Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (166)

Search Parameters:
Keywords = carrier landing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2013 KiB  
Article
Can Local Industrial Policy Enhance Urban Land Green Use Efficiency? Evidence from the “Made in China 2025” National Demonstration Zone Policy
by Shoupeng Wang, Haixin Huang and Fenghua Wu
Land 2025, 14(8), 1567; https://doi.org/10.3390/land14081567 - 31 Jul 2025
Viewed by 146
Abstract
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and [...] Read more.
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and ULGUE based on panel data from 286 Chinese cities (2010–2022), employing an integrated methodology that combines the Difference-in-Differences (DID) model, Super-Efficiency Slacks-Based Measure Data Envelopment Analysis model, and ArcGIS spatial analysis techniques. The findings clearly demonstrate that the establishment of the “Made in China 2025” pilot policy significantly improves urban land green use efficiency in pilot cities, a conclusion that endures following a succession of stringent evaluations. Moreover, studying its mechanisms suggests that the pilot policy primarily enhances urban land green use efficiency by promoting industrial upgrading, accelerating technological innovation, and strengthening environmental regulations. Heterogeneity analysis further indicates that the policy effects are more significant in urban areas characterized by high manufacturing agglomeration, non-provincial capital/non-municipal status, high industrial intelligence levels, and less sophisticated industrial structure. This research not only provides valuable policy insights for China to enhance urban land green use efficiency and promote high-quality regional sustainable development but also offers meaningful references for global efforts toward advancing urban sustainability. Full article
Show Figures

Figure 1

24 pages, 3349 KiB  
Article
Effect of Damping Plate Parameters on Liquid Sloshing in Cylindrical Tanks of Offshore Launch Platforms
by Yuxin Pan, Yuanyuan Wang, Fengyuan Liu and Gang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1448; https://doi.org/10.3390/jmse13081448 - 29 Jul 2025
Viewed by 90
Abstract
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine [...] Read more.
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine environment. The complex coupling effects of wind, waves, and currents impose severe challenges upon these platforms, causing complex phenomena such as severe rocking. These phenomena pose severe threats to and significantly interfere with the stability and normal execution of offshore rocket launch operations. This study employs CFD simulation software to analyze liquid sloshing within a cylindrical tank, both with and without baffles. Following validation of the natural frequency, the analysis focuses on the suppression effect of different baffle positions and configurations on tank sloshing. The numerical simulation results indicate the following: Incorporating baffles alters the natural frequency of liquid sloshing within the tank and effectively suppresses the free surface motion. The suppression of the wave surface motion improves as the baffle is positioned closer to the free surface and as the number of perforations in the baffle increases. However, when the number of perforations exceeds a certain threshold, further increasing it yields negligible improvement in the suppression of the sloshing wave surface motion. Full article
Show Figures

Figure 1

15 pages, 7636 KiB  
Article
Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL
by Qingsong Liu, Gan Ren, Dingfu Zhou, Bo Liu and Zida Li
Appl. Sci. 2025, 15(15), 8336; https://doi.org/10.3390/app15158336 - 26 Jul 2025
Viewed by 212
Abstract
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating [...] Read more.
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating computational fluid dynamics (CFD), backpropagation (BP) neural network, and Doppler wind lidar (DWL). Firstly, taking the conceptual design aircraft carrier model as the research object, CFD numerical simulations of the ship airwake within the glide path region are carried out using the Poly-Hexcore grid and the detached eddy simulation (DES)/the Reynolds-averaged Navier–Stokes (RANS) turbulence models. Then, using the high spatial resolution ship airwake along the glide path obtained from steady RANS computations under different inflow conditions as a sample dataset, the BP neural network prediction models were trained and optimized. Along the ideal glide path within 200 m behind the stern, the correlation coefficients between the predicted results of the BP neural network and the headwind, crosswind, and vertical wind of the testing samples exceeded 0.95, 0.91, and 0.82, respectively. Finally, using the inflow speed and direction with high temporal resolution from the bow direction obtained by the shipborne DWL as input, the BP prediction models can achieve accurate prediction of the 3D ship airwake along the glide path with high spatiotemporal resolution (3 m, 3 Hz). Full article
Show Figures

