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Abstract: This paper presents a preliminary study of a 25 kV–50 Hz railway substation power
supply system. The control of a back-to-back converter based on modular multilevel converter
(MMC) technology was investigated to fit with the power quality requirements of the application.
One of the main challenges is the presence of constraining load conditions, under which the train
circulation variability, low-frequency harmonics and critical power transients can notably decrease
the power quality and lead to instability. In order to address this, cascaded controllers based
on resonant controllers are proposed to ensure the desired performance. Furthermore, balancing
voltage algorithms are added to avoid stress phenomena and additional losses in the studied power
conversion interface. The paper presents the design of the control stages and demonstrates the robust
performance of the system using a realistic loading condition of a railway substation.

Keywords: MMC converters; back-to-back converter; power quality; railway station; harmonics

1. Introduction

Railway systems around the world use diverse power supplies, as we can see with the
example of Europe, where three main power supply modes are in use [1]. Indeed, the use
of 3 kV DC, 15 kV AC at 16.7 Hz and 25 kV AC at 50 Hz necessitates the use of different
rolling stocks (i.e., trains) or stocks that can endure changes in the power supply [2,3],
which can lead to heavy rolling stocks. Even if we solve the issue by making rolling stocks
versatile and able to operate in different electric traction systems, we also need to solve
the static infrastructure issue. Having versatile rolling stocks means that they cannot be
perfectly operated in every environment without making compromises, resulting in a drop
in voltage quality. As shown in Figure 1, there are places in Europe that have up to three
different power supply modes in a restricted area.
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These places are the most sensitive, and with the development of decentralized mi-
crogrids, we have to be sure that the distribution systems are not polluted by high har-
monics [7] that could lead to issues in the power grid. DC systems have a quite simple 
architecture: the catenary rectifier is directly connected to the three phases of the distribu-
tion system, providing a natural balance of the load on the network [8]. DC systems also 
allow rolling stocks to be lighter, reducing the amount of energy needed to power them. 
Unfortunately, the use of low voltage requires increasing the number of substations, mak-
ing implementation difficult, especially in urban zones where they are the most used. 
Now, when considering AC power supply systems, we have to first make a distinction: 
either the catenary is powered with the same frequency as the distribution network, 50 
Hz in Europe or 60 Hz in America, or the catenary is powered with a different frequency, 
typically 16.7 Hz, with or without a dedicated distribution network. The latter configura-
tion requires an initial conversion step where both the frequency and voltage level are 
modified using stationary converters, motors or turbines if there is a dedicated power 
plant. This power supply architecture has been used historically [9] and is still used in 
Germany, for example. One of its unique characteristics is that it can have its own distri-
bution network [10], making the public distribution network immune to power quality 
issues. However, in this case, doubling the infrastructure also doubles the need for mainte-
nance and almost doubles the cost. Therefore, having the supply at the same frequency is 
the most advantageous, since there is no need for an additional conversion step. However, 
connections between substations and the distribution network are only made in two of 
the three phases, making a phase change necessary for each connection point. Even 
though this creates a relative equilibrium, imbalance persists because of distance-induced 
line inductance and capacitance, resulting in a small but still present balancing problem. 
All of these architectures are connected to transformers that are bulky and non-controlla-
ble, and can have magnetization issues and other complications [11,12]. 

This is where modular multilevel converters (MMC) become interesting: due to their 
versatility, they have a wide range of applications, such as speed drives [13–15], DC trans-
mission lines [16–19], power conditioning (thanks to static compensators) [20–23] and bat-
tery energy storage systems [24,25]. Power conditioning can also be achieved with direct 
powering of the load to be compensated, thus MMCs can be used to power electric arc 
furnaces [26,27] that are particularly difficult loads to model [28,29], which makes tuning 
the control more difficult than for conventional loads. This application, in which power 
quality is regulated, can be applied to the railway field, as has been demonstrated in the 
past [30,31], but focused on either different frequency systems or parallel power condi-
tioning [32] or with separated layers [33].  

