Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (54)

Search Parameters:
Keywords = cascade H-bridge (CHB)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 9836 KiB  
Article
Cascaded H-Bridge Multilevel Converter Topology for a PV Connected to a Medium-Voltage Grid
by Hammad Alnuman, Essam Hussain, Mokhtar Aly, Emad M. Ahmed and Ahmed Alshahir
Machines 2025, 13(7), 540; https://doi.org/10.3390/machines13070540 - 21 Jun 2025
Viewed by 405
Abstract
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work [...] Read more.
When connecting a renewable energy source to a medium-voltage grid, it has to fulfil grid codes and be able to work in a medium-voltage range (>10 kV). Multilevel converters (MLCs) are recognized for their low total harmonic distortion (THD) and ability to work at high voltage compared to other converter types, making them ideal for applications connected to medium-voltage grids whilst being compliant with grid codes and voltage ratings. Cascaded H-bridge multilevel converters (CHBs-MLC) are a type of MLC topology, and they does not need any capacitors or diodes for clamping like other MLC topologies. One of the problems in these types of converters involves the double-frequency harmonics in the DC linking voltage and power, which can increase the size of the capacitors and converters. The use of line frequency transformers for isolation is another factor that increases the system’s size. This paper proposes an isolated CHBs-MLC topology that effectively overcomes double-line frequency harmonics and offers isolation. In the proposed topology, each DC source (renewable energy source) supplies a three-phase load rather than a single-phase load that is seen in conventional MLCs. This is achieved by employing a multi-winding high-frequency transformer (HFT). The primary winding consists of a winding connected to the DC sources. The secondary windings consist of three windings, each supplying one phase of the load. This configuration reduces the DC voltage link ripples, thus improving the power quality. Photovoltaic (PV) renewable energy sources are considered as the DC sources. A case study of a 1.0 MW and 13.8 kV photovoltaic (PV) system is presented, considering two scenarios: variations in solar irradiation and 25% partial panel shedding. The simulations and design results show the benefits of the proposed topology, including a seven-fold reduction in capacitor volume, a 2.7-fold reduction in transformer core volume, a 50% decrease in the current THD, and a 30% reduction in the voltage THD compared to conventional MLCs. The main challenge of the proposed topology is the use of more switches compared to conventional MLCs. However, with advancing technology, the cost is expected to decrease over time. Full article
(This article belongs to the Special Issue Power Converters: Topology, Control, Reliability, and Applications)
Show Figures

Figure 1

24 pages, 7962 KiB  
Article
A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method
by Sofia Lemssaddak, Abdelhafid Ait Elmahjoub, Mohamed Tabaa, Adnane El-Alami and Mourad Zegrari
Energies 2025, 18(13), 3227; https://doi.org/10.3390/en18133227 - 20 Jun 2025
Cited by 1 | Viewed by 502
Abstract
Traditional multilevel inverter topologies, such FC, NPC, and CHB, have a few significant disadvantages. They need a great number of parts, which raises the complexity, expense, and switching losses. Furthermore, their intricate control schemes make voltage balancing and synchronization challenging. Lastly, under some [...] Read more.
Traditional multilevel inverter topologies, such FC, NPC, and CHB, have a few significant disadvantages. They need a great number of parts, which raises the complexity, expense, and switching losses. Furthermore, their intricate control schemes make voltage balancing and synchronization challenging. Lastly, under some circumstances, they experience severe harmonic distortion, necessitating the inclusion of expensive filters to enhance signal quality. This paper proposes a novel multilevel converter topology that uses the phase-disposition PWM (PD-PWM) technique to control a 19-level output. This new configuration maintains performance comparable to the CHB-MLI reference while using fewer switches, simplifying control, and reducing costs. Our approach is based on extensive simulations conducted in the MATLAB Simulink environment, with results compared to the CHB-MLI. A low-pass filter is added to improve the output voltage quality, reducing the THD% to 1.33%. This strategy offers several advantages, including simpler control, lower costs, increased reliability, and higher-quality output. The system was replicated using MATLAB Simulink and validated through hardware-in-the-loop (HIL) testing. The HIL method ensures real-world testing without causing damage to the hardware. The integrated system includes sensors and necessary hardware for a comprehensive energy management solution. Full article
Show Figures