Figure 1

24 pages, 7034 KiB  
Article
Transient Simulation of Aerodynamic Load Variations on Carrier-Based Aircraft During Recovery in Carrier Airwake
by Xiaoxi Yang, Baokuan Li, Yang Nie, Zhibo Ren and Fangchao Tian
Aerospace 2025, 12(8), 656; https://doi.org/10.3390/aerospace12080656 - 23 Jul 2025
Viewed by 195
Abstract
Carrier-based aircraft recovery is a critical and challenging phase in maritime operations due to the turbulent airwake generated by aircraft carriers, which significantly increases the workload of flight control systems and pilots. This study investigates the airwake effects of an aircraft carrier under [...] Read more.
Carrier-based aircraft recovery is a critical and challenging phase in maritime operations due to the turbulent airwake generated by aircraft carriers, which significantly increases the workload of flight control systems and pilots. This study investigates the airwake effects of an aircraft carrier under varying wind direction conditions. A high-fidelity mathematical model combining delayed detached-eddy simulation (DDES) with the overset grid method was developed to analyze key flow characteristics, including upwash, downwash, and lateral recirculation. The model ensures precise control of aircraft speed and trajectory during landing while maintaining numerical stability through rigorous mesh optimization. The results indicate that the minimum lift occurs in the downwash region aft of the deck, marking it as the most hazardous zone during landing. Aircraft above the deck are primarily influenced by ground effects, causing a sudden increase in lift that complicates arresting wire engagement. Additionally, the side force on the aircraft undergoes an abrupt reversal during the approach phase. The dual overset mesh technique effectively captures the coupled motion of the hull and aircraft, revealing higher turbulence intensity along the glideslope and a wider range of lift fluctuations compared to stationary hull conditions. These findings provide valuable insights for optimizing carrier-based aircraft recovery procedures, offering more realistic data for simulation training and enhancing pilot preparedness for airwake-induced disturbances. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

18 pages, 3941 KiB  
Article
Method of Collaborative UAV Deployment: Carrier-Assisted Localization with Low-Resource Precision Touchdown
by Krzysztof Kaliszuk, Artur Kierzkowski and Bartłomiej Dziewoński
Electronics 2025, 14(13), 2726; https://doi.org/10.3390/electronics14132726 - 7 Jul 2025
Viewed by 330
Abstract
This study presents a cooperative unmanned aerial system (UAS) designed to enable precise autonomous landings in unstructured environments using low-cost onboard vision technology. This approach involves a carrier UAV with a stabilized RGB camera and a neural inference system, as well as a [...] Read more.
This study presents a cooperative unmanned aerial system (UAS) designed to enable precise autonomous landings in unstructured environments using low-cost onboard vision technology. This approach involves a carrier UAV with a stabilized RGB camera and a neural inference system, as well as a lightweight tailsitter payload UAV with an embedded grayscale vision module. The system relies on visually recognizable landing markers and does not require additional sensors. Field trials comprising full deployments achieved an 80% success rate in autonomous landings, with vertical touchdown occurring within a 1.5 m radius of the target. These results confirm that vision-based marker detection using compact neural models can effectively support autonomous UAV operations in constrained conditions. This architecture offers a scalable alternative to the high complexity of SLAM or terrain-mapping systems. Full article
(This article belongs to the Special Issue Unmanned Aircraft Systems with Autonomous Navigation, 2nd Edition)
Show Figures

Figure 1

27 pages, 7969 KiB  
Article
Spatiotemporal Distribution of Cultural Heritage in Relation to Population and Agricultural Productivity: Evidence from the Ming-Qing Yangtze River Basin
by Yuxi Liu, Yu Bai, Wushuang Li, Qibing Chen and Xinyu Du
Land 2025, 14(7), 1416; https://doi.org/10.3390/land14071416 - 5 Jul 2025
Viewed by 516
Abstract
As a carrier of civilization, cultural heritage reflects the dynamic relationship between humans and their environment within specific historical contexts. During the Ming and Qing Dynasties (1368–1912 CE), the Yangtze River Basin was one of the most prominent regions for economic and cultural [...] Read more.
As a carrier of civilization, cultural heritage reflects the dynamic relationship between humans and their environment within specific historical contexts. During the Ming and Qing Dynasties (1368–1912 CE), the Yangtze River Basin was one of the most prominent regions for economic and cultural activities in ancient China. The cultural heritage of this period was characterized by its dense distribution and continuous evolution. Considering the applicability bias of modern data in historical interpretation, this study selected four characteristic variables: population density, agricultural productivity, technological level, and temperature anomaly. A hierarchical Bayesian model was constructed and change points were detected to quantitatively analyze the driving mechanisms behind the spatiotemporal distribution of cultural heritage. The results show the following: (1) The distribution of cultural heritage exhibited a multipolar trend by the mid-period in both Dynasties, with high-density areas contracting in the later period. (2) Agricultural productivity consistently had a significant positive impact, while population density also had a significant positive impact, except during the mid-Ming period. (3) The cultural calibration terms, which account for observational differences resulting from the interaction between cultural systems and environmental variables, exhibited slight variations. (4) The change point for population density was 364.83 people/km2, and for agricultural productivity it was 2.86 × 109 kJ/km2. This study confirms that the differentiation in the spatiotemporal distribution of cultural heritage is driven by the synergistic effects of population and resources. This provides a new perspective for researching human–land relations in a cross-cultural context. Full article
Show Figures