Looking at the research [34], we find that railway powering systems tend to use in-
creasingly more power electronics to power the catenaries. However, few articles discuss 
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These places are the most sensitive, and with the development of decentralized mi-
crogrids, we have to be sure that the distribution systems are not polluted by high har-
monics [7] that could lead to issues in the power grid. DC systems have a quite simple
architecture: the catenary rectifier is directly connected to the three phases of the distri-
bution system, providing a natural balance of the load on the network [8]. DC systems
also allow rolling stocks to be lighter, reducing the amount of energy needed to power
them. Unfortunately, the use of low voltage requires increasing the number of substations,
making implementation difficult, especially in urban zones where they are the most used.
Now, when considering AC power supply systems, we have to first make a distinction:
either the catenary is powered with the same frequency as the distribution network, 50
Hz in Europe or 60 Hz in America, or the catenary is powered with a different frequency,
typically 16.7 Hz, with or without a dedicated distribution network. The latter configu-
ration requires an initial conversion step where both the frequency and voltage level are
modified using stationary converters, motors or turbines if there is a dedicated power plant.
This power supply architecture has been used historically [9] and is still used in Germany,
for example. One of its unique characteristics is that it can have its own distribution
network [10], making the public distribution network immune to power quality issues.
However, in this case, doubling the infrastructure also doubles the need for maintenance
and almost doubles the cost. Therefore, having the supply at the same frequency is the
most advantageous, since there is no need for an additional conversion step. However,
connections between substations and the distribution network are only made in two of the
three phases, making a phase change necessary for each connection point. Even though
this creates a relative equilibrium, imbalance persists because of distance-induced line
inductance and capacitance, resulting in a small but still present balancing problem. All of
these architectures are connected to transformers that are bulky and non-controllable, and
can have magnetization issues and other complications [11,12].

This is where modular multilevel converters (MMC) become interesting: due to their
versatility, they have a wide range of applications, such as speed drives [13–15], DC
transmission lines [16–19], power conditioning (thanks to static compensators) [20–23]
and battery energy storage systems [24,25]. Power conditioning can also be achieved with
direct powering of the load to be compensated, thus MMCs can be used to power electric
arc furnaces [26,27] that are particularly difficult loads to model [28,29], which makes
tuning the control more difficult than for conventional loads. This application, in which
power quality is regulated, can be applied to the railway field, as has been demonstrated
in the past [30,31], but focused on either different frequency systems or parallel power
conditioning [32] or with separated layers [33].

Looking at the research [34], we find that railway powering systems tend to use
increasingly more power electronics to power the catenaries. However, few articles discuss
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industrial constraints. Indeed, when designing these converters, it must be remembered
that real insulated gate bipolar transistors (IGBTs) work within a specific range and do not
have an unlimited voltage range. The following work was conducted while considering
IGBTs that work under 1 kHz and have a rated voltage of 2.5 kV, resulting in the choice of a
320 Hz switching frequency for all IGBTs in both converters.

This paper provides a comprehensive analysis of the behavior of a complete power
conversion chain for a realistic railway substation power supply application. The studied
system is based on a back-to-back MMC converter that connects the main grid to power a
railway catenary. On the load side, the power supply ensures grid-forming functionality
by creating a point of common coupling of 25 kV–50 Hz. This system, with its control, was
developed to meet both the energy quality standards on the grid side and railway standards
on the load side. In order to achieve these objectives, we investigated the studied structure
in three complementary parts: (i) analysis of controlling the grid-side AC/DC converter
with a focus on the distributed capacitor voltage balancing algorithm; (ii) investigation of
AC voltage regulation at the catenary side (this control is based on a proportional resonant
controller without regard to the complex load model); and (iii) simulation-based analysis of
the interaction between the two converters. As a preliminary study before further industrial
investigation, a scenario employing one train at steady state and another with acceleration,
steady-state and deceleration phases was performed to verify compliance of the proposed
system with railway standards.

