Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = cartographic visualization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3911 KB  
Article
Study Area Map Generator: A Web-Based Shiny Application for Generating Country-Level Study Area Maps for Scientific Publications
by Cesar Ivan Alvarez, Juan Gabriel Mollocana-Lara, Izar Sinde-González and Ana Claudia Teodoro
ISPRS Int. J. Geo-Inf. 2025, 14(10), 387; https://doi.org/10.3390/ijgi14100387 - 3 Oct 2025
Viewed by 912
Abstract
The increasing demand for high-quality geospatial visualizations in scientific publications has highlighted the need for accessible and standardized tools that support reproducible research. Researchers from various disciplines—often without expertise in Geographic Information Systems (GIS)—frequently require a map figure to locate their study area. [...] Read more.
The increasing demand for high-quality geospatial visualizations in scientific publications has highlighted the need for accessible and standardized tools that support reproducible research. Researchers from various disciplines—often without expertise in Geographic Information Systems (GIS)—frequently require a map figure to locate their study area. This paper presents the Study Area Map Generator, a web-based application developed using Shiny for Python, designed to automate the creation of country- and city-level study area maps. The tool integrates geospatial data processing, cartographic rendering, and user-friendly customization features within a browser-based interface. It enables users—regardless of GIS proficiency—to generate publication-ready maps with customizable titles, basemaps, and inset views. A usability survey involving 92 participants from diverse professional and geographic-based backgrounds revealed high levels of satisfaction, ease of use, and perceived usefulness, with no significant differences across GIS experience levels. The application has already been adopted in academic and policy contexts, particularly in low-resource settings, demonstrating its potential to democratize access to cartographic tools. By aligning with open science principles and supporting reproducible workflows, the Study Area Map Generator contributes to more equitable and efficient scientific communication. The application is freely available online. Future developments include support for subnational units, thematic overlays, multilingual interfaces, and enhanced export options. Full article
(This article belongs to the Special Issue Cartography and Geovisual Analytics)
Show Figures

Figure 1

18 pages, 81615 KB  
Article
Experiments of Network Literacy for Urban Designers: Bridging Information Design and Spatial Morphology
by Dario Rodighiero
Land 2025, 14(9), 1901; https://doi.org/10.3390/land14091901 - 17 Sep 2025
Viewed by 616
Abstract
Urban morphology has long been studied through typologies, spatial configurations, and historical change, yet cities are not static artifacts but dynamic environments continually reshaped by people, infrastructures, and politics. This article brings Actor–Network Theory (ANT) into dialogue with Aldo Rossi’s notion of the [...] Read more.
Urban morphology has long been studied through typologies, spatial configurations, and historical change, yet cities are not static artifacts but dynamic environments continually reshaped by people, infrastructures, and politics. This article brings Actor–Network Theory (ANT) into dialogue with Aldo Rossi’s notion of the locus to rethink urban design as both enduring form and relational process. Building on Manuel Lima’s taxonomy, the study develops a methodological workflow that translates street networks into visualizations, pairing embeddings with topographic maps to highlight structural patterns. Applied to a comparative set of cities, the analysis distinguishes three broad morphological tendencies—archetypal, geometrical, and relational—each reflecting different logics of urban organization. The results show how scale and connectivity condition the interpretability of embeddings, revealing both alignments and divergences between cartographic and topological representations. Beyond empirical findings, the article frames network literacy as a meeting ground for design theory, science and technology studies, and information visualization. It concludes by proposing that advancing urban morphology today requires not only new computational tools but also sustained interdisciplinary collaboration across design, urban studies, and data science. Full article
(This article belongs to the Special Issue Urban Morphology: A Perspective from Space (Second Edition))
Show Figures