Figure 1

21 pages, 5894 KiB  
Article
A Reversible Compression Coding Method for 3D Property Volumes
by Zhigang Zhao, Jiahao Qiu, Han Guo, Wei Zhu and Chengpeng Li
ISPRS Int. J. Geo-Inf. 2025, 14(7), 263; https://doi.org/10.3390/ijgi14070263 - 5 Jul 2025
Viewed by 336
Abstract
3D (three-dimensional) property volume is an important data carrier for 3D land administration by using 3D cadastral technology, which can be used to express the legal space (property rights) scope matching with physical entities such as buildings and land. A 3D property volume [...] Read more.
3D (three-dimensional) property volume is an important data carrier for 3D land administration by using 3D cadastral technology, which can be used to express the legal space (property rights) scope matching with physical entities such as buildings and land. A 3D property volume is represented by a dense set of 3D coordinate points arranged in a predefined order and is displayed alongside the parcel map for reference and utilization by readers. To store a 3D property volume in the database, it is essential to record the connectivity relationships among the original 3D coordinate points, the associations between points and lines for representing boundary lines, and the relationships between lines for defining surfaces. Only by preserving the data structure that represents the relationships among points, lines, and surfaces can the 3D property volume in a parcel map be fully reconstructed. This approach inevitably results in the database storage volume significantly exceeding the original size of the point set, thereby causing storage redundancy. Consequently, this paper introduces a reversible 3D property volume compression coding method (called 3DPV-CC) to address this issue. By analyzing the distribution characteristics of the coordinate points of the 3D property volume, a specific rule for sorting the coordinate points is designed, enabling the database to have the ability of data storage and recovery by merely storing a reordered point set. The experimental results show that the 3DPV-CC method has excellent support capabilities for 3D property volumes of the vertical and slopped types, and can compress and restore the coordinate point set of the 3D property volume for drawing 3D parcel maps. The compression capacity of our method in the test is between 23.66% and 38.42%, higher than the general data compression methods (ZIP/7Z/RAR: 8.37–10.32%). By means of this method, land or real estate administrators from government departments can store 3D property volume data at a lower cost. This is conducive to enhancing the informatization level of land management. Full article
Show Figures

Figure 1

21 pages, 2113 KiB  
Article
Research on Ecological–Environmental Geological Survey and Evaluation Methods for the Kundulun River Basin in Baotou City
by Yi Hao, Junwei Wan, Yihui Xin, Wenhui Zhou, Yongli Li, Lei Mao, Xiaomeng Li, Limei Mo and Ruijia Li
Water 2025, 17(13), 1926; https://doi.org/10.3390/w17131926 - 27 Jun 2025
Viewed by 372
Abstract
The Kundulun River Basin is the most prominent branch of the Yellow River system within the jurisdiction of Baotou City. As an important water source and ecological barrier, its ecological quality is directly related to the ecological security and sustainable development of the [...] Read more.
The Kundulun River Basin is the most prominent branch of the Yellow River system within the jurisdiction of Baotou City. As an important water source and ecological barrier, its ecological quality is directly related to the ecological security and sustainable development of the surrounding areas. This study selected the Kundulun River Basin in Baotou City as the research area. On the basis of collecting relevant information, a field investigation was conducted on the ecological and geological conditions of the atmospheric surface subsurface Earth system, using the watershed as the survey scope and water as the carrier for the transfer and conversion of materials and energy in the watershed. This study selected the main factors that affect the ecological geological quality of the watershed and established an evaluation model using the analytic hierarchy process, the coefficient of variation method, and the comprehensive analysis method. We have established an ecological geological quality evaluation index system for the Kundulun River Basin. We conducted quantitative evaluation and comprehensive analysis of regional ecological and geological environment quality. The results indicate that ecological environment indicators contribute the most to the ecological quality of the study area, while the impact of human activities on ecological quality is relatively small. From the perspective of evaluation indicators, grassland has the highest weight, followed by precipitation, groundwater depth, forest land, and cultivated land. Approximately 30.26% of the land in the research area is in a state of high or relatively high ecological and geological–environmental quality risk. It can be seen that the overall quality of the ecological geological environment is not optimistic and needs further protection. Full article
(This article belongs to the Special Issue Soil and Groundwater Quality and Resources Assessment, 2nd Edition)
Show Figures