2. System Description

The full converter structure had a three-phase rectifier, a DC link and a single-phase
inverter, as shown in Figure 2. The rectifier and inverter are based on MMC topology with
half-bridge submodules.
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back topology.

In order to ease the comprehension of this work, we split this part into two axes
concerning the rectifier part and the inverter part of the converter. Below we present the
topology and control as well as simple results that can be used to assess the performance of
our work.

The main objective of this converter is to provide 25 kV–50 Hz voltage to the catenary
side while preventing disturbances on the grid side. The chosen capacitors have a rated
voltage VSM of 2500 volts, and the number of submodules is chosen based on this data. The
DC link voltage between the two converters has a rated voltage Vdc of 70 kV, meaning that
we must have a total of 28 submodules per arm, NSM, as calculated by Equation (1):

NSM = ceil
(

Vdc
VSM

)
(1)
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Furthermore, capacitor capacity must be determined in order to provide and absorb
enough power so as to not degrade performance. This criterion is described in [35,36] and
is based on varying submodule energy ∆WSM, described by Equation (2):

∆WSM =
2
3

S
kNω0

(
1 −

(
kcos(φ)

2

)2
) 3

2

(2)

This allows us to determine the capacitor value by using Equation (3):

C =
∆WSM

2∆VSMU2
c

(3)

which leads to Equation (4):

C =
S

3kNω0∆VSMU2
c

[
1 −

(
kcos(φ)

2

)2
] 3

2

(4)

where S is the apparent power of the converter, k is the voltage modulation index, N is the
number of SMs per arm, ω0 is the fundamental frequency, ∆VSM is the voltage ripple of the
submodule, Uc is the mean value of the capacitor voltage and cos φ is the power factor.

3. Study of the Grid-Side Rectifier

On the rectifier side, we used a double-star structure, as is used in high-voltage direct
current (HVDC) transmission. Here, the objective is the same: we need to maintain the
value of the DC link and limit the effect of the load on the distribution grid. Therefore, we
must control these parameters while preventing the divergence of submodule capacitors.

This part of the work was based on a double-star application where the DC and
AC sides are decoupled and can be controlled separately; thus, the architecture was the
same, with the converter connected to a 30 kV grid using 3.9 mH inductance and 24.5 mΩ
resistance, as shown in Figure 3.

3.1. DC and AC Regulation

The main objective of this part is to balance the DC link, making sure it does not
diverge and stays even over time. This part of the control is based on Equation (5):

idc = C ∗ dVdc
dt

+ iload (5)

where idc is the output current of the converter, Vdc is the DC link voltage, C is the DC
link capacitor and iload is the load current. This allows us to have an idc reference. This
reference is then used to recreate a Vdc reference that will be added to the other regulation
loops. Network current regulation is one of the key features that needs to be achieved; we
have to make sure to minimize the effects of the converter and the load on the network.

To do so, we act on the current as it passes through the converter, controlling it in the
same stationary frame as the DC link to ensure balance. The q component of the current
reference is set at 0, and we calculate the d component. The DC component is then set to be
coupled to the d-axis, leading to the id reference being defined by Equation (6):

idre f
=

(
KPdre f

+
Kidre f

s

)(
VDCre f − Varmave

)
(6)
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where idre f
is the d-axis current reference, VDCre f is the rated voltage the converter has to

achieve, Kpdre f
and Kidre f

are the gains for the proportional controller and Varmave is the

averaged sum of the six arm voltages as defined by Equation (7):

Varmave =
1
6

6

∑
j=1

N

∑
i=1

VSMij (7)

where VSMij is the submodule voltage at position i in arm j. This reference is then used to
generate voltage references using Equation (8):

Vdqre f =

(
Kpdqre f

+
Kidqre f

s

)(
idqre f − idq

)
(8)

where the subscript dq refers to either component d or q (for ease of expression) and Kpdqre f

and Kidqre f
are the gains for the proportional controllers. Vdre f

and Vqre f are calculated

separately and then put back into the original reference frame, leading to Vacre f .
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3.2. Internal Balancing

In addition, vertical and horizontal balancing is achieved, meaning that every block of
N submodules will have the same global voltage, which will reduce the risk of circulating
currents [36,37], hence reducing the losses in our system.