Figure 1

25 pages, 3061 KB  
Article
From Wind to Smoke: A Unified WebGIS Platform for Wildfire Simulation and Visualization
by Saray Martínez-Lastras, José Manuel Iglesias, David Cifuentes-Jimenez, María Isabel Asensio and Diego González-Aguilera
Fire 2025, 8(9), 366; https://doi.org/10.3390/fire8090366 - 17 Sep 2025
Viewed by 641
Abstract
A unified WebGIS platform for wildfire simulation and visualization is presented, integrating three coupled physical models: HDWind for wind field computation, PhyFire for wildfire spread, and PhyNX for smoke plume dispersion. The system includes preprocessing and postprocessing scripts that enable the efficient integration [...] Read more.
A unified WebGIS platform for wildfire simulation and visualization is presented, integrating three coupled physical models: HDWind for wind field computation, PhyFire for wildfire spread, and PhyNX for smoke plume dispersion. The system includes preprocessing and postprocessing scripts that enable the efficient integration of meteorological and cartographic data and support the visualization of outputs such as burned areas, wind and smoke fields, and emission estimates. The platform is deployed through a WebGIS interface that supports both decoupled and coupled simulations, providing operational flexibility and reducing computational demands when needed. A real wildfire scenario is simulated to demonstrate system capabilities. The case study highlights the platform’s applicability in operational contexts, reinforcing its potential to evolve into an accessible and user-oriented environmental decision support system for wildfire management. Full article
Show Figures

Graphical abstract

19 pages, 5081 KB  
Article
Advanced Division of Search Areas for Missing Persons in Non-Urban Environments
by Kateřina Růžičková, Jan Růžička, Kateřina Skřejpková, Helena Chaloupková and Ivona Svobodová
ISPRS Int. J. Geo-Inf. 2025, 14(9), 352; https://doi.org/10.3390/ijgi14090352 - 15 Sep 2025
Viewed by 479
Abstract
Dividing large areas into smaller sub-areas is a common practice across many disciplines, with specific requirements determined by their intended use. This study focuses on preparing search sectors for locating missing persons in non-urban environments. In such settings, search teams must be assigned [...] Read more.
Dividing large areas into smaller sub-areas is a common practice across many disciplines, with specific requirements determined by their intended use. This study focuses on preparing search sectors for locating missing persons in non-urban environments. In such settings, search teams must be assigned sufficiently large yet homogeneous sectors that allow visual orientation even without GNSS. While general search strategies differ in their approach to area coverage, rural and wilderness environments pose unique challenges that demand a systematic method to ensure both navigability and efficiency. To address this, we propose a land-use-based approach that incorporates the artificial extension of linear geo-features to subdivide large polygons. The methodology was first applied to regions of the Czech Republic in 2020 and refined with advanced settings in 2023. Introducing the step for subdividing extensive homogeneous polygons significantly improved outcomes, allowing the method to generate search sectors of the desired size for 86% of the territory in 2020 and 91% in 2023. The main limitation lies in the reliance on cartographic data, which may omit fine details critical for field navigation. Full article
Show Figures

Figure 1

27 pages, 5349 KB  
Article
Proportional Symbol Maps: Value-Scale Types, Online Value-Scale Generator and User Perspectives
by Radek Barvir, Martin Holub and Alena Vondrakova
ISPRS Int. J. Geo-Inf. 2025, 14(9), 340; https://doi.org/10.3390/ijgi14090340 - 1 Sep 2025
Viewed by 1275
Abstract
Proportional symbol maps are a frequently used method of thematic cartography. Using an intuitive principle—the larger, the more—provides a simple and precise way of visualizing quantity in maps using geographic information systems (GIS). However, none of the current GIS software provides a proper [...] Read more.
Proportional symbol maps are a frequently used method of thematic cartography. Using an intuitive principle—the larger, the more—provides a simple and precise way of visualizing quantity in maps using geographic information systems (GIS). However, none of the current GIS software provides a proper map legend that could be used to interpret exact phenomenon quantity values from the map in reverse. Cartographers have been designing value scales manually for such a possibility of interpretation. Eventually, they preferred to resign to the accuracy of the interpretation and use the legend offered by the software. The paper describes the development of an easy-to-use online value scale generator for static maps, aiming to eliminate the time-consuming process to make map design more efficient while preserving the precision of cartographic visualization and its subsequent interpretation. The tool consists of a free web platform performing all necessary calculations and rendering an appropriate value scale based on user-defined input parameters. This functionality is performed for most typically used symbol shapes as well as for custom-design shapes provided by the user in SVG vector graphics. The output is then returned in a vector SVG and PDF file format to be used directly in a map legend or possibly edited in graphic software before such a step. The presented tool is therefore independent of which software was used for map design. Within the research, two user experiments were performed to compare generated value scales with simple legends generated in GIS and to gather insights from cartography experts. Full article
Show Figures