Figure 1

29 pages, 4244 KiB  
Article
Investigation into the Distribution Features and Determinants of Underground Commercial Spaces in Qingdao City
by Jingwei Zhao, Heqing Wang, Yu Sun, Haoqi Li and Yinge Zhu
Buildings 2025, 15(10), 1743; https://doi.org/10.3390/buildings15101743 - 21 May 2025
Viewed by 493
Abstract
With the gradual increase in the total volume of underground commerce in cities, underground commercial spaces are increasingly becoming a key carrier for breaking the constraints of land resources and reconfiguring the relationship between people and land. This paper quantifies and visualizes the [...] Read more.
With the gradual increase in the total volume of underground commerce in cities, underground commercial spaces are increasingly becoming a key carrier for breaking the constraints of land resources and reconfiguring the relationship between people and land. This paper quantifies and visualizes the layout and scale of underground commercial spaces in the central urban area of Qingdao by using kernel density, multi-distance spatial clustering, and spatial autocorrelation analysis and analyzes the influencing factors by using the geographical detector and MGWR model. The research results show that the underground commercial spaces in the central urban area present a “multi-core–multi-level” layout pattern, and high-density areas are more likely to cluster, with the most significant clustering scale being 3.39 km. Commercial supporting facilities, development of underground space, and population heat value are the core driving factors. The impact of rail transit, centrality, commercial supporting facilities, and development of underground space on the east coast urban area is much greater than that on the west and north urban areas. Finally, corresponding strategies are proposed from the perspectives of business districts, station areas, supply and demand, and planning and management to optimize the development and layout of underground commercial spaces, so as to promote the organic integration of underground commercial spaces and urban spaces. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 11713 KiB  
Proceeding Paper
Overview of Electric Propulsion Motor Research for EVTOL
by Xiaopeng Zhao, Weiping Yang, Zhangjun Sun, Ying Liu and Wenyang Liu
Eng. Proc. 2024, 80(1), 46; https://doi.org/10.3390/engproc2024080046 - 7 May 2025
Viewed by 1926
Abstract
Electric aviation is the future development direction of aviation industry technology. Electric vertical take-off and landing aircraft(eVTOL) is an important carrier of electric aviation, whose technology research and development, processing and manufacturing, airworthiness certification and industrialization boom have been set off around the [...] Read more.
Electric aviation is the future development direction of aviation industry technology. Electric vertical take-off and landing aircraft(eVTOL) is an important carrier of electric aviation, whose technology research and development, processing and manufacturing, airworthiness certification and industrialization boom have been set off around the world. The electric propulsion technology has achieved rapid development as the key technology of eVTOL. Aiming at the demand for high torque density and high reliability of electric propulsion system, the paper analyzed the technical indexes of electric motor products of domestic and foreign benchmark enterprises. The key technologies such as motor integration, new electromagnetic topology, lightweight structure design, and high efficiency cooling is studied. It is pointed out that in order to pursue the high torque density and fault-tolerance performance, the integrated precise modeling of motor and controller, advanced materials and manufacturing technology are the development trend of the electric propulsion technology. The breakthrough of eVTOL electric propulsion technology can accelerate the commercial operation of civil eVTOL and promote the development of new quality productive forces. Full article
(This article belongs to the Proceedings of 2nd International Conference on Green Aviation (ICGA 2024))
Show Figures

