Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = cascaded MMC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5175 KiB  
Article
An AC-DC Coordinated Scheme for Cascaded Hybrid High-Voltage Direct Current to Suppress Wind Power Fluctuations
by Tingshan Zhou, Qian Li, Yufeng Xu, Yizheng Zhao, Deming Liu and Dong Liu
Electronics 2024, 13(14), 2847; https://doi.org/10.3390/electronics13142847 - 19 Jul 2024
Viewed by 870
Abstract
Given power fluctuations from near-land offshore wind farms, this article designs a coordinated control strategy for cascaded hybrid DC transmission. To suppress the frequency disturbances when wind power varies, supplementary active power control schemes are proposed, in which the coordinated DC voltage control [...] Read more.
Given power fluctuations from near-land offshore wind farms, this article designs a coordinated control strategy for cascaded hybrid DC transmission. To suppress the frequency disturbances when wind power varies, supplementary active power control schemes are proposed, in which the coordinated DC voltage control strategy is also considered in order to keep DC voltage stable when the supplementary control prompts a voltage-sourced converter overload. Simultaneously, to further improve wind farm-side AC voltage stability, a dynamic limiter is added in the coordinated control, which can make a voltage-sourced converter release more reactive power when a fault happens. Thereby, the stability of DC-side voltage and active power and AC-side frequency and voltage can all be enhanced through the proposed coordinated scheme. Finally, the electromagnetic transient model of the hybrid high-voltage direct current with renewable power is established using PSCAD X4.6.2 software, and the simulation example is carried out with the model to verify the scheme proposed in this article. Full article
Show Figures

Figure 1

14 pages, 4656 KiB  
Article
Research on Hybrid Rectifier for High Power Electrolytic Hydrogen Production Based on Modular Multilevel Converter
by Cheng Huang, Yang Tan and Xin Meng
Energies 2024, 17(9), 2188; https://doi.org/10.3390/en17092188 - 2 May 2024
Cited by 3 | Viewed by 2277
Abstract
Aiming at the problem that silicon-controlled rectifiers (SCR) and pulse width modulation (PWM) rectifiers cannot balance high power levels, high hydrogen production efficiency, and high grid connected quality in the current research on rectifier power supplies for electrolytic hydrogen production, a new hybrid [...] Read more.
Aiming at the problem that silicon-controlled rectifiers (SCR) and pulse width modulation (PWM) rectifiers cannot balance high power levels, high hydrogen production efficiency, and high grid connected quality in the current research on rectifier power supplies for electrolytic hydrogen production, a new hybrid rectifier topology based on a modular multilevel converter (MMC) is proposed. The hybrid topology integrates a silicon-controlled rectifier (SCR) with an auxiliary power converter, wherein the SCR is designated as the primary power source for electrolytic hydrogen production. The auxiliary converter employs a cascaded modular multilevel converter (MMC) and an input-series-output-parallel (ISOP) phase-shifted full-bridge (PSFB) arrangement. This configuration allows the auxiliary converter to effectively mitigate AC-side harmonics and minimize DC-side ripple, concurrently transmitting a small amount of power. The effectiveness of the hybrid rectifier in achieving low ripple and harmonic distortion outputs was substantiated through hardware-in-the-loop experiments. Notably, the hybrid topology is characterized by its enhanced electric-to-hydrogen conversion efficiency, elevated power density, cost efficiency, and improved grid compatibility. Full article
Show Figures