Figure 1

24 pages, 2716 KB  
Article
Interactive Indoor Audio-Map as a Digital Equivalent of the Tactile Map
by Dariusz Gotlib, Krzysztof Lipka and Hubert Świech
Appl. Sci. 2025, 15(16), 8975; https://doi.org/10.3390/app15168975 - 14 Aug 2025
Viewed by 644
Abstract
There are still relatively few applications that serve the function of a traditional tactile map, allowing visually impaired individuals to explore a digital map by sliding their fingers across it. Moreover, existing technological solutions either lack a spatial learning mode or provide only [...] Read more.
There are still relatively few applications that serve the function of a traditional tactile map, allowing visually impaired individuals to explore a digital map by sliding their fingers across it. Moreover, existing technological solutions either lack a spatial learning mode or provide only limited functionality, focusing primarily on navigating to a selected destination. To address these gaps, the authors have proposed an original concept for an indoor mobile application that enables map exploration by sliding a finger across the smartphone screen, using audio spatial descriptions as the primary medium for conveying information. The spatial descriptions are hierarchical and contextual, focusing on anchoring them in space and indicating their extent of influence. The basis for data management and analysis is GIS technology. The application is designed to support spatial orientation during user interaction with the digital map. The research emphasis was on creating an effective cartographic communication message, utilizing voice-based delivery of spatial information stored in a virtual building model (within a database) and tags placed in real-world buildings. Techniques such as Text-to-Speech, TalkBack, QRCode technologies were employed to achieve this. Preliminary tests conducted with both blind and sighted people demonstrated the usefulness of the proposed concept. The proposed solution supporting people with disabilities can also be useful and attractive to all users of navigation applications and may affect the development of such applications. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 886 KB  
Article
Predicting Cartographic Symbol Location with Eye-Tracking Data and Machine Learning Approach
by Paweł Cybulski
J. Eye Mov. Res. 2025, 18(4), 35; https://doi.org/10.3390/jemr18040035 - 7 Aug 2025
Viewed by 480
Abstract
Visual search is a core component of map reading, influenced by both cartographic design and human perceptual processes. This study investigates whether the location of a target cartographic symbol—central or peripheral—can be predicted using eye-tracking data and machine learning techniques. Two datasets were [...] Read more.
Visual search is a core component of map reading, influenced by both cartographic design and human perceptual processes. This study investigates whether the location of a target cartographic symbol—central or peripheral—can be predicted using eye-tracking data and machine learning techniques. Two datasets were analyzed, each derived from separate studies involving visual search tasks with varying map characteristics. A comprehensive set of eye movement features, including fixation duration, saccade amplitude, and gaze dispersion, were extracted and standardized. Feature selection and polynomial interaction terms were applied to enhance model performance. Twelve supervised classification algorithms were tested, including Random Forest, Gradient Boosting, and Support Vector Machines. The models were evaluated using accuracy, precision, recall, F1-score, and ROC-AUC. Results show that models trained on the first dataset achieved higher accuracy and class separation, with AdaBoost and Gradient Boosting performing best (accuracy = 0.822; ROC-AUC > 0.86). In contrast, the second dataset presented greater classification challenges, despite high recall in some models. Feature importance analysis revealed that fixation standard deviation as a proxy for gaze dispersion, particularly along the vertical axis, was the most predictive metric. These findings suggest that gaze behavior can reliably indicate the spatial focus of visual search, providing valuable insight for the development of adaptive, gaze-aware cartographic interfaces. Full article
Show Figures