Figure 1

25 pages, 12348 KiB  
Article
A Novel Modified Delta-Connected CHB Multilevel Inverter with Improved Line–Line Voltage Levels
by Abdullah M. Noman
Electronics 2025, 14(9), 1711; https://doi.org/10.3390/electronics14091711 - 23 Apr 2025
Viewed by 518
Abstract
Numerous cascaded inverter configurations have been developed to generate higher voltage levels, thereby improving performance and lowering costs. Comparing conventional delta-connected cascaded H-bridge (CHB) multilevel inverters to star-connected CHB multilevel inverters reveals a disadvantage. In conventional delta-connected CHB multilevel inverters, more switches are [...] Read more.
Numerous cascaded inverter configurations have been developed to generate higher voltage levels, thereby improving performance and lowering costs. Comparing conventional delta-connected cascaded H-bridge (CHB) multilevel inverters to star-connected CHB multilevel inverters reveals a disadvantage. In conventional delta-connected CHB multilevel inverters, more switches are unavoidably needed to achieve the same line-to-line grid voltage, since more H-bridges cascaded in series are required than in a star-connected CHB. This paper presents a modified topology based on the delta-connected CHB multilevel configuration to provide the same number of line-to-line voltage levels as a star-connected CHB, using an equivalent number of switches. The number of switches in the proposed multilevel inverter is decreased compared to conventional delta-connected CHB MLIs at the same voltage levels. The mathematical modeling of the proposed topology and the simulation results using a fixed load and a PV-grid connection are provided to validate the efficacy and dependability of the proposed topology. To validate the usefulness of the proposed configuration, it was practically implemented in the laboratory. Data acquisition and generation of gating signals to fire the switches were implemented using a MicroLabBox real-time controller. The prototype was examined under a resistive–inductive load and tested under different modulation indices. To demonstrate the effectiveness and the functionality of the topology, the experimental results are also provided. Full article
(This article belongs to the Special Issue Power Electronics in Renewable Systems)
Show Figures

Figure 1

16 pages, 3818 KiB  
Article
Design and Control of an Enhanced Grid-Tied PV CHB Inverter
by Marino Coppola, Adolfo Dannier, Emanuele Fedele, Gerardo Saggese and Pierluigi Guerriero
Energies 2025, 18(8), 2056; https://doi.org/10.3390/en18082056 - 17 Apr 2025
Cited by 1 | Viewed by 403
Abstract
This paper deals with the design and control of an enhanced grid-tied photovoltaic (PV) cascaded H-Bridge (CHB) inverter, which suffers from issues related to operation in the overmodulation region in the case of a deep mismatch configuration of PV generators (PVGs). This can [...] Read more.
This paper deals with the design and control of an enhanced grid-tied photovoltaic (PV) cascaded H-Bridge (CHB) inverter, which suffers from issues related to operation in the overmodulation region in the case of a deep mismatch configuration of PV generators (PVGs). This can lead to reduced system performance in terms of maximum power point tracking (MPPT) efficiency, or even instability (i.e., a lack of control action). The proposed solution is to insert into the cascade a power cell fed by a battery energy storage system (BESS) with the aim of providing an additional power contribution. The latter is useful to reduce the modulation index of the cell, delivering more power than the others when a preset threshold is crossed. Moreover, a suitable hybrid modulation method is used to achieve the desired result. A simulated performance in a PLECS environment proves the viability of the proposed solution and the effectiveness of the adopted control strategy. Full article
Show Figures

Figure 1

22 pages, 9823 KiB  
Article
HIL-Based Fault-Tolerant Vector Space Decomposition Control for a Six-Phase PMSM Fed by a Five-Level CHB Converter
by Mona Shayeghan, Marco Di Benedetto, Alessandro Lidozzi and Luca Solero
Energies 2025, 18(3), 507; https://doi.org/10.3390/en18030507 - 23 Jan 2025
Cited by 2 | Viewed by 1338
Abstract
The growing demand for higher reliability and efficiency in modern electric drives, coupled with the increasing adoption of multi-phase machines, has necessitated advancements in fault-tolerant control strategies. This paper presents a fault tolerance analysis for a six-phase permanent magnet synchronous machine (PMSM) connected [...] Read more.
The growing demand for higher reliability and efficiency in modern electric drives, coupled with the increasing adoption of multi-phase machines, has necessitated advancements in fault-tolerant control strategies. This paper presents a fault tolerance analysis for a six-phase permanent magnet synchronous machine (PMSM) connected to a five-level cascaded H-bridge converter, employing a level-shift pulse width modulation (LSPWM) technique. Unlike existing strategies, this work integrates a unique combination of three key innovations: first, a fault detection mechanism capable of identifying faults in both machine phases and inverter legs with high precision; second, an open-circuit fault compensation strategy that dynamically reconfigures the faulty inverter phase leg into a two-level topology to reduce losses and preserve healthy switches; and third, a modified closed-loop control method designed specifically to mitigate the adverse effects of short-circuit faults while maintaining system stability. The proposed approach is validated through rigorous simulations in Simulink and Hardware-in-the-Loop (HIL) tests, demonstrating its robustness and applicability in high-reliability applications. Full article
Show Figures

