Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,193)

Search Parameters:
Keywords = cardiovascular disease and metabolic disorders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 830 KiB  
Review
Influence of Exercise on Oxygen Consumption, Pulmonary Ventilation, and Blood Gas Analyses in Individuals with Chronic Diseases
by Mallikarjuna Korivi, Mohan Krishna Ghanta, Poojith Nuthalapati, Nagabhishek Sirpu Natesh, Jingwei Tang and LVKS Bhaskar
Life 2025, 15(8), 1255; https://doi.org/10.3390/life15081255 (registering DOI) - 7 Aug 2025
Abstract
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of [...] Read more.
The increasing prevalence of chronic metabolic diseases poses a significant challenge in the modern world, impacting healthcare systems and individual life expectancy. The World Health Organization (WHO) recommends that older adults (65+ years) engage in 150–300 min of moderate-intensity or 75–150 min of vigorous-intensity physical activity, alongside muscle-strengthening and balance-training exercises at least twice a week. However, nearly one-third of the adult population (31%) is physically inactive, which increases the risk of developing obesity, type 2 diabetes, cardiovascular diseases, hypertension, and psychological issues. Physical activity in the form of aerobic exercise, resistance training, or a combination of both is effective in preventing and managing these metabolic diseases. In this review, we explored the effects of exercise training, especially on respiratory and pulmonary factors, including oxygen consumption, pulmonary ventilation, and blood gas analyses among adults. During exercise, oxygen consumption can increase up to 15-fold (from a resting rate of ~250 mL/min) to meet heightened metabolic demands, enhancing tidal volume and pulmonary efficiency. During exercise, the increased energy demand of skeletal muscle leads to increases in tidal volume and pulmonary function, while blood gases play a key role in maintaining the pH of the blood. In this review, we explored the influence of age, body composition (BMI and obesity), lifestyle factors (smoking and alcohol use), and comorbidities (diabetes, hypertension, neurodegenerative disorders) in the modulation of these physiological responses. We underscored exercise as a potent non-pharmacological intervention for improving cardiopulmonary health and mitigating the progression of metabolic diseases in aging populations. Full article
(This article belongs to the Special Issue Focus on Exercise Physiology and Sports Performance: 2nd Edition)
Show Figures

Figure 1

15 pages, 2691 KiB  
Review
SGLT2 Inhibitors: Multifaceted Therapeutic Agents in Cardiometabolic and Renal Diseases
by Ana Checa-Ros, Owahabanun-Joshua Okojie and Luis D’Marco
Metabolites 2025, 15(8), 536; https://doi.org/10.3390/metabo15080536 - 7 Aug 2025
Abstract
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce [...] Read more.
Background: Sodium–glucose cotransporter-2 inhibitors (SGLT2is), initially developed as antihyperglycemic agents, have emerged as multifunctional therapeutics with profound cardiorenal and metabolic benefits. Their unique insulin-independent mechanism, targeting renal glucose reabsorption, distinguishes them from conventional antidiabetic drugs. Mechanisms and Clinical Evidence: SGLT2is induce glycosuria, reduce hyperglycemia, and promote weight loss through increased caloric excretion. Beyond glycemic control, they modulate tubuloglomerular feedback, attenuate glomerular hyperfiltration, and exert systemic effects via natriuresis, ketone utilization, and anti-inflammatory pathways. Landmark trials (DAPA-HF, EMPEROR-Reduced, CREDENCE, DAPA-CKD) demonstrate robust reductions in heart failure (HF) hospitalizations, cardiovascular mortality, and chronic kidney disease (CKD) progression, irrespective of diabetes status. Adipose Tissue and Metabolic Effects: SGLT2is mitigate obesity-associated adiposopathy by shifting macrophage polarization (M1 to M2), reducing proinflammatory cytokines (TNF-α, IL-6), and enhancing adipose tissue browning (UCP1 upregulation) and mitochondrial biogenesis (via PGC-1α/PPARα). Modest weight loss (~2–4 kg) occurs, though compensatory hyperphagia may limit long-term effects. Emerging Applications: Potential roles in non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), and neurodegenerative disorders are under investigation, driven by pleiotropic effects on metabolism and inflammation. Conclusions: SGLT2is represent a paradigm shift in managing T2DM, HF, and CKD, with expanding implications for metabolic syndrome. Future research should address interindividual variability, combination therapies, and non-glycemic indications to optimize their therapeutic potential. Full article
(This article belongs to the Special Issue Metabolic Modulators in Cardiovascular Disease Management)
Show Figures