Figure 1

19 pages, 4722 KB  
Article
Effect of Dynamic Point Symbol Visual Coding on User Search Performance in Map-Based Visualizations
by Weijia Ge, Jing Zhang, Xingjian Shi, Wenzhe Tang and Longlong Qian
ISPRS Int. J. Geo-Inf. 2025, 14(8), 305; https://doi.org/10.3390/ijgi14080305 - 5 Aug 2025
Viewed by 735
Abstract
As geographic information visualization continues to gain prominence, dynamic symbols are increasingly employed in map-based applications. However, the optimal visual coding for dynamic point symbols—particularly concerning encoding type, animation rate, and modulation area—remains underexplored. This study examines how these factors influence user performance [...] Read more.
As geographic information visualization continues to gain prominence, dynamic symbols are increasingly employed in map-based applications. However, the optimal visual coding for dynamic point symbols—particularly concerning encoding type, animation rate, and modulation area—remains underexplored. This study examines how these factors influence user performance in visual search tasks through two eye-tracking experiments. Experiment 1 investigated the effects of two visual coding factors: encoding types (flashing, pulsation, and lightness modulation) and animation rates (low, medium, and high). Experiment 2 focused on the interaction between encoding types and modulation areas (fill, contour, and entire symbol) under a fixed animation rate condition. The results revealed that search performance deteriorates as the animation rate of the fastest target symbol exceeds 10 fps. Flashing and lightness modulation outperformed pulsation, and modulation areas significantly impacted efficiency and accuracy, with notable interaction effects. Based on the experimental results, three visual coding strategies are recommended for optimal performance in map-based interfaces: contour pulsation, contour flashing, and entire symbol lightness modulation. These findings provide valuable insights for optimizing the design of dynamic point symbols, contributing to improved user engagement and task performance in cartographic and geovisual applications. Full article
(This article belongs to the Topic Theories and Applications of Human-Computer Interaction)
Show Figures

Figure 1

23 pages, 22378 KB  
Article
Counter-Cartographies of Extraction: Mapping Socio-Environmental Changes Through Hybrid Geographic Information Technologies
by Mitesh Dixit, Nataša Danilović Hristić and Nebojša Stefanović
Land 2025, 14(8), 1576; https://doi.org/10.3390/land14081576 - 1 Aug 2025
Viewed by 1037
Abstract
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice [...] Read more.
This paper examines Krivelj, a copper mining village in Serbia, as a critical yet overlooked node within global extractive networks. Despite supplying copper essential for renewable energy and sustainable architecture, Krivelj experiences severe ecological disruption, forced relocations, and socio-spatial destabilization, becoming a “sacrifice zone”—an area deliberately subjected to harm for broader economic interests. Employing a hybrid methodology that combines ethnographic fieldwork with Geographic Information Systems (GISs), this study spatializes narratives of extractive violence collected from residents through walking interviews, field sketches, and annotated aerial imagery. By integrating satellite data, legal documents, environmental sensors, and lived testimonies, it uncovers the concept of “slow violence,” where incremental harm occurs through bureaucratic neglect, ambient pollution, and legal ambiguity. Critiquing the abstraction of Planetary Urbanization theory, this research employs countertopography and forensic spatial analysis to propose a counter-cartographic framework that integrates geospatial analysis with local narratives. It demonstrates how global mining finance manifests locally through tangible experiences, such as respiratory illnesses and disrupted community relationships, emphasizing the potential of counter-cartography as a tool for visualizing and contesting systemic injustice. Full article
Show Figures