Figure 1

22 pages, 9371 KiB  
Article
Single-Phase Transformerless Three-Level PV Inverter in CHB Configuration
by Wojciech Kołodziejski, Jacek Jasielski, Witold Machowski, Juliusz Godek and Grzegorz Szerszeń
Electronics 2025, 14(2), 364; https://doi.org/10.3390/electronics14020364 - 17 Jan 2025
Cited by 1 | Viewed by 1123
Abstract
The paper proposes an original single-phase transformerless three-level (S-PT) photovoltaic (PV) inverter in the cascade H bridge (CHB) configuration. The DC-link voltage of the inverter is created by two serial voltage sources with a voltage twice as low as the DC-link voltage. An [...] Read more.
The paper proposes an original single-phase transformerless three-level (S-PT) photovoltaic (PV) inverter in the cascade H bridge (CHB) configuration. The DC-link voltage of the inverter is created by two serial voltage sources with a voltage twice as low as the DC-link voltage. An appropriate VCC DC-link voltage is generated by a two-phase DC-DC boost converter, fed from the string panel output at a level determined by the maximum power point tracking (MPPT) algorithm. Two symmetrical sources with VCC/2 are formed by a divider of two series-connected capacitors of large and the same capacitance. The common mode (CM) voltage of the proposed inverter is constant, and the voltage stresses across all switches, diodes and gate drive circuits are half of the DC-link voltage. The principles of operation of the S-PT inverter, an implementation of a complete gate control system with galvanic isolation for all IGBTs, are also presented. The proposed inverter topologies have been implemented using high-speed IGBTs and simulated in PSPICE, as well as being experimentally validated. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

16 pages, 3485 KiB  
Article
Multisampling with Sigma-Delta ADCs for Medium-Voltage Cascaded H-Bridge Converters
by Oscar Andrés Montes, David Dadzie, Srdjan Lukic and Hao Tu
Energies 2024, 17(23), 6156; https://doi.org/10.3390/en17236156 - 6 Dec 2024
Viewed by 847
Abstract
The control of medium-voltage cascaded H-bridge (CHB) converters demands precise, high-bandwidth, low-latency, and isolated measurements. Traditional analog-to-digital converters (ADCs) can facilitate multisampling methods to meet these requirements but do not provide the high-voltage galvanic isolation that may be necessary in a system operating [...] Read more.
The control of medium-voltage cascaded H-bridge (CHB) converters demands precise, high-bandwidth, low-latency, and isolated measurements. Traditional analog-to-digital converters (ADCs) can facilitate multisampling methods to meet these requirements but do not provide the high-voltage galvanic isolation that may be necessary in a system operating at medium voltage. Sigma-Delta ADCs (SD-ADCs) present a promising alternative due to their superior noise rejection capabilities and direct integration with the optical fiber interface. However, the inherent latency associated with SD-ADCs, stemming from their operating principles, poses challenges when integrating them with multisampling methods. This paper analyzes the integration of multisampling techniques with SD-ADCs for medium-voltage CHB converter control. First, the impact of SD-ADC-induced delays on the control system is elucidated from the passivity perspective. Second, the practical implementation of multisampling with SD-ADCs is discussed in detail. Finally, experimental results from a 2400 Vrms medium-voltage CHB converter are presented to validate the analysis and illustrate the effectiveness of the proposed implementation. Full article
Show Figures