Horizontal voltage balancing (HVB) is achieved by comparing each pair of symmetric
arms to the others to create a reference for the horizontal energy repartition. This command
can be summarized by Equation (9)

ihorre f
=

(
Kphre f

+
Kihre f

s

)(
1
2

(
varmup + varmdown

)
− varmave

)
(9)

where ihorre f
is the horizontal current reference, Kphre f

and Kihre f
are the gains for the propor-

tional controller and varmup and varmdown are the average voltage for each upper and lower
arm, respectively. The associations are made for each phase.

Vertical voltage balancing (VVB) is achieved by controlling the zero, positive and
negative sequence in the converter. These three components are calculated and then
separately injected into a PI controller, as summarized by Equation (10):

xseqre f =

(
Kpvre f +

Kivre f

s

)
xseq (10)

where xseqre f is the reference for the considered sequence (positive, negative or zero), Kpvre f

and Kivre f are the gains for the proportional controller and xseq is the considered sequence.
These references are then used to recreate two three-phase signals using dq transformation
by Equation (11): 

(
positiveseqre f

∣∣∣negativeseqre f

)
∗ P−1 = abcre f 1(

zeroseqre f

∣∣∣0) ∗ P−1 = abcre f 2
(11)

where P−1 is the inverse Park transform, and abcre f 1 and abcre f 2 are the two three-phase
reference signals. These two signals are then compared to create the reference for vertical
energy repartition and are denoted as iverre f .

The two references, iverre f and ihorre f
, are then added to produce a circulating reference

for each phase, which is compared to circulating current icirc, which is calculated by
Equation (12) [38,39]:

icirc =
iup ± ilow

2
(12)

where iup and ilow are the current in the upper and lower arm, respectively. This current is
compared to the average circulating current icircave , defined by Equation (13):

icircave =
1
6

6

∑
i=1

ii (13)

where ii is the current in arm i. The difference between the two circulating currents is then
compared to the reference produced by the HVB and VVB controllers.

From all of these regulation loops, we combine the various references into a new
reference to use for PWM generation. This combination is presented in Equation (14):

Vnre f =
Vdcre f ±

(
Vacre f − Vacre fav

)
− Vdire f

∑ VSMarm
(14)

where Vnre f is the normalized reference used for PWM generation, Vdcre f is the reference
from the DC link control, Vacre f is the reference from the current grid-side control and
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Vacre fav is the averaged value of the previous one, Vdire f is the reference from the balancing
process and ∑ VSMarm is the sum of all capacitor voltages in one arm.

3.3. Capacitors Balancing

Reference Vnre f is then injected into an algorithm that provides near level control of
each capacitor’s voltage [40], allowing decentralized control and reducing computing time
when compared to other methods [41,42]. The operating mode of this sorting method can
be summarized by Equation (15):

∼
Vnre f = Vnre f +

((
VSMn − VSM average

)
VSM re f

∗ sign(iarm)

)
(15)

Where
∼

Vnre f is the reference used for PWM generation once voltage balancing is
achieved, VSMn is the voltage of capacitor n, VSM average is the average capacitor voltage in
one arm, VSM re f is the desired capacitor voltage and sign(iarm) is the sign of the current
passing through the converter’s arm. This algorithm balances voltage across an arm,
meaning the effect is not apparent from the macroscopic point of view, but it must be noted
that this algorithm works better when the switching frequency is not a multiple of the
network frequency.