Figure 1

18 pages, 2745 KiB  
Article
Obesity-Induced MASLD Is Reversed by Capsaicin via Hepatic TRPV1 Activation
by Padmamalini Baskaran, Ryan Christensen, Kimberley D. Bruce and Robert H. Eckel
Curr. Issues Mol. Biol. 2025, 47(8), 618; https://doi.org/10.3390/cimb47080618 - 4 Aug 2025
Viewed by 127
Abstract
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, [...] Read more.
Background and Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder associated with metabolic risk factors such as obesity, type 2 diabetes, and cardiovascular disease. If left untreated, the accumulation of excess hepatic fat can lead to inflammation, fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Capsaicin (CAP), the primary pungent compound in chili peppers, has previously been shown to prevent weight gain in high-fat diet (HFD)-induced obesity models. In this study, we investigated the potential of dietary CAP to prevent HFD-induced MASLD. Methods: C57BL/6 mice were fed an HFD (60% kcal from fat) with or without 0.01% CAP supplementation for 26 weeks. We evaluated CAP’s effects on hepatic fat accumulation, inflammation, and mitochondrial function to determine its role in preventing MASLD. Results: CAP acts as a potent and selective agonist of the transient receptor potential vanilloid 1 (TRPV1) channel. We confirmed TRPV1 expression in the liver and demonstrated that CAP activates hepatic TRPV1, thereby preventing steatosis, improving insulin sensitivity, reducing inflammation, and enhancing fatty acid oxidation. These beneficial effects were observed in wild-type but not in TRPV1 knockout mice. Mechanistically, CAP-induced TRPV1 activation promotes calcium influx and activates AMPK, which leads to SIRT1-dependent upregulation of PPARα and PGC-1α, enhancing mitochondrial biogenesis and lipid metabolism. Conclusions: Our findings suggest that dietary CAP prevents MASLD through TRPV1 activation. TRPV1 signaling represents a promising therapeutic target for the prevention and management of MASLD in individuals with metabolic disorders. Full article
(This article belongs to the Special Issue Mechanisms and Pathophysiology of Obesity)
Show Figures

Graphical abstract

18 pages, 1782 KiB  
Review
Nutrition and Micronutrient Interactions in Autoimmune Thyroid Disorders: Implications for Cardiovascular Health
by Michał Mazur, Magdalena Szymańska, Agnieszka Malik, Wojciech Szlasa and Joanna Popiołek-Kalisz
Pathophysiology 2025, 32(3), 37; https://doi.org/10.3390/pathophysiology32030037 - 1 Aug 2025
Viewed by 231
Abstract
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role [...] Read more.
Thyroid hormones play a crucial role in regulating metabolism and cardiovascular function, with even mild dysfunction—such as subclinical hypothyroidism—negatively impacting heart health. While previous studies have confirmed the effects of iodine, selenium, and vitamin D on thyroid regulation and inflammation, the combined role of these nutrients in reducing cardiovascular disease (CVD) risk in autoimmune thyroid disorders remains insufficiently understood. This review explores the influence of specific micronutrients—including selenium, iodine, and zinc—and dietary patterns, particularly the Mediterranean diet, on the pathophysiology of hypothyroidism and Hashimoto’s thyroiditis. We introduce a novel framework that integrates emerging data on sex-specific micronutrient interactions and nutritional immunomodulation. Unlike the existing literature, this review introduces original hypotheses related to sex-specific nutritional immunomodulation and proposes a novel framework for micronutrient-driven dietary intervention in Hashimoto’s thyroiditis. Full article
(This article belongs to the Section Metabolic Disorders)
Show Figures

Graphical abstract

20 pages, 1886 KiB  
Article
Elevated IGFBP4 and Cognitive Impairment in a PTFE-Induced Mouse Model of Obstructive Sleep Apnea
by E. AlShawaf, N. Abukhalaf, Y. AlSanae, I. Al khairi, Abdullah T. AlSabagh, M. Alonaizi, A. Al Madhoun, A. Alterki, M. Abu-Farha, F. Al-Mulla and J. Abubaker
Int. J. Mol. Sci. 2025, 26(15), 7423; https://doi.org/10.3390/ijms26157423 - 1 Aug 2025
Viewed by 155
Abstract
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical [...] Read more.
Obstructive sleep apnea (OSA) is a prevalent disorder linked to metabolic complications such as diabetes and cardiovascular disease. By fragmenting normal sleep architecture, OSA perturbs the growth hormone/insulin-like growth factor (GH/IGF) axis and alters circulating levels of IGF-binding proteins (IGFBPs). A prior clinical observation of elevated IGFBP4 in OSA patients motivated the present investigation in a controlled animal model. Building on the previously reported protocol, OSA was induced in male C57BL/6 mice (9–12 weeks old) through intralingual injection of polytetrafluoroethylene (PTFE), producing tongue hypertrophy, intermittent airway obstruction, and hypoxemia. After 8–10 weeks, the study assessed (1) hypoxia biomarkers—including HIF-1α and VEGF expression—and (2) neurobehavioral outcomes in anxiety and cognition using the open-field and novel object recognition tests. PTFE-treated mice exhibited a significant increase in circulating IGFBP4 versus both baseline and control groups. Hepatic Igfbp4 mRNA was also upregulated. Behaviorally, PTFE mice displayed heightened anxiety-like behavior and impaired novel object recognition, paralleling cognitive deficits reported in human OSA. These findings validate the PTFE-induced model as a tool for studying OSA-related hypoxia and neurocognitive dysfunction, and they underscore IGFBP4 as a promising biomarker and potential mediator of OSA’s systemic effects. Full article
(This article belongs to the Special Issue Sleep and Breathing: From Molecular Perspectives)
Show Figures