Figure 1

15 pages, 9563 KiB  
Article
Research on Boost-Type Cascaded H-Bridge Inverter and Its Power Control in Photovoltaic Power Generation System
by Jiayu Kang, Miao Yu, Boyang Sun, Yongchao Xiao and Baoquan Liu
Electronics 2024, 13(14), 2819; https://doi.org/10.3390/electronics13142819 - 18 Jul 2024
Cited by 1 | Viewed by 1476
Abstract
The cascaded H-bridge (CHB) inverter has become pivotal in grid-connected photovoltaic (PV) systems owing to its numerous benefits. Typically, DC–DC converters are employed to boost the input voltage in grid-connected systems to meet the grid’s higher voltage requirements, but this approach increases equipment [...] Read more.
The cascaded H-bridge (CHB) inverter has become pivotal in grid-connected photovoltaic (PV) systems owing to its numerous benefits. Typically, DC–DC converters are employed to boost the input voltage in grid-connected systems to meet the grid’s higher voltage requirements, but this approach increases equipment size and cost. To enhance inverter efficiency, this paper proposes a boost-type, three-phase CHB PV grid-connected inverter. This design can raise the input voltage and satisfy grid requirements with only a few additional components. Additionally, PV environmental fluctuations can cause variations in PV power generation, leading to a power imbalance in the inverter and potentially affecting the stability of the PV system. Based on this, we consider grid voltage fluctuations induced by unbalanced power output from the inverter and propose an improved control method based on the superposition of zero-sequence components. Finally, we construct a simulation model and conduct experimental verification using the MATLAB/Simulink platform. The validation results demonstrate that this topology reduces equipment volume and effectively enhances the efficiency of PV power generation systems. Furthermore, the designed control method ensures system stability while effectively mitigating power imbalances caused by PV module and grid voltage fluctuations. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

17 pages, 12432 KiB  
Article
A H-Bridge-Multiplexing-Based Novel Power Electronic Transformer
by Bingbing Hou, Yan Li, Zhanyang Yu and Yun Teng
Electronics 2024, 13(1), 22; https://doi.org/10.3390/electronics13010022 - 20 Dec 2023
Cited by 1 | Viewed by 1443
Abstract
Cascaded H-bridge power electronic transformers (CHB-PET) play a pivotal role in distribution grids and their efficient operation. The input series and output parallel (ISOP) configurations result in a huge number of power switching devices, high-frequency transformers (HFT), and capacitors in high-voltage, high-capacity CHB-PET, [...] Read more.
Cascaded H-bridge power electronic transformers (CHB-PET) play a pivotal role in distribution grids and their efficient operation. The input series and output parallel (ISOP) configurations result in a huge number of power switching devices, high-frequency transformers (HFT), and capacitors in high-voltage, high-capacity CHB-PET, leading to the need for high hardware costs and huge-sized CHB-PET, which further poses a significant challenge to the engineering feasibility and marketability of the CHB-PET. To address these issues, a CHB-PET topology is proposed in this paper. The novel topology exploits the concept of multi-frequency modulation to achieve power decoupling and power unit multiplexing through reasonable LC resonant frequency selection, which optimizes the ISOP structure and ultimately reduces the hardware cost and size of the CHB-PET. In this study, the effectiveness of reducing the number of power switching devices and HFT is firstly analyzed, and after describing its working principle, the control strategy of each power conversion link of PET is discussed before the correctness and effectiveness of the CHB-PET topology and control strategy proposed in this paper are verified via simulation. Full article
Show Figures

Figure 1

17 pages, 1520 KiB  
Article
An Optimal Strategy for Submodule Capacitance Sizing of Cascaded H-Bridge-Based Active Power Filter
by Hengyi Wang and Fei Gao
Electronics 2023, 12(21), 4444; https://doi.org/10.3390/electronics12214444 - 29 Oct 2023
Viewed by 1425
Abstract
This paper presents capacitor dimensioning to increase a system’s power density while the converter performance for the delta-connected cascaded H-bridge (CHB) active power filter (APF) is not impaired. After comparing aluminum electrolytic capacitors with film capacitors, this paper proposes capacitance design requirements for [...] Read more.
This paper presents capacitor dimensioning to increase a system’s power density while the converter performance for the delta-connected cascaded H-bridge (CHB) active power filter (APF) is not impaired. After comparing aluminum electrolytic capacitors with film capacitors, this paper proposes capacitance design requirements for film capacitors. With the help of trigonometric transformation for periodic time-varying variables, including capacitor voltages and branch voltages, the capacitance design requirements can be represented as positive univariate polynomials, the coefficients of which are with regard to the capacitance value. The optimization solver SeDuMi is then applied to determine whether a capacitance value is feasible by checking the positiveness of the polynomials. This research has very appealing theoretical and practical properties: the time-domain analysis capability for periodic variables is improved, therefore, enabling a fast computation and a broad application. Both the simulations and experimental results validate the proposed strategy. Compared with the previous work, the proposed method can result in a lower capacitance value without degrading the performance, which is beneficial for a low-cost and low-volume system. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

