interfering with the NF-κB/STAT3-NLRP3 Inflammasome Pathway
by Dongjie Cai, Qing Liu, Zifan Shen, Bin Tian, Jiabin Gao, Yulin Lin, Lanjing Ma, Ya Wang and Xiaoping Ma
Vet. Sci. 2026, 13(1), 57; https://doi.org/10.3390/vetsci13010057 - 7 Jan 2026
Viewed by 189
Abstract
Bovine viral diarrhea virus (BVDV) causes severe mucosal inflammation in cattle, and effective treatment options remain limited. Dysregulated activation of the NLRP3 inflammasome, driven by NF-κB and STAT3 signaling, may exacerbate disease pathogenesis, highlighting this axis as a potential therapeutic target. Although traditional [...] Read more.
Bovine viral diarrhea virus (BVDV) causes severe mucosal inflammation in cattle, and effective treatment options remain limited. Dysregulated activation of the NLRP3 inflammasome, driven by NF-κB and STAT3 signaling, may exacerbate disease pathogenesis, highlighting this axis as a potential therapeutic target. Although traditional Chinese medicine has shown promise in antiviral and anti-inflammatory applications, it remains unclear whether it can inhibit BVDV replication via the NF-κB/STAT3-NLRP3 pathway. The present study aimed to clarify the inhibitory effect of luteolin on bovine viral diarrhea virus (BVDV) replication, and to elucidate its underlying mechanisms from two perspectives: interference with viral internalization and replication processes, as well as regulation of the NF-κB/STAT3-NLRP3 inflammasome pathway. Collectively, this work intended to provide experimental evidence and theoretical support for the development of luteolin as a natural anti-BVDV agent. To this end, BVDV-infected MDBK cells were treated with gradient concentrations of luteolin, followed by quantification of viral load using qRT-PCR and Western blot assays. Meanwhile, the activation status of the NF-κB/STAT3-NLRP3 signaling pathway was evaluated via immunofluorescence staining and luciferase reporter gene assays. Our results demonstrate that luteolin exhibits potent dual antiviral activity against cytopathic BVDV-1m in MDBK (Madin-Darby Bovine Kidney) cells, effectively suppressing both viral replication and inflammatory responses. At non-cytotoxic concentrations, luteolin specifically inhibited the internalization and replication stages of the viral lifecycle, accompanied by reduced NS5B polymerase activity. Importantly, luteolin disrupted the NF-κB/STAT3-NLRP3 axis by suppressing phosphorylation of p65 (Ser536) and STAT3 (Ser727), downregulating NLRP3 and pro-caspase-1 expression, and inhibiting caspase-1 cleavage (p20) as well as maturation of IL-1β and IL-18. Consequently, it attenuated the overexpression of TNF-α and IL-8. To our knowledge, this is the first report of a single compound simultaneously targeting multiple stages of the BVDV lifecycle and counteracting NLRP3-mediated immunopathology, offering a strategic basis for developing flavonoid-based therapies against Flavivirus infections. Full article
Show Figures

Figure 1

19 pages, 10246 KB  
Article
Functional Characterization of Suppressor of Cytokine Signalling 6 and Its Interaction with Erythropoietin Receptor in Colorectal Cancer Cells
by Asma Al-Bahri, Fahad Zadjali, Shika Hanif, Zaina Alharthi, Hussein Sakr and Amira Al-Kharusi
Cancers 2026, 18(1), 171; https://doi.org/10.3390/cancers18010171 - 4 Jan 2026
Viewed by 202
Abstract
Background: Suppressor of Cytokine Signalling 6 (SOCS6) is a cytokine signalling suppressor that regulates receptor tyrosine kinase pathways by promoting degradation of signalling proteins, thereby controlling cell growth and survival. One of these tyrosine kinase receptors, Erythropoietin Receptor (EPOR), plays a critical role [...] Read more.