Figure 1

14 pages, 5247 KiB  
Article
An Improved AC-Link Voltage Matching Control for the Multiport Modular Multilevel DC Transformer in MVDC Applications
by Yong Chen, Songtao Yu, Yizhen Wang, Ruixiong Yang and Xu Cheng
Energies 2024, 17(6), 1346; https://doi.org/10.3390/en17061346 - 12 Mar 2024
Cited by 2 | Viewed by 1501
Abstract
In this paper, an improved AC-link voltage matching control (IVM) strategy is proposed for the multiport modular multilevel DC transformer (M3DCT), which comprises a single-phase modular multilevel converter (MMC) and a series of cascaded H-bridge units. The objective of the proposed IVM strategy [...] Read more.
In this paper, an improved AC-link voltage matching control (IVM) strategy is proposed for the multiport modular multilevel DC transformer (M3DCT), which comprises a single-phase modular multilevel converter (MMC) and a series of cascaded H-bridge units. The objective of the proposed IVM strategy is to address the AC-link voltage mismatch phenomenon. Distinct from existing control methods, such as various phase-shifting control methods and the conventional AC-link voltage matching control strategy, the proposed IVM strategy orchestrates the operation of the M3DCT in an innovative fashion. It allows the sum of inserted submodule (SM) numbers in the upper and lower arms to be flexible, no longer confined to a specific SM number per arm. Consequently, the AC-link voltage of the M3DCT is maintained proximate to the matched operating condition, regardless of the degree of mismatch in the DC side voltage of the M3DCT. This enables the enhancement of the M3DCT’s overall operational performance, particularly under conditions of light loads within medium-voltage DC (MVDC) distribution systems. The correctness and effectiveness of the proposed control strategy and the corresponding analysis are substantiated through simulation results. Full article
(This article belongs to the Special Issue High-Power Electronics in Distribution Grids)
Show Figures

Figure 1

22 pages, 11911 KiB  
Article
Investigation of a 25 kV–50 Hz Railway-Substation Power Supply Based on a Back-to-Back Modular Multilevel Converter Topology
by Kevin Tournoux, Azeddine Houari, Mohamed Fouad Benkhoris, Franck Terrien and Pierre-Louis Garmier
Energies 2024, 17(6), 1318; https://doi.org/10.3390/en17061318 - 9 Mar 2024
Cited by 1 | Viewed by 1797
Abstract
This paper presents a preliminary study of a 25 kV–50 Hz railway substation power supply system. The control of a back-to-back converter based on modular multilevel converter (MMC) technology was investigated to fit with the power quality requirements of the application. One of [...] Read more.
This paper presents a preliminary study of a 25 kV–50 Hz railway substation power supply system. The control of a back-to-back converter based on modular multilevel converter (MMC) technology was investigated to fit with the power quality requirements of the application. One of the main challenges is the presence of constraining load conditions, under which the train circulation variability, low-frequency harmonics and critical power transients can notably decrease the power quality and lead to instability. In order to address this, cascaded controllers based on resonant controllers are proposed to ensure the desired performance. Furthermore, balancing voltage algorithms are added to avoid stress phenomena and additional losses in the studied power conversion interface. The paper presents the design of the control stages and demonstrates the robust performance of the system using a realistic loading condition of a railway substation. Full article
(This article belongs to the Special Issue All-Electric Propulsion Technology for Electrified Aviation)
Show Figures

Figure 1

17 pages, 6840 KiB  
Article
A Multi-Terminal Control Method for AC Grids Based on a Hybrid High-Voltage Direct Current with Cascaded MMC Converters
by Lei Liu, Xiaopeng Li, Qin Jiang, Yufei Teng, Mingju Chen, Yongfei Wang, Xueyang Zeng, Yiping Luo and Pengyu Pan
Electronics 2023, 12(23), 4799; https://doi.org/10.3390/electronics12234799 - 27 Nov 2023
Cited by 6 | Viewed by 1483
Abstract
The hybrid high-voltage direct current (HVDC) transmission system with cascaded MMC converters has become a promising alternative for possessing the technical merits of both line-commuted converter (LCC) and voltage source converter (VSC), resulting in favorable characteristics and potential control of good prospect. This [...] Read more.
The hybrid high-voltage direct current (HVDC) transmission system with cascaded MMC converters has become a promising alternative for possessing the technical merits of both line-commuted converter (LCC) and voltage source converter (VSC), resulting in favorable characteristics and potential control of good prospect. This paper pays heightened attention to the feasible power and DC voltage control modes of a hybrid HVDC system; characteristics of master–slave control show higher flexibility than the LCC-VSC HVDC system, which demonstrates that the exceptional potential can serve to stability support the AC power grids. To optimize the control effect, besides damping level to attenuate power oscillations, the robustness suitable for various faults is also considered to obtain a multi-objective control problem. A detailed solution is proceeding using the TLS-ESPRIT identification algorithm and H2/H hybrid robust control theory. This motivates multi-terminal controllers in the LCC rectifier and MMC inverters, which immensely improve the stability of both sending and receiving girds at the same time. According to the parameters of the actual hybrid HVDC project, the simulation model is established in PSCAD v4.6.2 software, and proposed control methods have been verified to satisfy damping objectives and perform well in multiple operating scenarios. Full article
Show Figures