Figure 1

17 pages, 11812 KB  
Article
Heritage GIS: Deep Mapping, Preserving, and Sustaining the Intangibility of Cultures and the Palimpsests of Landscape in the West of Ireland
by Charles Travis
Sustainability 2025, 17(15), 6870; https://doi.org/10.3390/su17156870 - 29 Jul 2025
Cited by 1 | Viewed by 1061
Abstract
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s [...] Read more.
This paper presents a conceptual and methodological framework for using Geographical Information Systems (GIS) to “deep map” cultural heritage sites along Ireland’s Wild Atlantic Way, with a focus on the 1588 Spanish Armada wrecks in County Kerry and archaeological landscapes in County Sligo’s “Yeats Country.” Drawing on interdisciplinary dialogues from the humanities, social sciences, and geospatial sciences, it illustrates how digital spatial technologies can excavate, preserve, and sustain intangible cultural knowledge embedded within such palimpsestic landscapes. Using MAXQDA 24 software to mine and code historical, literary, folkloric, and environmental texts, the study constructed bespoke GIS attribute tables and visualizations integrated with elevation models and open-source archaeological data. The result is a richly layered cartographic method that reveals the spectral and affective dimensions of heritage landscapes through climate, memory, literature, and spatial storytelling. By engaging with “deep mapping” and theories such as “Spectral Geography,” the research offers new avenues for sustainable heritage conservation, cultural tourism, and public education that are sensitive to both ecological and cultural resilience in the West of Ireland. Full article
Show Figures

Figure 1

17 pages, 3458 KB  
Article
Viewpoint Selection for 3D Scenes in Map Narratives
by Shichuan Liu, Yong Wang, Qing Tang and Yaoyao Han
ISPRS Int. J. Geo-Inf. 2025, 14(6), 219; https://doi.org/10.3390/ijgi14060219 - 31 May 2025
Viewed by 652
Abstract
Narrative mapping, an advanced geographic information visualization technology, presents spatial information episodically, enhancing readers’ spatial understanding and event cognition. However, during 3D scene construction, viewpoint selection is heavily reliant on the cartographer’s subjective interpretation of the event. Even with fixed-angle settings, the task [...] Read more.
Narrative mapping, an advanced geographic information visualization technology, presents spatial information episodically, enhancing readers’ spatial understanding and event cognition. However, during 3D scene construction, viewpoint selection is heavily reliant on the cartographer’s subjective interpretation of the event. Even with fixed-angle settings, the task of ensuring that selected viewpoints align with the narrative theme remains challenging. To address this, an automated viewpoint selection method constrained by narrative relevance and visual information is proposed. Narrative relevance is determined by calculating spatial distances between each element and the thematic element within the scene. Visual information is quantified by assessing the visual salience of elements as the ratio of their projected area on the view window to their total area. Pearson’s correlation coefficient is used to evaluate the relationship between visual salience and narrative relevance, serving as a constraint to construct a viewpoint fitness function that integrates the visual salience of the convex polyhedron enclosing the scene. The chaotic particle swarm optimization (CPSO) algorithm is utilized to locate the viewpoint position while maximizing the fitness function, identifying a viewpoint meeting narrative and visual salience requirements. Experimental results indicate that, compared to the maximum projected area method and fixed-value method, a higher viewpoint fitness is achieved by this approach. The narrative views generated by this method were positively recognized by approximately two-thirds of invited professionals. This process aligns effectively with narrative visualization needs, enhances 3D narrative map creation efficiency, and offers a robust strategy for viewpoint selection in 3D scene-based narrative mapping. Full article
Show Figures