Background: Suppressor of Cytokine Signalling 6 (SOCS6) is a cytokine signalling suppressor that regulates receptor tyrosine kinase pathways by promoting degradation of signalling proteins, thereby controlling cell growth and survival. One of these tyrosine kinase receptors, Erythropoietin Receptor (EPOR), plays a critical role in CRC progression by enhancing tumour metabolism, angiogenesis, proliferation, and growth. This study investigates the molecular mechanisms governing SOCS6’s role in CRC pathogenesis using in vitro cell models and examines its interaction with EPOR expression following gene knockdown. Methods: Bioinformatics interaction between SOCS6 and EPOR were investigated using molecular visualization. HT-29 and COLO 320DM colorectal cancer cells were transfected with SOCS6 siRNA followed by measurement of SOCS6 and EPOR expression levels by qRT-PCR. The selected knockdown concentration was used in functional assays assessing cell viability, colony formation, migration, apoptosis, and invasion. Results: Bioinformatic results showed interaction between SOCS6 and EPOR through polar bonds. Furthermore, SOCS6 silencing increased cell viability and colony formation in both cell lines and significantly enhanced migration in COLO 320DM cells. Active caspase-3 levels were elevated markedly in HT-29 cells post SOCS6 knockdown, consistent with caspase-3’s reported oncogenic role in CRC. Moreover, EPOR knockdown selectively altered SOCS6 expression in HT-29 cells, indicating a regulatory feedback loop. EPOR silencing elevated cell viability at 24 h in both cell lines but caused a significant decrease in COLO 320DM cells at 72 h. Conclusions: These findings identify the SOCS6–EPOR axis as a potential target for personalized CRC therapy, supporting SOCS6’s tumour-suppressive and diagnostic roles. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

23 pages, 3794 KB  
Article
APOBEC3C Suppresses Prostate Cancer by Regulating Key Molecules Involved in Cellular Inflammation, Cell Cycle Arrest, and DNA Damage Response
by Zhongqi Pang, Jianshe Wang, Yidan Xu, Bo Ji, Minghua Ren and Beichen Ding
Cancers 2026, 18(1), 170; https://doi.org/10.3390/cancers18010170 - 3 Jan 2026
Viewed by 340
Abstract
Background: Prostate cancer (PCa) is a prevalent malignancy with a rising incidence. Advanced PCa, often resistant to therapy, remains a major clinical challenge, underscoring the need to identify novel molecular drivers. Methods: Utilizing transcriptomic data from the TCGA and GEO databases, we identified [...] Read more.
Background: Prostate cancer (PCa) is a prevalent malignancy with a rising incidence. Advanced PCa, often resistant to therapy, remains a major clinical challenge, underscoring the need to identify novel molecular drivers. Methods: Utilizing transcriptomic data from the TCGA and GEO databases, we identified APOBEC3C (A3C) as a key candidate through WGCNA, differential expression analysis, and LASSO regression. Its clinical relevance was assessed via Kaplan–Meier survival analysis. Then, we validated A3C expression patterns using immunohistochemistry and Western blot in normal and malignant prostate cell lines. The functional effects of A3C on proliferation, migration, and invasion and mechanisms of such were evaluated through in vitro gain- and loss-of-function assays (CCK-8, Ki67 staining, wound healing, Transwell, Western blot, etc.). Results:A3C was significantly downregulated in PCa, and this low expression strongly correlated with adverse clinicopathological features, including advanced T stage, higher Gleason scores, and worse survival. Bioinformatically, high A3C expression was associated with an activated anti-tumor immune microenvironment, characterized by enhanced CD8+ T cell infiltration, reduced M2 macrophage abundance, and upregulation of the immune checkpoint CD40. In vitro, A3C overexpression effectively suppressed PCa cell proliferation, migration, and invasion, while its knockdown promoted these malignant phenotypes. Mechanistically, A3C enhances the expression of the STING1 and its downstream related molecules Caspase-1, IL-18, and IL-1β; upregulates DNA damage-protective genes (GSTP1 and GPX3); and enhances the expression of cell cycle regulator GAS1. Conclusions: This study establishes A3C as a suppressor in PCa, which impedes tumor progression by regulating key molecules involved in cellular inflammation, cell cycle arrest, and DNA damage response. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Protective Effects of miR-16-5p and miR-142-3p on Inflammation and Autophagy in Human Corneal Epithelial Cells Under Hyperosmotic Stress In Vitro
by Min-Ji Cha, Hyunsoo Cho, Yeji Yeon and Yu Jeong Kim
Int. J. Mol. Sci. 2026, 27(1), 422; https://doi.org/10.3390/ijms27010422 - 31 Dec 2025
Viewed by 209
Abstract
To investigate the regulatory effects of miR-16-5p and miR-142-3p on inflammation and autophagy in human corneal epithelial cells (HCEpiCs) exposed to hyperosmotic stress, a key pathogenic condition in dry eye disease, HCEpiCs were cultured under NaCl-induced hyperosmotic conditions (450 mOsm, 24 h) and [...] Read more.