Figure 1

14 pages, 4256 KiB  
Article
Power Equalization Control Strategy for MMCs in Hybrid-Cascaded UHVDC System
by Lei Liu, Yufei Teng, Xiaopeng Li, Yong Tang and Xiaofeng Jiang
Electronics 2023, 12(16), 3532; https://doi.org/10.3390/electronics12163532 - 21 Aug 2023
Viewed by 1308
Abstract
Based on the hybrid-cascaded topology of ultra-high-voltage direct current (UHVDC) engineering, this study clarified the mechanism of unbalanced power generation among modular multilevel converters (MMCs) at the inverter side following the fault of the AC system at the rectifying side, and then proposed [...] Read more.
Based on the hybrid-cascaded topology of ultra-high-voltage direct current (UHVDC) engineering, this study clarified the mechanism of unbalanced power generation among modular multilevel converters (MMCs) at the inverter side following the fault of the AC system at the rectifying side, and then proposed the power equalization strategy for MMCs. By performing closed-loop control on the active power deviation between constant-voltage and constant-power MMCs, it was possible to achieve automatic power equalization among MMCs after the occurrence of a fault so as to avoid the detrimental effect of a single MMC’s power fluctuation on the connected AC system. Meanwhile, the control enabling logic was designed to ensure the reliable input and stable exit of the control strategy throughout the disturbance period. Finally, a PSCAD/EMTDC platform was used to simulate various types of faults in the AC system at the rectifier side in order to validate the effectiveness of the proposed power equalization strategy. Full article
Show Figures

Figure 1

20 pages, 4661 KiB  
Article
Circulating Current Suppression Strategy Based on Virtual Impedance and Repetitive Controller for Modular Multilevel Converter Upper and Lower Bridge Arm Capacitance Parameter Asymmetry Conditions
by Mincheng Yao, Hongyu Ni, Feng Zhao, Wenyuan Wang and Wenxu Yan
World Electr. Veh. J. 2023, 14(7), 181; https://doi.org/10.3390/wevj14070181 - 12 Jul 2023
Cited by 1 | Viewed by 1835
Abstract
In recent years, modular multilevel converters (MMCs) have been increasingly used in the field of electric vehicle charging and discharging due to their unique performance advantages. However, the unique cascade structure of MMCs raises the problem of the circulating current. Due to chemical [...] Read more.
In recent years, modular multilevel converters (MMCs) have been increasingly used in the field of electric vehicle charging and discharging due to their unique performance advantages. However, the unique cascade structure of MMCs raises the problem of the circulating current. Due to chemical processes, aging effects, etc., the capacitance parameters of the upper and lower bridge arms will be asymmetric, which will introduce odd harmonics into the circulating current, increasing system losses and threatening the system reliability. To address this phenomenon, this paper proposes a circulating current suppression strategy with additional virtual impedance (VI) based on a repetitive controller (RC). The corresponding simulation models were built for the comparative study of different circulating current suppression strategies. The results show that the VI-RC circulating current suppression strategy can significantly reduce the odd and even harmonics in the circulating current under asymmetric conditions, and the total harmonic distortion (THD) of the bridge arm current is only 0.98%, which verifies the effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