To verify the good behavior of the rectifier, we connected the DC link to a current
source to provide continuous current. This allowed us to look at grid currents, arm capacitor
voltages and DC link voltages, which are the main variables we need to control.

3.4. Rectifier’s Simulation

To validate the rectifier’s behavior in the IGBT model, we ran the following simple
scenario using a Matlab r2014 and PLECS 3.3.7 environment. We applied a varying current
load to the converter to simulate a load variation that emulates trains. The initial current
was set at 1100 amperes (phase 1), and after 2 seconds it was gradually increased to 2300
amperes (phase 2), emulating acceleration. After 1.5 seconds of steady state (phase 3),
deceleration occurred at the same rate as acceleration (phase 4), and the current was
returned to 1100 amperes (phase 5). This case is depicted in Figure 4.
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Figure 4. Current applied to the rectifier’s DC link.

One of the main purposes of the inverter is to provide a stable voltage source. There-
fore, it is critical to monitor the DC link voltage and ensure that any deviation during
transitional states is inconsequential. The DC link voltage and the chosen reference are
shown in Figure 5.
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We can observe a very small deviation during the transient state. This deviation can
be measured, and is shown in Figure 6.
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As shown in Figure 6, the maximum deviation, excluding initialization, is around 10
volts, which is negligible for a 70 kV DC link. This very low deviation is partially due to
the capacitor balancing. The outcome is shown in Figures 7 and 8.
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Figure 8. Capacitor voltages for one arm (zoomed-in view).

Minimum and maximum capacitor voltages from Figures 7 and 8 were calculated from
the maximum and minimum voltages of all arm capacitors, allowing us to see whether
a significant voltage drop occurred without printing all 28 curves. The displayed curves
show that they all are balanced and have limited fluctuations.

While the converter must ensure a steady DC link voltage, the other critical feature
of this converter is that it ensures good current quality on the grid side. This is why
current waveform and THD are measured. Network currents are shown in Figure 9 with
zoomed-in views.
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Figure 9. Network currents.

As can be observed, the three phases are well balanced and the measured THD does
not exceed 0.5% even during transient phases, which prevents distortion on the grid side
and proves the good performance of the system. It is also noted that on the dq-axis, the
current components are well aligned with their references, as shown in Figure 10.

All of these results prove the good behavior of the inverter structure when under
stress and during transient phenomena. In the next section, the inverter is studied.
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Figure 10. Grid currents in dq-axis.

4. Study of the Catenary-Side Inverter

On the load side, a single-phase MMC inverter is used. This inverter, as shown in
Figure 11, connects the load through an output LC filter. This power stage is called a grid-
forming inverter, in which the amplitude and frequency can be adapted to the specified
power supply of any medium-voltage alternating current (MVAC) railway station.
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The proposed controller is based on imbricated loops, with an external output voltage
loop and an inner current loop. The balancing voltage algorithm described in the previous
section ensures voltage equilibrium inside the structure. The controllers are based on PR
controllers, the transfer function of which is given in Equation (16):
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G(s) = Kp +
2Kiωcs

s2 + 2ωcs + ω2
0

(16)

where Kp is the proportional gain, Ki is the integral gain, ω0 is the desired frequency around
which the system will work and ωc is the bandwidth of the system.

The transfer functions of inner current and outer voltage loops are expressed in
Equations (17) and (18). For the voltage loop, the hypothesis is that the current loop gain
is equal to one when the sizing is made. Note that the connection line to the load is not
accounted for in order to achieve a robust control law in the presence of uncertainties.