Figure 1

26 pages, 10564 KB  
Article
DynaFusion-SLAM: Multi-Sensor Fusion and Dynamic Optimization of Autonomous Navigation Algorithms for Pasture-Pushing Robot
by Zhiwei Liu, Jiandong Fang and Yudong Zhao
Sensors 2025, 25(11), 3395; https://doi.org/10.3390/s25113395 - 28 May 2025
Cited by 1 | Viewed by 1208
Abstract
Aiming to address the problems of fewer related studies on autonomous navigation algorithms based on multi-sensor fusion in complex scenarios in pastures, lower degrees of fusion, and insufficient cruising accuracy of the operation path in complex outdoor environments, a multimodal autonomous navigation system [...] Read more.
Aiming to address the problems of fewer related studies on autonomous navigation algorithms based on multi-sensor fusion in complex scenarios in pastures, lower degrees of fusion, and insufficient cruising accuracy of the operation path in complex outdoor environments, a multimodal autonomous navigation system is proposed based on a loosely coupled architecture of Cartographer–RTAB-Map (real-time appearance-based mapping). Through laser-vision inertial guidance multi-sensor data fusion, the system achieves high-precision mapping and robust path planning in complex scenes. First, comparing the mainstream laser SLAM algorithms (Hector/Gmapping/Cartographer) through simulation experiments, Cartographer is found to have a significant memory efficiency advantage in large-scale scenarios and is thus chosen as the front-end odometer. Secondly, a two-way position optimization mechanism is innovatively designed: (1) When building the map, Cartographer processes the laser with IMU and odometer data to generate mileage estimations, which provide positioning compensation for RTAB-Map. (2) RTAB-Map fuses the depth camera point cloud and laser data, corrects the global position through visual closed-loop detection, and then uses 2D localization to construct a bimodal environment representation containing a 2D raster map and a 3D point cloud, achieving a complete description of the simulated ranch environment and material morphology and constructing a framework for the navigation algorithm of the pushing robot based on the two types of fused data. During navigation, the combination of RTAB-Map’s global localization and AMCL’s local localization is used to generate a smoother and robust positional attitude by fusing IMU and odometer data through the EKF algorithm. Global path planning is performed using Dijkstra’s algorithm and combined with the TEB (Timed Elastic Band) algorithm for local path planning. Finally, experimental validation is performed in a laboratory-simulated pasture environment. The results indicate that when the RTAB-Map algorithm fuses with the multi-source odometry, its performance is significantly improved in the laboratory-simulated ranch scenario, the maximum absolute value of the error of the map measurement size is narrowed from 24.908 cm to 4.456 cm, the maximum absolute value of the relative error is reduced from 6.227% to 2.025%, and the absolute value of the error at each location is significantly reduced. At the same time, the introduction of multi-source mileage fusion can effectively avoid the phenomenon of large-scale offset or drift in the process of map construction. On this basis, the robot constructs a fusion map containing a simulated pasture environment and material patterns. In the navigation accuracy test experiments, our proposed method reduces the root mean square error (RMSE) coefficient by 1.7% and Std by 2.7% compared with that of RTAB-MAP. The RMSE is reduced by 26.7% and Std by 22.8% compared to that of the AMCL algorithm. On this basis, the robot successfully traverses the six preset points, and the measured X and Y directions and the overall position errors of the six points meet the requirements of the pasture-pushing task. The robot successfully returns to the starting point after completing the task of multi-point navigation, achieving autonomous navigation of the robot. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

23 pages, 2596 KB  
Article
RouteLAND: An Integrated Method and a Geoprocessing Tool for Characterizing the Dynamic Visual Landscape Along Highways
by Loukas-Moysis Misthos and Vassilios Krassanakis
ISPRS Int. J. Geo-Inf. 2025, 14(5), 187; https://doi.org/10.3390/ijgi14050187 - 30 Apr 2025
Cited by 1 | Viewed by 1434
Abstract
Moving away from a static concept for the landscape that surrounds us, in this research article, we approach the visual landscape as a dynamic concept. Moreover, we attempt to provide an interconnection between the domains of landscape and cartography by designing maps that [...] Read more.
Moving away from a static concept for the landscape that surrounds us, in this research article, we approach the visual landscape as a dynamic concept. Moreover, we attempt to provide an interconnection between the domains of landscape and cartography by designing maps that are particularly suitable for characterizing the visible landscape and are potentially meaningful for overall landscape evaluation. Thus, the present work mainly focuses on the consecutive computation of vistas along highways, incorporating actual landscape composition—as the landscape is perceived from an egocentric perspective by observers moving along highway routes in peri-urban landscapes. To this end, we developed an integrated method and a Python (version 2.7.16) tool, named “RouteLAND”, for implementing an algorithmic geoprocessing procedure; through this geoprocessing tool, sequences of composite dynamic geospatial analyses and geometric calculations are automatically implemented. The final outputs are interactive web maps, whereby the segments of highway routes are characterized according to the dominant element of the visible landscape by employing (spatial) aggregation techniques. The developed geoprocessing tool and the generated interactive map provide a cartographic exploratory tool for summarizing the landscape character of highways in any peri-urban landscape, while hypothetically moving in a vehicle. In addition, RouteLAND can potentially aid in the assessment of existing or future highways’ scenic level and in the sustainable design of new highways based on the minimization of intrusive artificial structures’ vistas; in this sense, RouteLAND can serve as a valuable tool for landscape evaluation and sustainable spatial planning and development. Full article
Show Figures