19 pages, 3276 KiB  
Article
NEK1-Mediated Phosphorylation of YAP1 Is Key to Prostate Cancer Progression
by Ishita Ghosh, Md Imtiaz Khalil, Rusella Mirza, Judy King, Damilola Olatunde and Arrigo De Benedetti
Biomedicines 2023, 11(3), 734; https://doi.org/10.3390/biomedicines11030734 - 28 Feb 2023
Cited by 10 | Viewed by 3784
Abstract
The key to preventing mCRPC progression is understanding how androgen-dependent PCa cells progress to independence and modify their transcriptional repertoire accordingly. We recently identified a novel axis of the Hippo pathway characterized by the sequential kinase cascade induced by androgen deprivation, AR [...] Read more.
The key to preventing mCRPC progression is understanding how androgen-dependent PCa cells progress to independence and modify their transcriptional repertoire accordingly. We recently identified a novel axis of the Hippo pathway characterized by the sequential kinase cascade induced by androgen deprivation, AR>TLK1B>NEK1>pYAP1-Y407, leading to CRPC adaptation. Phosphorylation of YAP1-Y407 increases upon ADT or induction of DNA damage, correlated with the known increase in NEK1 expression/activity, and this is suppressed in the Y407F mutant. Dominant expression of YAP1-Y407F in Hek293 cells reprograms the YAP1-mediated transcriptome to reduce TEAD- and p73-regulated gene expression and mediates sensitivity to MMC. NEK1 haploinsufficient TRAMP mice display reduced YAP1 expression and, if castrated, fail to progress to overt prostate carcinomas, even while displaying reduced E-Cadherin (E-Cad) expression in hyperplastic ductules. YAP1 overexpression, but not the Y407F mutant, transforms LNCaP cells to androgen-independent growth with a mesenchymal morphology. Immunohistochemical examination of prostate cancer biopsies revealed that the pYAP1-Y407 nuclear signal is low in samples of low-grade cancer but elevated in high GS specimens. We also found that J54, a pharmacological inhibitor of the TLK1>NEK1>YAP1 nexus leading to degradation of YAP1, can suppress the transcriptional reprogramming of LNCaP cells to androgen-independent growth and EMT progression, even when YAP1-WT is overexpressed. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

22 pages, 22379 KiB  
Article
Analysis of Asymmetric Hybrid Modular Multilevel Topology for Medium-Voltage Front-End Converter Applications
by Muhammad Ali, Ajmal Farooq, Muhammad Qasim Khan, Muhammad Mansoor Khan and Lucian Mihet-Popa
Energies 2023, 16(4), 1572; https://doi.org/10.3390/en16041572 - 4 Feb 2023
Cited by 3 | Viewed by 1957
Abstract
Modular multilevel converters (MMCs) have been conceived as an alternative in front-end converter applications to enhance the converter system’s reliability, minimize total harmonic distortion, and improve power quality. These converters utilize several DC-link capacitors and power electronic switches, along with switches operating with [...] Read more.
Modular multilevel converters (MMCs) have been conceived as an alternative in front-end converter applications to enhance the converter system’s reliability, minimize total harmonic distortion, and improve power quality. These converters utilize several DC-link capacitors and power electronic switches, along with switches operating with high switching frequencies, to attain the desired characteristics. Thereby, this paper systematically proposes a novel three-phase asymmetric hybrid modular multilevel converter (AHMMC) for front-end converters used in lower-medium-voltage applications. The AHMMC configuration is based on a three-phase converter connected to a per-phase series arrangement with a cascaded converter module (CCM). The study investigates the AHMMC and proposes a control scheme, which minimizes the voltage range on switches and maintains the current to its reference value. Furthermore, the study also introduces an active balancing of voltage across DC-link capacitors based on the phase opposition disposition PWM (POD-PWM) method. Our new configuration has features such as low switching loss, reduced DC-link voltage, a wider modulation range for the unity power factor (PF), and low voltage and current harmonic distortion. The simulation results are added to verify the performance of the new AHMMC topology and the usefulness of the modular control scheme. In addition, a low-voltage laboratory prototype based on customized control and power boards is built to validate the proposed converter and its control scheme in practice. Full article
(This article belongs to the Special Issue Progress in Design and Control of Power Converters)
Show Figures