Hi(s) =
s2Kpi + s

(
2ωci

(
Kpi + Kii

))
+ Kpiω

2
0

Ls3 + s2
(
2Lωci + Kpi

)
+ s
(

Lω2
0 + 2ωci

(
Kpi + Kii

))
+ Kpiω

2
0

(17)

Hv(s) =
s2Kpv + s

(
2ωcv

(
Kpv + Kiv

))
+ Kpvω2

0

Cs3 + s2
(
2Cωcv + Kpv

)
+ s
(
Cω2

0 + 2ωcv
(
Kpv + Kiv

))
+ Kpvω2

0
(18)

where C is the capacitor of the filter, L is the inductance of the filter, Kpi and Kii are the gains
of the current controller, ωci is the bandwidth of the current controller, Kpv and Kiv are
the gains of the voltage controller and ωcv is the bandwidth of the voltage controller. The
voltage bandwidth is set to be ten times lower than the current bandwidth (ωcv = ωci/10)
to avoid interaction issues between the two loops. The current loop bandwidth is set to
ω0c = fsw/5 to achieve appropriate disturbance rejection and fsw is the apparent switching
frequency of the MMC inverter.

Inverter Simulation

As noted in [43,44], railway trains generate significant harmonic content during their
journeys, which is a challenge to control and compensate. In order to emulate a railway
system, the choice was made to use current sources connected to the output of the LCL
filter. The approach is similar to that in [45] with harmonic datasets used as the current
source. As stated in [8], the rated power of a TGV is around 8.8 MW, and can be up to
20 MW for a train with multiple units. That is why the power consumption of the next
simulation varied from 9.3 to 27.8 MW. The assumption was made that all harmonics would
increase proportionally when the current consumption increased, which may not be true
with certain configurations [46] but will suffice for this work. Since the data were obtained
by measuring at a distribution point, we assumed that the resonance phenomena that could
happen in the catenary already happened the moment the measurements were made. The
measured current was formatted in the order of frequency rank, amplitude and phase,
allowing us to calculate both active and reactive power.

Using the same scenario as the one used for the rectifier, the simulation started with a
single train at steady state, and a second train was added at 2 seconds and gradually rose
to its steady state, and after 2.5 seconds, deceleration began, leaving the first train alone
and at steady state. The global appearance of the operation is depicted in Figure 12.

The current waveform from measurements on thyristor trains explains the highly
distorted current with a THD of around 25%, as can be seen in Figure 13.

The catenary voltage was set to achieve an RMS voltage of 25 kV. We measured a
significant drop in THD, reaching 2.3%, and the odd harmonics disappeared, complying
with the requirements in [47], even during the transient phenomenon, as can be seen in
Figure 14.

This current profile combined with the catenary voltage results of the power measure-
ment can be seen in Figure 15.

Since the train’s current has harmonics and is not in phase with the voltage, a high
reactive power value can be observed. The impact of this reactive power must be limited to
the catenary side and must not reach the distribution grid.
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Capacitor voltages also need to be monitored to ensure that the balancing method
provides adequate performance. This requirement is validated, as shown in Figure 16, even
though the mean value of voltage is not exactly 2500 volts.
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These results show the good performance of the inverter, even when it has to provide
high harmonic currents while preserving good voltage quality on the catenary side.

5. Back-to-Back Structure Using the Simplified Topology

Both converters work in a satisfying range of performance; however, the most impor-
tant part of the back-to-back structure is that it has to be in a back-to-back configuration and
has to be validated in this configuration. To do so, we must connect the converters using the
DC link. However, previous work involved significant simulation time, making it difficult
to tune the control of both converters while they were connected. To solve this issue, a
simplified model for each converter is proposed and compared to the complete models.

To reduce the simulation time and ease the testing of different configurations and
loads, a simplified averaged model is used in the rest of this paper. The control structure
remains the same as before; the only change is in the converter part of the structure. Each
arm of the converter is replaced by the components presented in Figure 17.

This architecture implies that the internal arm voltage balance is strong enough to
get rid of voltage information from each capacitor. Before the back-to-back simulation is
carried out, the behavior of the converters is compared.
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5.1. Simulation of Simplified Rectifier

First, we must ensure that the simplified rectifier produces the same results as the
IGBT model. The main aspects to be monitored are the arm voltage, the DC link voltage
and the grid-side current.