15 pages, 5838 KiB  
Article
Balanced Charging Algorithm for CHB in an EV Powertrain
by Filippo Gemma, Giulia Tresca, Andrea Formentini and Pericle Zanchetta
Energies 2023, 16(14), 5565; https://doi.org/10.3390/en16145565 - 23 Jul 2023
Cited by 6 | Viewed by 1712
Abstract
The scientific literature acknowledges cascaded H-bridge (CHB) converters as a viable alternative to two-level inverters in electric vehicle (EV) powertrain applications. In the context of an electric vehicle engine connected to a DC charger, this study introduces a state of charge (SOC)-governed method [...] Read more.
The scientific literature acknowledges cascaded H-bridge (CHB) converters as a viable alternative to two-level inverters in electric vehicle (EV) powertrain applications. In the context of an electric vehicle engine connected to a DC charger, this study introduces a state of charge (SOC)-governed method for charging li-ion battery modules using a cascaded H-bridge converter. The key strength of this algorithm lies in its ability to achieve balanced charging of battery modules across all three-phase submodules while simultaneously controlling the DC charger, eliminating the need for an additional intermediate converter. Moreover, the algorithm is highly customizable, allowing adaptation to various configurations involving different numbers of submodules per phase. Simulative and experimental results are presented to demonstrate the effectiveness of the proposed charging algorithm, validating its practical application. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

34 pages, 21598 KiB  
Article
A Power Quality Assessment of Electric Submersible Pumps Fed by Variable Frequency Drives under Normal and Failure Modes
by Pascal M. Lingom, Joseph Song-Manguelle, Simon Pierre Betoka-Onyama, Jean Maurice Nyobe-Yome and Mamadou Lamine Doumbia
Energies 2023, 16(13), 5121; https://doi.org/10.3390/en16135121 - 2 Jul 2023
Cited by 9 | Viewed by 3461
Abstract
This paper proposed a simplified modeling approach for a power quality (PQ) assessment of Electric Submersible Pumps (ESP) systems supplied by the two-level, the neutral-point-clamped three-level, and the cascaded H-bridge (CHB) multilevel inverter VFD topologies. The VFD switching function models and their analytical [...] Read more.
This paper proposed a simplified modeling approach for a power quality (PQ) assessment of Electric Submersible Pumps (ESP) systems supplied by the two-level, the neutral-point-clamped three-level, and the cascaded H-bridge (CHB) multilevel inverter VFD topologies. The VFD switching function models and their analytical expressions are proposed to understand how they can create high-frequency components that might excite the resonance mode in a transmission cable or a rotating shaft system. Voltage, current, and motor airgap torque harmonics induced by each VFD topology in a balanced operation mode are derived and correlated to the PWM carrier and motor operating frequencies. The motor airgap harmonics are calculated based on Concordia’s transformation of voltages and currents in αβ-plan. These harmonic components are represented in the form of Campbell diagrams. An analysis of harmonics under unbalanced conditions was also conducted in a CHB VFD topology-powered ESP system with failed and bypassed cells. The investigated modulation technique is a neutral-shift PWM method that enables the system to operate balanced line-line voltages even if the line-neutral voltages are unbalanced. The effects of modifying the electrical spectrum using the neutral-shift PWM method on electrical and mechanical spectra are analyzed. The results of the Matlab/Simulink-based simulation show that the proposed full ESP system model is highly accurate in both normal and failure modes. The results are consistent with theoretical predictions and are graphically shown in the time and frequency domains for easy analysis. Hybrid experimental–numerical results on a reduced-scale laboratory setup are also discussed to confirm the correctness of the suggested developments. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