Figure 1

11 pages, 2330 KiB  
Article
MAPK Cascade Signaling Is Involved in α-MMC Induced Growth Inhibition of Multiple Myeloma MM.1S Cells via G2 Arrest and Mitochondrial-Pathway-Dependent Apoptosis In Vitro
by Zi-Wei Cai, Ting Ye, Pei-Wen Jiang, Yu-Jiao Liao, Lin Wang, Qing-Liang Zhang, Wen-Qian Du, Min Huang, Ping Yang and Min-Hui Li
Pharmaceuticals 2023, 16(1), 124; https://doi.org/10.3390/ph16010124 - 13 Jan 2023
Cited by 2 | Viewed by 2822
Abstract
Multiple myeloma is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete monoclonal immunoglobulins in the bone marrow. Alpha-momorcharin (α-MMC) is a type I ribosome-inactivating protein extracted from the seeds of the edible plant Momordica charantia L., which has [...] Read more.
Multiple myeloma is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete monoclonal immunoglobulins in the bone marrow. Alpha-momorcharin (α-MMC) is a type I ribosome-inactivating protein extracted from the seeds of the edible plant Momordica charantia L., which has a variety of biological activities. This study aimed to investigate the inhibitory effect of α-MMC on the proliferation of multiple myeloma MM.1S cells and the molecular mechanism of MM.1S cell death induced through the activation of cell signal transduction pathways. The cell counting kit-8 (CCK-8) assay was used to determine the inhibitory effect of α-MMC on the proliferation of MM.1S cells and its toxic effect on normal human peripheral blood mononuclear cells (PBMCs). The effect of α-MMC on the MM.1S cells’ morphology was observed via inverted microscope imaging. The effects of α-MMC on the MM.1S cell cycle, mitochondrial membrane potential (MMP), and apoptosis were explored using propidium iodide, JC-1, annexin V- fluorescein isothiocyanate/propidium iodide fluorescence staining, and flow cytometry (FCM) analysis. Western blot was used to detect the expressions levels of apoptosis-related proteins and MAPK-signaling-pathway-related proteins in MM.1S cells induced by α-MMC. The results of the CCK-8 showed that in the concentration range of no significant toxicity to PBMCs, α-MMC inhibited the proliferation of MM.1S cells in a time-dependent and concentration-dependent manner, and the IC50 value was 13.04 and 7.518 μg/mL for 24 and 48 h, respectively. Through inverted microscope imaging, it was observed that α-MMC induced a typical apoptotic morphology in MM.1S cells. The results of the FCM detection and analysis showed that α-MMC could arrest the MM.1S cells cycle at the G2 phase, decrease the MMP, and induce cell apoptosis. Western blot analysis found that α-MMC upregulated the expression levels of Bax, Bid, cleaved caspase-3, and cleaved PARP, and downregulated the expression levels of Mcl-1. At the same time, α-MMC decreased the expression levels of p-c-Raf, p-MEK1/2, p-ERK1/2, p-MSK1, and p-P90RSK, and increased the expression levels of p-p38, p-SPAK/JNK, p-c-Jun, and p-ATF2. The above results suggest that α-MMC can inhibit the proliferation of multiple myeloma MM.1S cells. MAPK cascade signaling is involved in the growth inhibition effect of α-MMC on MM.1S cells via cycle arrest and mitochondrial-pathway-dependent apoptosis. Full article
(This article belongs to the Special Issue Anticancer Compounds in Medicinal Plants 2023)
Show Figures