Even if the capacitors are not included in this simplified model and therefore cannot
be monitored, arm voltage control is still implemented and must be taken into account
when validating the model’s operation. Both arm voltages are shown in Figure 18.
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Figure 18. Arm voltage for IGBT model and simplified model.

A difference in the ripple magnitude can be observed between the models, but they
share the same ripple frequency and their average value is the same, which is the main
concern for a simplified and averaged model. The second observed component is a direct
link to the arm voltage, similar to the DC link voltage. Maintaining a stable DC link voltage
is crucial when interfacing the rectifier with an inverter or a long cable. That is why it
is important to ensure that this part is working as it should. Both models are shown in
Figure 19.

In steady state, both models produce identical results, with a difference of less than
1 volt.

Finally, the grid-side currents are analyzed, as shown in Figure 20.
Once again, the results for the converters are similar, with a low THD and similar

values, validating the average behavior of the simplified rectifier and making it suitable for
the rest of the study.
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5.2. Simulation of Simplified Inverter

For this part of the converter, the main concern is the catenary voltage, which must
remain at an RMS value of 25 kV during the main time period to ensure the required
performance of the rolling stock. The second concern is common for the rectifier, as it
concerns the capacitor voltage or, more precisely, the arm voltage, which must be close to
the IGBT model, if not the same. Both of these voltages are presented in Figure 21.
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As it can be observed in the figure above, arm voltages are way closer than they were
in the rectifier model. In the same way that in happened in the previous comparison, their
ripple follows the same frequency, now have the same amplitude and consequently have
the same average value.

The last round of comparison is made between the two catenary voltages in Figure 22.
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Figure 22. Catenary voltage for both models.

The simplified model provides the same voltage as the model with the IGBTs, with
similar THD and RMS, proving the validity of the model for the desired application.

Further results are shown in Table 1, comparing both models at steady state using
their average values, where the voltage offset is defined as the mean value of the difference
between the regulation and the output of the system.

Table 1. Comparison between models.

IGBT Simplified Error

Rectifier side

Arm voltage (V) 69,833.1 70,061.5 228.4 (0.3%)

DC link current (A) 80.1 80.09 0.009 (0.012%)

Voltage offset (V) 11.84 11.7 0.14 (1.18%)

THD network currents (%) 0.003 0.001 0.002 (200%)

Inverter side

THD catenary (%) 0.01 0.01 0 (0%)

Voltage offset (V) 7.01 −4.63 11.64 (166%)

As both averaged converters have precise behavior regarding static and dynamic
states, they can be used to build a back-to-back averaged model by connecting them.

5.3. Back-to-Back with Railway-like Loads

The same current profile, as depicted in Figure 14, is used in the simplified back-to-back
converter; therefore, we can use the same comparison basis to validate the back-to-back
system. First, we make sure that the catenary’s side voltage remains the same as it was
when the inverter was operating alone.

From Figure 23, it can be seen that the voltage is similar, with a slight decrease in THD
from 2.3% to 1.7%. This might be due to the lack of commutations, especially since the
system with IGBTs commutes at the relatively low frequency of 320 Hz. The THD is even
lower when we investigate the rectifier side and grid currents, which tend to be around
0.5% for the three of them, as shown in Figure 24.
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Regarding a performance review, input current and output voltage must be studied
to ensure they comply with the requirements, such as those in [47] for the inverter side
and [48] for the grid side.

Regarding the grid side, IEEE Standard 519 states that harmonic currents should be,
in the worst case, less than the values given in Table 2.

Table 2. Current distortion limits for systems rated 120 V through 69 kV.