Figure 1

16 pages, 5514 KiB  
Article
Crop-Free-Ridge Navigation Line Recognition Based on the Lightweight Structure Improvement of YOLOv8
by Runyi Lv, Jianping Hu, Tengfei Zhang, Xinxin Chen and Wei Liu
Agriculture 2025, 15(9), 942; https://doi.org/10.3390/agriculture15090942 - 26 Apr 2025
Cited by 3 | Viewed by 571
Abstract
This study is situated against the background of shortages in the agricultural labor force and shortages of cultivated land. In order to improve the intelligence level and operational efficiency of agricultural machinery and solve the problems of difficulties in recognizing navigation lines and [...] Read more.
This study is situated against the background of shortages in the agricultural labor force and shortages of cultivated land. In order to improve the intelligence level and operational efficiency of agricultural machinery and solve the problems of difficulties in recognizing navigation lines and a lack of real-time performance of transplanters in the crop-free ridge environment, we propose a crop-free-ridge navigation line recognition method based on an improved YOLOv8 segmentation algorithm. First, this method reduces the parameters and computational complexity of the model by replacing the YOLOv8 backbone network with MobileNetV4 and the feature extraction module C2f with ShuffleNetV2, thereby improving the real-time segmentation of crop-free ridges. Second, we use the least-squares method to fit the obtained point set to accurately obtain navigation lines. Finally, the method is applied to testing and analyzing the field experimental ridges. The results showed that the average precision of the improved neural network model using this method was 90.4%, with a Params of 1.8 M, a FLOPs of 8.8 G, and an FPS of 49.5. The results indicate that the model maintains high accuracy while significantly outperforming Mask-RCNN, YOLACT++, YOLOv8, and YOLO11 in terms of computational speed. The detection frame rate increased significantly, improving the real-time performance of detection. This method uses the least-squares method to fit the 55% ridge contour feature points under the picture, and the fitting navigation line shows no large deviation compared with the image ridge centerline; the result is better than that of the RANSAC fitting method. The research results indicate that this method significantly reduces the size of the model parameters and improves the recognition speed, providing a more efficient solution for the autonomous navigation of intelligent carrier aircraft. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 6257 KiB  
Article
LEO Satellite Navigation Signal Multi-Dimensional Interference Optimisation Method Based on Hybrid Game Theory
by Chengkai Tang, Xunbin Zhou, Lingling Zhang, Yangyang Liu and Zesheng Dan
Remote Sens. 2025, 17(8), 1444; https://doi.org/10.3390/rs17081444 - 17 Apr 2025
Viewed by 528
Abstract
Low Earth Orbit (LEO) satellite communication is gradually becoming the main carrier for satellite communication by virtue of its advantages, such as high landing power, narrow beam, large transmission bandwidth, and small time delay. In the military field, interference with LEO satellites has [...] Read more.
Low Earth Orbit (LEO) satellite communication is gradually becoming the main carrier for satellite communication by virtue of its advantages, such as high landing power, narrow beam, large transmission bandwidth, and small time delay. In the military field, interference with LEO satellites has become a core element in combat, but the existing interference and confrontation methods cannot meet the needs of LEO satellite interference. Aiming at the above problems, this paper proposes an LEO satellite navigation signal multi-dimensional interference optimisation method based on hybrid game theory. Firstly, the method achieves a dynamic classification of jammers within the airspace. Then, an interference effectiveness evaluation function is established, which reflects the time, frequency, and power domain losses, as well as the strategy gains. With the help of hybrid game theory, the optimal resource allocation under Nash equilibrium is achieved, and the distributed interference optimisation problem is effectively solved. The experiment uses a large microwave darkroom as an interference verification scenario. The results indicate that the interference bit error rate (BER) of the algorithm proposed in this paper is on the order of 102, under the premise of guaranteeing the full coverage of the area to be interfered. The value of the multidimensional interference utility function, including the power, time, and frequency domains, is improved by at least 0.4993 times compared to other algorithms. Full article
Show Figures