Graphical abstract

24 pages, 1665 KiB  
Article
Keeping 21st Century Paleontology Grounded: Quantitative Genetic Analyses and Ancestral State Reconstruction Re-Emphasize the Essentiality of Fossils
by Tesla A. Monson, Marianne F. Brasil, Michael C. Mahaney, Christopher A. Schmitt, Catherine E. Taylor and Leslea J. Hlusko
Biology 2022, 11(8), 1218; https://doi.org/10.3390/biology11081218 - 13 Aug 2022
Cited by 10 | Viewed by 4200
Abstract
Advances in genetics and developmental biology are revealing the relationship between genotype and dental phenotype (G:P), providing new approaches for how paleontologists assess dental variation in the fossil record. Our aim was to understand how the method of trait definition influences the ability [...] Read more.
Advances in genetics and developmental biology are revealing the relationship between genotype and dental phenotype (G:P), providing new approaches for how paleontologists assess dental variation in the fossil record. Our aim was to understand how the method of trait definition influences the ability to reconstruct phylogenetic relationships and evolutionary history in the Cercopithecidae, the Linnaean Family of monkeys currently living in Africa and Asia. We compared the two-dimensional assessment of molar size (calculated as the mesiodistal length of the crown multiplied by the buccolingual breadth) to a trait that reflects developmental influences on molar development (the inhibitory cascade, IC) and two traits that reflect the genetic architecture of postcanine tooth size variation (defined through quantitative genetic analyses: MMC and PMM). All traits were significantly influenced by the additive effects of genes and had similarly high heritability estimates. The proportion of covariate effects was greater for two-dimensional size compared to the G:P-defined traits. IC and MMC both showed evidence of selection, suggesting that they result from the same genetic architecture. When compared to the fossil record, Ancestral State Reconstruction using extant taxa consistently underestimated MMC and PMM values, highlighting the necessity of fossil data for understanding evolutionary patterns in these traits. Given that G:P-defined dental traits may provide insight to biological mechanisms that reach far beyond the dentition, this new approach to fossil morphology has the potential to open an entirely new window onto extinct paleobiologies. Without the fossil record, we would not be able to grasp the full range of variation in those biological mechanisms that have existed throughout evolution. Full article
(This article belongs to the Special Issue Paleontology in the 21st Century)
Show Figures

Figure 1

18 pages, 4887 KiB  
Article
Control and Optimization of Lattice Converters
by Zhiting Mei, Jingyang Fang and Stefan Goetz
Electronics 2022, 11(4), 594; https://doi.org/10.3390/electronics11040594 - 15 Feb 2022
Cited by 2 | Viewed by 1944
Abstract
Multilevel converters continue their upward trend in renewable generation, electric vehicles, and power quality conditioning applications. Despite having satisfactory voltage capabilities, mainstream multilevel converters suffer from poor current sharing performances, thereby leading to the development of lattice converters, i.e., a strong and versatile [...] Read more.
Multilevel converters continue their upward trend in renewable generation, electric vehicles, and power quality conditioning applications. Despite having satisfactory voltage capabilities, mainstream multilevel converters suffer from poor current sharing performances, thereby leading to the development of lattice converters, i.e., a strong and versatile type of future multilevel power converters. This article addresses two problems faced by lattice converters. First, we propose and detail how to optimize the efficiency of a given lattice converter by controlling the on/off states of H-bridge submodules. Second, we introduce the method that determines the voltage at each node of the converter in order to satisfy output voltage and current requirements. Design and analysis of lattice converters need a different mathematical toolbox than routinely exercised in power electronics. By use of graph theory, this article provides control methods of 3 × 3 and 4 × 4 lattice converters, satisfying various control objectives such as input/output terminals and output voltages. We further validate the methods with simulation results. The methodologies, algorithms, and special cases described in the article will aid further design and refinement of more efficient and easy-to-control lattice converters. Full article
Show Figures