To investigate the regulatory effects of miR-16-5p and miR-142-3p on inflammation and autophagy in human corneal epithelial cells (HCEpiCs) exposed to hyperosmotic stress, a key pathogenic condition in dry eye disease, HCEpiCs were cultured under NaCl-induced hyperosmotic conditions (450 mOsm, 24 h) and transfected with miR-16-5p or miR-142-3p mimics. Expression of inflammatory cytokines (IL-1β, IL-6, TNF-α, IRAK1), autophagy-related genes (ATG5, Beclin-1, ATG16L1, p62), and apoptotic markers (Bax, Bcl-2, caspase-3) was analyzed by qRT-PCR and Western blot. Reactive oxygen species (ROS), autophagic vesicles, and apoptosis were evaluated using DCFH-DA, DAPRed, and Annexin V assays. The expression levels of antioxidant proteins (SOD1, catalase, NRF2) were also measured. Hyperosmotic stress induces marked inflammatory activation and excessive autophagy in HCEpiCs, accompanied by increased ROS generation and apoptosis. Overexpression of miR-16-5p or miR-142-3p significantly attenuated these effects by suppressing NF-κB-mediated cytokine expression and downregulating ATG5 and ATG16L1 expression, while restoring p62 expression. Both miRNAs reduced oxidative stress and COX-2 expression, enhanced antioxidant defenses, and normalized the expression of apoptotic markers. miR-16-5p and miR-142-3p are important regulators of inflammation and autophagy under hyperosmotic stress. Our findings suggest that modulating intracellular miR-16-5p and miR-142-3p levels in corneal epithelial cells may represent a potential approach to protect the ocular surface under hyperosmotic stress, although their systemic roles in autoimmune dry eye require further clarification. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

15 pages, 1788 KB  
Article
Protective Role of Menthol Against Doxorubicin-Induced Cardiac Injury Through Suppression of TLR4/MAPK/NF-κB Signaling and Oxidative Stress
by Mona Mansour, Ahmed M. Ashour, Amany M. Gad, Ali Khames, Shaimaa G. Ibrahim, Mohamed H. A. Gadelmawla and Enas S. Gad
Pharmaceuticals 2026, 19(1), 59; https://doi.org/10.3390/ph19010059 - 27 Dec 2025
Viewed by 376
Abstract
Background/Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is limited by dose-dependent cardiotoxicity. This study aimed to investigate the potential protective effects of menthol against doxorubicin-induced cardiotoxicity (DIC) in a rat model. Methods: Forty rats were arbitrarily [...] Read more.
Background/Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is limited by dose-dependent cardiotoxicity. This study aimed to investigate the potential protective effects of menthol against doxorubicin-induced cardiotoxicity (DIC) in a rat model. Methods: Forty rats were arbitrarily allocated into four groups: (1) normal control, (2) DOX-treated, (3) DOX + menthol treatment, and (4) menthol-only treatment. DOX (15 mg/kg) was applied intraperitoneally, and menthol (100 mg/kg) was applied orally for 7 days following the DOX injection. Cardiac tissue specimens and sera were collected for biochemical assays, histopathological analysis, and immunohistochemistry. Biomarkers of oxidative stress (MDA, GSH), inflammatory pathways (TLR4, MAPK, NF-κB, SREBP-1C), and apoptotic markers (P53, caspase-3) were assessed. Results: DOX employment caused remarkable rise in serum troponin levels (6.53 ± 0.98, p < 0.05), oxidative stress markers, and inflammatory proteins, alongside histopathological damage in cardiac tissues. Menthol treatment significantly suppressed oxidative stress (MDA, GSH), inflammation (TLR4, MAPK, NF-κB, SREBP-1C levels), and attenuated apoptosis (P53 and caspase-3 expression) (p < 0.05). Conclusions: Menthol may serve as a promising adjunctive therapy to reduce DOX cardiotoxicity without compromising DOX’s anticancer efficacy. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

23 pages, 6790 KB  
Article
Sitagliptin Potentiates the Anticancer Activity of Doxorubicin Through ROS-Driven Apoptosis and MMP/TIMP Regulation in HeLa Cells
by Aşkın Evren Güler, Mehmet Cudi Tuncer and İlhan Özdemir
Pharmaceutics 2026, 18(1), 38; https://doi.org/10.3390/pharmaceutics18010038 - 26 Dec 2025
Viewed by 318
Abstract
Background/Objectives: Cervical cancer remains a major global health challenge, and treatment resistance limits the long-term success of chemotherapy. Drug repurposing strategies offer new opportunities for improving therapeutic outcomes by combining existing agents with established chemotherapeutics. Sitagliptin, a DPP-4 inhibitor commonly used in [...] Read more.