Figure 1

18 pages, 5925 KB  
Article
Applying Methods of Exploratory Data Analysis and Methods of Modeling the Unemployment Rate in Spatial Terms in Poland
by Marek Ogryzek and Marcin Jaskulski
Appl. Sci. 2025, 15(8), 4136; https://doi.org/10.3390/app15084136 - 9 Apr 2025
Cited by 2 | Viewed by 1301
Abstract
The level of unemployment in a region can be a good illustration of its socio-economic development. The choice of the data modeling method, both in terms of spatial and time-spatial approaches depends on the results of exploratory data analysis. The aim of the [...] Read more.
The level of unemployment in a region can be a good illustration of its socio-economic development. The choice of the data modeling method, both in terms of spatial and time-spatial approaches depends on the results of exploratory data analysis. The aim of the research is to investigate which methods of GIS spatial analysis can be used for the cartographic presentation of the variability of the unemployment rate in Poland, broken down into provinces (voivodeships) and districts in terms of time and space. This goal will be achieved by performing an exploratory analysis of data on the unemployment rate in Poland for the period 2004–2022 in order to select the methods of cartographic presentation and transfer in spatial and time-spatial terms, along with selected cartographic methods in the GIS of the level of unemployment in Poland. This study, excluding data analysis based on statistical tests, focuses on examining the distribution of unemployment rates in Poland by districts and provinces from 2004 to 2022. This leads to the selection of optimal methods for the visualization and analysis of spatial data. The use of data analysis methods based on statistical tests and the examination of the distribution of data on the unemployment rate in Poland at county (district) and province (voivodeship) level for the period 2004–2022 will be performed in order to validate the results of the research. The selection of optimal methods of visualization and analysis of spatial data is intended to be a model for use in other areas of research. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

13 pages, 2806 KB  
Article
GIS-Based Dashboards as Advanced Geospatial Applications for Climate Change Education and Teaching the Future
by Rafael De Miguel González, Juan Mar-Beguería, María Sebastián López and Ondrej Kratochvíl
ISPRS Int. J. Geo-Inf. 2025, 14(2), 89; https://doi.org/10.3390/ijgi14020089 - 18 Feb 2025
Cited by 2 | Viewed by 3804
Abstract
ArcGIS Dashboard technology allows for the integration and visualization of various maps, charts, and indicators within a single interface, using databases underneath a geographic information system. The two dashboards of the European project Teaching the Future address the dual objective of (i) cartographically [...] Read more.
ArcGIS Dashboard technology allows for the integration and visualization of various maps, charts, and indicators within a single interface, using databases underneath a geographic information system. The two dashboards of the European project Teaching the Future address the dual objective of (i) cartographically displaying the evolution in four phases of climate change data experienced across the entire planet from 1954 to 2021 in vectorial cells measuring one degree of latitude by one degree of longitude and (ii) spatially representing three scenarios (low, medium, and high greenhouse gas emissions) up to the year 2100, showing potential temperature increases in those same cells. In addition to the maps, the different data and charts contribute to the understanding of anomalies relative to the average, the global increase in each selected area by zooming in on the map, and the evolution of both observed and projected data. Both dashboards represent an accurate and reliable treatment of the data, as well as a cartographic expression that is easy for map readers to understand, making them powerful resources for teaching climate change at any educational level, whether in higher education or schools and for a general audience. Full article
Show Figures

Figure 1

Back to TopTop