Figure 1

19 pages, 7559 KiB  
Article
Self-Balancing Supercapacitor Energy Storage System Based on a Modular Multilevel Converter
by Fernando Davalos Hernandez, Rahim Samanbakhsh, Federico Martin Ibanez and Fernando Martin
Energies 2022, 15(1), 338; https://doi.org/10.3390/en15010338 - 4 Jan 2022
Cited by 6 | Viewed by 2528
Abstract
Energy Storage Systems (ESS) are an attractive solution in environments with a high amount of renewable energy sources, as they can improve the power quality in such places and if required, can extend the integration of more renewable sources of energy. If a [...] Read more.
Energy Storage Systems (ESS) are an attractive solution in environments with a high amount of renewable energy sources, as they can improve the power quality in such places and if required, can extend the integration of more renewable sources of energy. If a large amount of power is needed, then supercapacitors are viable energy storage devices due to their specific power, allowing response times that are in the range of milliseconds to seconds. This paper details the design of an ESS that is based on a modular multilevel converter (MMC) with bidirectional power flow, which reduces the number of cascaded stages and allows the supercapacitors SCs to be connected to the grid to perform high-power transfers. A traditional ESS has four main stages or subsystems: the energy storage device, the balancing system, and the DC/DC and DC/AC converters. The proposed ESS can perform all of those functions in a single circuit by adopting an MMC topology, as each submodule (SM) can self-balance during energy injection or grid absorption. This article analyses the structure in both power flow directions and in the control loops and presents a prototype that is used to validate the design. Full article
Show Figures

Figure 1

14 pages, 3336 KiB  
Article
Research on the New Topology and Coordinated Control Strategy of Renewable Power Generation Connected MMC-Based DC Power Grid Integration System
by Shanshan Wang, Shanmeng Qin, Panbo Yang, Yuanyuan Sun, Bing Zhao, Rui Yin, Shengya Sun, Chunyi Tian and Yuetong Zhao
Symmetry 2021, 13(10), 1965; https://doi.org/10.3390/sym13101965 - 18 Oct 2021
Cited by 6 | Viewed by 2505
Abstract
The modular multilevel converter (MMC) station connected to the islanded renewable energy generation system needs to adopt the voltage frequency (VF) control to provide AC voltage. The single-pole converter fault will unbalance the input and output power of the DC power grid, which [...] Read more.
The modular multilevel converter (MMC) station connected to the islanded renewable energy generation system needs to adopt the voltage frequency (VF) control to provide AC voltage. The single-pole converter fault will unbalance the input and output power of the DC power grid, which causes the DC voltage or the bridge arm current of the non-fault pole to exceed the protection value in the time scale of tens to hundreds of milliseconds, leading to cascading failures. To realize the fault ride-through (FRT) of single-pole converter fault, this paper analyzes the electrical characteristic of the system. Based on the analysis, the existing topology is optimized and the reasonable operation reserved margin is designed. Furthermore, the corresponding control strategy is proposed, which can not only ensure the single-pole converter block fault ride-through but can also realize economic, stable, and resilient power supply and address asymmetrical problems. Finally, the simulation model is built in PSCAD/EMTDC and the simulation results validate the effectiveness of the proposed control strategy. Full article
(This article belongs to the Special Issue Advanced Technologies in Electrical and Electronic Engineering)
Show Figures

Figure 1

16 pages, 6508 KiB  
Article
Unified Graph Theory-Based Modeling and Control Methodology of Lattice Converters
by Jingyang Fang
Electronics 2021, 10(17), 2146; https://doi.org/10.3390/electronics10172146 - 3 Sep 2021
Cited by 6 | Viewed by 2792
Abstract
Lattice converters combine the merits of both cascaded-bridge converters and multi-paralleled converters, leading to infinitely large current and voltage capabilities with modularity and scalability as well as small passive components. However, lattice converters suffer from complexity, which poses a serious threat to their [...] Read more.
Lattice converters combine the merits of both cascaded-bridge converters and multi-paralleled converters, leading to infinitely large current and voltage capabilities with modularity and scalability as well as small passive components. However, lattice converters suffer from complexity, which poses a serious threat to their widespread adoption. By use of graph theory, this article proposes a unified modeling and control methodology for various lattice converters, resulting in the satisfaction of their key control objectives, including selected inputs/outputs, desired voltages, current sharing, dynamic voltage balancing, and performance optimization. In addition, this article proposes a plurality of novel lattice converter topologies, which complement state-of-the-art options. Simulation and experimental results verify the effectiveness and superiority of the proposed methodology and lattice converters. Full article
Show Figures

Figure 1

Back to TopTop