Background/Objectives: Cervical cancer remains a major global health challenge, and treatment resistance limits the long-term success of chemotherapy. Drug repurposing strategies offer new opportunities for improving therapeutic outcomes by combining existing agents with established chemotherapeutics. Sitagliptin, a DPP-4 inhibitor commonly used in type 2 diabetes, has recently gained attention for its potential anticancer effects. This study aimed to investigate the cytotoxic, apoptotic, and anti-metastatic effects of sitagliptin and doxorubicin, individually and in combination, on human cervical cancer cells (HeLa), and to determine whether their combined use exerts a synergistic anticancer effect. Methods: HeLa cells were treated for 48 h with increasing concentrations of sitagliptin, doxorubicin, or their combination. Cell viability was assessed using the MTT assay. Apoptosis was evaluated by Annexin V-FITC/PI staining and caspase-8/9 activity assays. Synergy was quantified using the Chou–Talalay method, and Combination Index (CI) values were used to determine synergistic interactions. Intracellular ROS levels were measured using the DCFDA assay. Migration and invasion capacities were analyzed using wound healing and Transwell assays. MMP-1, MMP-2, TIMP-1, and TIMP-2 levels were quantified via ELISA with normalization to viable cell counts. Gene expression levels of PI3K/Akt and MAPK/ERK pathway components were measured by qRT-PCR. Bioinformatic analyses (STRING, GeneMANIA, GO, KEGG) were performed to identify common molecular targets and enriched pathways affected by both agents. Results: The combination of sitagliptin and doxorubicin significantly reduced cell viability and demonstrated a synergistic interaction (CI < 1). Combined treatment induced a marked increase in ROS production and significantly elevated apoptosis rates compared to monotherapies. Caspase-8 and caspase-9 activities were also higher in the combination group. Migration and invasion assays revealed substantial suppression of cell motility and invasive capacity. After normalization to viable cell numbers, MMP and TIMP reductions remained significant, confirming true biological inhibition rather than cell-death–related artifacts. qRT-PCR analyses showed downregulation of Akt and ERK expression, indicating suppression of key survival and proliferation pathways. Bioinformatic analyses supported these findings by highlighting enrichment in apoptotic, oxidative stress, and metastasis-related pathways. Conclusions: Sitagliptin enhances the anticancer efficacy of doxorubicin by amplifying ROS-mediated apoptosis, inhibiting migration and invasion, and modulating PI3K/Akt and MAPK/ERK signaling in cervical cancer cells. The combination exhibits a clear synergistic effect and demonstrates strong potential as a supportive therapeutic strategy. These findings warrant further in vivo and clinical-level investigations to evaluate the translational applicability of sitagliptin in cervical cancer therapy. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

15 pages, 3367 KB  
Article
Sestrin2 Knockdown Impairs Proliferation, Migration, Invasion, and Apoptosis in OSCC Cells via PI3K/AKT/mTOR and MAPK Pathways
by Weijia Yang, Wangyang Wang, Zhiyuan Zhang, Zhihe Zhao, Kexin Li, Zelin Liu, Lingdan Xu, Mingxuan Shi, Yi Li and Huihui Wang
Curr. Issues Mol. Biol. 2026, 48(1), 30; https://doi.org/10.3390/cimb48010030 - 26 Dec 2025
Viewed by 198
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy with a poor prognosis. Sestrin2 (Sesn2), a stress-inducible protein, has been implicated in various cancers, but its precise role and mechanism in OSCC remain unclear. This study investigated the molecular mechanisms of Sesn2 in [...] Read more.