15 pages, 4661 KiB  
Article
Inverter Operation Mode of a PhotoVoltaic Cascaded H-Bridge Battery Charger
by Marino Coppola, Pierluigi Guerriero, Adolfo Dannier, Santolo Daliento and Andrea Del Pizzo
Energies 2023, 16(13), 4972; https://doi.org/10.3390/en16134972 - 27 Jun 2023
Cited by 1 | Viewed by 1798
Abstract
The paper deals with a grid-connected single-phase battery charger integrated with photovoltaic generators (PVGs). The circuit topology consists of a multilevel architecture based on a Cascaded H-Bridge (CHB) rectifier. Its main task is to charge the batteries, primarily from the PVGs, by also [...] Read more.
The paper deals with a grid-connected single-phase battery charger integrated with photovoltaic generators (PVGs). The circuit topology consists of a multilevel architecture based on a Cascaded H-Bridge (CHB) rectifier. Its main task is to charge the batteries, primarily from the PVGs, by also assuring to keep their state-of-charge (SOC) balanced. Nevertheless, when the battery SOC overcomes a predefined upper limit, beyond which the charging process could be interrupted, the available PV power can no longer be transferred to the batteries. Therefore, to avoid an undesired curtailment of PV power production, this latter can be supplied to the grid by inverting the system operation. The paper shows how to achieve this result by implementing a dedicated control action based on a multi-step procedure. Numerical investigations are carried out on a 19-level CHB converter implemented in the PLECS environment to validate the feasibility and effectiveness of the proposed control technique. Full article
Show Figures

Figure 1

25 pages, 3985 KiB  
Article
Comparison between a Cascaded H-Bridge and a Conventional H-Bridge for a 5-kW Grid-Tied Solar Inverter
by Thibault Bertin, Ghislain Despesse and Remy Thomas
Electronics 2023, 12(8), 1929; https://doi.org/10.3390/electronics12081929 - 19 Apr 2023
Cited by 10 | Viewed by 3150
Abstract
This paper compares the cost and efficiency of two inverter topologies for a 5-kW grid-connected solar inverter application: the Conventional H-Bridge Inverter (CHB) and the Cascaded H-Bridge Multilevel Inverter (CHBMLI). Emphasis is put on power switches and passive elements with a detailed study [...] Read more.
This paper compares the cost and efficiency of two inverter topologies for a 5-kW grid-connected solar inverter application: the Conventional H-Bridge Inverter (CHB) and the Cascaded H-Bridge Multilevel Inverter (CHBMLI). Emphasis is put on power switches and passive elements with a detailed study of the losses. Both designs respect the same constraints (cost, efficiency, and junction temperature of the transistors) to ensure a fair comparison between both topologies. The work highlights the important parameters when choosing the components (MOSFETs, capacitors, and magnetic cores for the inductors). The DC-link voltage ripple and the output AC current ripple are the key parameters for the design of the passive elements (capacitors and inductors). On top of that, the transistors MOSFETs are chosen, in both topologies, to limit the conduction losses (by selecting the Rdson) and the switching losses (by selecting the Qrr and dv/dt). Real components are picked in order to make the comparison as complete as possible. Numerical simulations are performed using the MATLAB platform. All equations and parameters are provided. A CHBMLI prototype was built with eight independent H-Bridges to validate the proposed design with thermal and efficiency measurements. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

21 pages, 3918 KiB  
Article
An Efficacious Modulation Gambit Using Fewer Switches in a Multilevel Inverter
by Sathyavani Bandela, Tara Kalyani Sandipamu, Hari Priya Vemuganti, Shriram S. Rangarajan, E. Randolph Collins and Tomonobu Senjyu
Sustainability 2023, 15(4), 3326; https://doi.org/10.3390/su15043326 - 11 Feb 2023
Viewed by 1557
Abstract
Since multicarrier based modulation techniques are simple to implement and can be used to control inverters at any level, they are frequently employed in modern multilevel inverters in high or medium power applications. When considering the many multi-carrier modulation techniques available, level-shifted pulse-width [...] Read more.
Since multicarrier based modulation techniques are simple to implement and can be used to control inverters at any level, they are frequently employed in modern multilevel inverters in high or medium power applications. When considering the many multi-carrier modulation techniques available, level-shifted pulse-width modulation (LSPWM) is often chosen for its superior harmonic performance. However, this traditional LSPWM method is not suitable for controlling newly proposed reduced switch count (RSC) MLI topologies. The research work in this paper seeks to elucidate the reasons why conventional LSPWM is ineffective in controlling RSC MLI topologies, and proposes a generalized LSPWM system based on logical expressions. The proposed method can be utilized with symmetrical and asymmetrical RSC MLIs, and can be extended to an arbitrary number of levels. The merit of the proposed method for controlling any RSC configuration with satisfactory line-voltage THD (≈1.8%) performance (identical to conventional LSPWM) was evaluated using multiple 13-level asymmetrical RSC-MLI topologies. A MATLAB model was developed and then subjected to simulation and real-world testing to prove the effectiveness of the proposed modulation strategy. Full article
Show Figures

Figure 1

Back to TopTop