Maximum Harmonic Current Distortion, % of IL

Individual harmonic order

2 ≤ h < 11 11 ≤ h < 17 17 ≤ h < 23 23 ≤ h < 35 35 ≤ h < 50 TDD

4 2 1.5 0.6 0.3 5

To compare these values with the value from our model, we use a discrete Fourier
transformation. The main frequency is set to 50 Hz, as this is the catenary frequency we
want. The vector obtained is then normalized using the component at the desired frequency,
here 50 Hz. These values are then converted to percentages, resulting in a moving THD, as
in [46,49], with substation measurements, allowing us to compare them with the values in
Table 2.

Comparing the measured values to the standard ones, it can be seen that none of the
harmonics are over the threshold and that higher distortion occurs during the load increase,
as can be observed in Figure 25.
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Figure 25. Harmonic distortion for grid currents.

As shown in Figure 25, one curve is not grouped with the others—the curve cor-
responding to the third-rank harmonic, which oscillates around 0.5%—while the others
never go over 0.3%, completely complying with IEE 519, and this is the case for the three
phases. It can then be concluded that the rectifier part of the converter works satisfactorily,
preventing the propagation of harmonics created by the load and reducing the impact on
the power grid.

For the catenary side, the studied standard is IEC 62498-1 [47], which indicates the
amount of harmonics that is tolerated for equipment compatibility. The harmonic percent-
ages are given in Table 3.

Table 3. Compatibility levels of harmonic components.

Compatibility Levels of Odd Harmonic Components

Order of harmonic 3 5 7 9 11 13 15 17 19 21 23 25 >25

Percentage of nominal line voltage 15 8 7 6 5 4.5 4.5 4 4 4 3.5 3.5 5
(

11
h

) 1
2

Compatibility levels of even harmonic components

Order of harmonic 2 4 >6

Percentage of nominal line voltage 3 1.5 1

It should be noted that these are not the values that are imposed on the catenary
voltage; rather, they are the values under which the equipment must perform as specified.
Therefore, these values can be defined as the maximum reachable values, since they have
no impact on the equipment. With that information in mind, the voltage harmonics are
calculated the same way as the current harmonics, as shown in Figure 26.

Similar to the current spectrum, the only voltage harmonic over 1% is the third-rank
harmonic, which goes up to 0.68%, considerably below the 15% of the standard. The RMS
value of the voltage also must be considered, as it cannot have variation higher than 20%.
The results of the simulation have a variation of 0.12%, which fits the requirements.

Finally, we can look at the power coming from the grid and the power needed by the
trains to ensure improved power quality. Both sides of the system are depicted in Figure 27.

As can be observed from Figure 27, the reactive power generated by the trains is
almost brought to zero on the rectifier side, protecting the grid from power fluctuations
induced by thyristor trains.
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6. Conclusions

This paper evaluates the feasibility of using a back-to-back converter to power 25 kV–50 Hz
railway electrical networks with industrial constraints. We demonstrate that both parts
of the converter work separately and provide satisfactory results for grid current and
catenary voltage. The connection of the two converters allows the creation of a back-to-back
converter that combines the benefits of both architectures.

The last part of this work shows promising results for power quality improvement
of railway electrical networks. Eliminating harmonic components can indeed increase the
reliability of the installation and reduce the impact on the distribution grid, thus improving
the implementation of decentralized means of production. It also shows that this topology
can support high power variations, which can be a key point in places where multiple
trains are powered at the same time, such as train stations.

It should be noted that the performance can be improved since the model does not
take into account the switching frequency of the IGBTs, since improving their switching
frequency also increases the power quality as well as losses. Therefore, further research
must be conducted to find a compromise between the gain coming from the power quality
improvement and the increased losses. It would then be possible to study only a part of
the converter using a full model while using a simplified model for the other part. This
configuration would allow us to focus on specific events such as a drop in grid voltage,
resonance issues, short circuits on the catenary side or even submodule faults in one side of
the converter or in another converter connecter through the catenary, the grid or both.
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