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy with a poor prognosis. Sestrin2 (Sesn2), a stress-inducible protein, has been implicated in various cancers, but its precise role and mechanism in OSCC remain unclear. This study investigated the molecular mechanisms of Sesn2 in OSCC. Sesn2 expression was analyzed using data from TCGA and immunohistochemical results from the HPA. Functional assays, including CCK-8, flow cytometry for cell cycle, wound healing, and Transwell assays, were performed following Sesn2 knockdown with siRNA in OSCC cell lines (CAL-27 and SAS). Underlying mechanisms were investigated by Western blotting and ELISA for MMP-2 and MMP-9 levels. Sesn2 was significantly upregulated in OSCC tissues compared to normal controls. Its knockdown markedly suppressed cell proliferation, induced G1 phase cell cycle arrest, and impaired migratory and invasive capabilities. This reduction in invasion was further confirmed by decreased levels of MMP-2 and MMP-9 upon Sesn2 knockdown. Furthermore, Sesn2 silencing induced apoptosis via Caspase-3 activation with divergent BAX/BCL-2 modulation; SAS cells exhibited elevated BAX and reduced BCL-2, whereas these proteins remained unchanged in CAL-27 cells. Mechanistically, we found that Sesn2 depletion downregulated the PI3K/AKT/mTOR pathway and reduced the phosphorylation of AKT and p38 MAPK. Our findings demonstrate that Sesn2 functions as an oncogene in OSCC, promoting tumor progression by modulating the PI3K/AKT/mTOR and MAPK signaling pathways, suggesting its potential as a therapeutic target for OSCC. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

12 pages, 1045 KB  
Article
Evaluation of Octenidine Dihydrochloride-Induced Cytotoxicity, Apoptosis, and Inflammatory Responses in Human Ocular Epithelial and Retinal Cells
by Ihsan Hakki Ciftci, Asuman Deveci Ozkan, Gulay Erman, Imdat Kilbas and Ozlem Aydemir
Biomedicines 2026, 14(1), 50; https://doi.org/10.3390/biomedicines14010050 - 25 Dec 2025
Viewed by 353
Abstract
Background/Objectives: Octenidine dihydrochloride (OCT-D) is a broad-spectrum antiseptic with high chemical stability, low toxicity, and no reported microbial resistance, making it a strong candidate for use on mucosal surfaces. Despite increasing interest in its potential ophthalmic applications, limited data exist regarding its cellular [...] Read more.
Background/Objectives: Octenidine dihydrochloride (OCT-D) is a broad-spectrum antiseptic with high chemical stability, low toxicity, and no reported microbial resistance, making it a strong candidate for use on mucosal surfaces. Despite increasing interest in its potential ophthalmic applications, limited data exist regarding its cellular effects on ocular tissues. This study aimed to investigate the cytotoxic, apoptotic, inflammatory, and transcriptional responses induced by OCT-D in human conjunctival (IOBA-NHC) and retinal pigment epithelial (ARPE-19) cells. Methods: Cells were exposed to varying concentrations of OCT-D, and viability was assessed using the WST-1 assay to determine IC50 and IC50/2 values. These concentrations were subsequently used in molecular assays. Pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, IFN-γ) were quantified by ELISA. Apoptotic activation was evaluated through caspase-3/7 activity assays. Gene expression analysis of apoptotic (Bax, Bcl-2), DNA damage-related (ATM, Rad51), and inflammatory markers was performed using RT-qPCR. Results: OCT-D induced a marked, dose-dependent reduction in cell viability in both cell lines, with ARPE-19 showing greater sensitivity. Caspase-3/7 activity increased significantly at IC50 and IC50/2, confirming intrinsic apoptotic activation. OCT-D markedly suppressed the release of key inflammatory cytokines and downregulated transcription of inflammatory genes. RT-qPCR revealed upregulation of pro-apoptotic and DNA damage-associated genes, demonstrating coordinated activation of apoptotic and genomic stress pathways. Conclusion: OCT-D triggers integrated cytotoxic, apoptotic, and immunomodulatory responses in conjunctival and retinal epithelial cells. While these findings provide important mechanistic insights into OCT-D’s cellular effects, further studies using primary cells, advanced 3D ocular models, and disease-relevant systems are required to support its potential translational use in ophthalmology. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

Back to TopTop