Graphical abstract

24 pages, 7568 KiB  
Article
Delayed Detached-Eddy Simulations of Aerodynamic Variability During Carrier-Based Aircraft Landing with a Domain Precursor Inflow Method
by Jiawei Fu, Ruifan Hu, Hong Wang, Ke Xu and Shuling Tian
J. Mar. Sci. Eng. 2025, 13(3), 498; https://doi.org/10.3390/jmse13030498 - 3 Mar 2025
Viewed by 731
Abstract
Flight tests and wind tunnel experiments face difficulties in investigating the impact of aircraft carrier air-wake on the landing process. Meanwhile, numerical methods generally exhibit low overall computational efficiency in solving such problems. To address the computational challenges posed by the disparate spatiotemporal [...] Read more.
Flight tests and wind tunnel experiments face difficulties in investigating the impact of aircraft carrier air-wake on the landing process. Meanwhile, numerical methods generally exhibit low overall computational efficiency in solving such problems. To address the computational challenges posed by the disparate spatiotemporal scales of the ship air-wake and aircraft motion, a domain precursor inflow method is developed to efficiently generate unsteady inflow boundary conditions from precomputed full-domain air-wake simulations. This study investigates the aerodynamic variability of carrier-based aircraft during landing through the turbulent air-wake generated by an aircraft carrier, employing a hybrid RANS-LES methodology on dynamic unstructured overset grids. The numerical framework integrates a delayed detached-eddy simulation (DDES) model with a parallel dynamic overset grid approach, enabling high-fidelity simulations of coupled aircraft carrier interactions. Validation confirms the accuracy of the precursor inflow method in reproducing air-wake characteristics and aerodynamic loads compared to full-domain simulations. Parametric analyses of 15 distinct landing trajectories reveal significant aerodynamic variability, particularly within 250 m of the carrier, where interactions with island-generated vortices induce fluctuations in lift (up to 25%), drag (18%), and pitching moments (30%). Ground effects near the deck further amplify load variations, while lateral deviations in landing paths generate asymmetric forces and moments. The proposed methodology demonstrates computational efficiency for multi-scenario analysis, providing critical insights into aerodynamic uncertainties during carrier operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3963 KiB  
Article
Design of Automatic Landing System for Carrier-Based Aircraft Based on Adaptive Fuzzy Sliding-Mode Control
by Haotian Zhang, Ruoheng Ma, Zhenlin Xing and Jianliang Ai
Actuators 2025, 14(3), 114; https://doi.org/10.3390/act14030114 - 26 Feb 2025
Viewed by 621
Abstract
Carrier-based aircraft (CBA) landing involves complex system engineering characterized by strong non-linearity, significant coupling and susceptibility to environmental disturbances. To address uncertainties in parameters, carrier air-wake disturbances and other challenges inherent to CBA landing, this paper presents a longitudinal automatic landing system based [...] Read more.
Carrier-based aircraft (CBA) landing involves complex system engineering characterized by strong non-linearity, significant coupling and susceptibility to environmental disturbances. To address uncertainties in parameters, carrier air-wake disturbances and other challenges inherent to CBA landing, this paper presents a longitudinal automatic landing system based on adaptive fuzzy sliding-mode control. This system was developed to improve control accuracy and stability during the critical landing phase. Furthermore, this paper analyzes components of carrier air-wake and motion conditions for ideal landing points on the carrier deck, and designs a sliding-mode surface with the integral term. An adaptive fuzzy sliding-mode controller based on equivalent and switching controls is constructed, which exhibits stability under the Lyapunov stability condition. Moreover, a Monte Carlo simulation method is employed to verify the simulation of the automatic landing control system. Owing to its impressive dynamic performance and robustness, the proposed control method can track expected values with high accuracy in a complex environment, thereby satisfying the CBA landing requirements. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

21 pages, 5578 KiB  
Article
Integrated Control Method for STOVL UAV Based on RBF Neural Network and Nonlinear Dynamic Allocation
by Shilong Ruan, Shuaibin An, Zhe Dong, Zeyu Jin and Kai Liu
Drones 2025, 9(3), 167; https://doi.org/10.3390/drones9030167 - 24 Feb 2025
Viewed by 664
Abstract
A short takeoff and vertical landing unmanned aerial vehicle (STOVL UAV) is significantly influenced by factors such as the ship’s surface effect, deck motion, and jet effect during vertical landing on an aircraft carrier. The existing control logic cannot effectively solve the coupling [...] Read more.
A short takeoff and vertical landing unmanned aerial vehicle (STOVL UAV) is significantly influenced by factors such as the ship’s surface effect, deck motion, and jet effect during vertical landing on an aircraft carrier. The existing control logic cannot effectively solve the coupling problem of longitudinal attitude and trajectory, so it is hard to guarantee the stability and control accuracy of the UAV at low speed. To address the aforementioned interference and coupling problems, a comprehensive control law based on a radial basis function neural network (RBFNN) and nonlinear dynamic optimal allocation is designed in this paper. Firstly, the integrated landing control law of the STOVL UAV is designed. Considering the model uncertainty and complex landing environment, an RBFNN is used for online observation and compensation to improve the robustness of the system. Subsequently, a dynamic control allocation module based on nonlinear optimization is developed to simultaneously satisfy force and moment commands. The simulation results show that the integrated control method effectively decouples the pitch attitude and longitudinal trajectory at low speeds, resulting in effective convergence control of pitch angle, forward flight speed, and altitude. The integration of the RBFNN, as evaluated by the integral of absolute error (IAE), results in a 93% improvement in control accuracy compared to the integrated landing control law designed in this paper without the RBFNN integration. Full article
Show Figures

Figure 1

Back to TopTop