Figure 1

25 pages, 1199 KiB  
Review
Gut-Microbiota-Derived Metabolites and Probiotic Strategies in Colorectal Cancer: Implications for Disease Modulation and Precision Therapy
by Yi-Chu Yang, Shih-Chang Chang, Chih-Sheng Hung, Ming-Hung Shen, Ching-Long Lai and Chi-Jung Huang
Nutrients 2025, 17(15), 2501; https://doi.org/10.3390/nu17152501 - 30 Jul 2025
Viewed by 535
Abstract
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis [...] Read more.
The human gut microbiota significantly influences host health through its metabolic products and interaction with immune, neural, and metabolic systems. Among these, short-chain fatty acids (SCFAs), especially butyrate, play key roles in maintaining gut barrier integrity, modulating inflammation, and supporting metabolic regulation. Dysbiosis is increasingly linked to diverse conditions such as gastrointestinal, metabolic, and neuropsychiatric disorders, cardiovascular diseases, and colorectal cancer (CRC). Probiotics offer therapeutic potential by restoring microbial balance, enhancing epithelial defenses, and modulating immune responses. This review highlights the physiological functions of gut microbiota and SCFAs, with a particular focus on butyrate’s anti-inflammatory and anti-cancer effects in CRC. It also examines emerging microbial therapies like probiotics, synbiotics, postbiotics, and engineered microbes. Emphasis is placed on the need for precision microbiome medicine, tailored to individual host–microbiome interactions and metabolomic profiles. These insights underscore the promising role of gut microbiota modulation in advancing preventive and personalized healthcare. Full article
(This article belongs to the Special Issue Diet, Gut Microbiota, and Gastrointestinal Disease)
Show Figures

Graphical abstract

33 pages, 849 KiB  
Review
Low Hepatic CEACAM1 Tethers Metabolic Dysfunction Steatohepatitis to Atherosclerosis
by Sacha El Khoury, Sami N. Al Harake, Tya Youssef, Carl E. Risk, Naim G. Helou, Natalie M. Doumet, Karl Aramouni, Sami Azar, Sonia M. Najjar and Hilda E. Ghadieh
Livers 2025, 5(3), 34; https://doi.org/10.3390/livers5030034 - 30 Jul 2025
Viewed by 461
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis are cardiometabolic twin disorders with shared underlying pathophysiological mechanisms such as insulin resistance and chronic inflammation. This review explores the salient role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in linking hepatic dysfunction to cardiovascular disease. [...] Read more.
Metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis are cardiometabolic twin disorders with shared underlying pathophysiological mechanisms such as insulin resistance and chronic inflammation. This review explores the salient role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in linking hepatic dysfunction to cardiovascular disease. Findings in mice with genetic modulation of Ceacam1 gene established a critical role for CEACAM1 protein in regulating insulin and lipid metabolism and endothelial integrity and modulating immune response. Loss of CEACAM1 in hepatocytes impairs insulin clearance, causing chronic hyperinsulinemia, a process that ultimately leads to insulin resistance and hepatic and extra-hepatic fat accumulation, which in turn causes inflammatory infiltration. This prompts a paradigm shift that positions impaired hepatic CEACAM1 function as a mechanistic underpinning of the link between insulin resistance, MASH, and atherosclerosis. Full article
(This article belongs to the Special Issue Liver Fibrosis: Mechanisms, Targets, Assessment and Treatment)
Show Figures

Figure 1

15 pages, 1467 KiB  
Review
Pathophysiology of Prediabetes Hyperinsulinemia and Insulin Resistance in the Cardiovascular System
by Ghassan Bkaily, Ashley Jazzar, Amira Abou-Aichi and Danielle Jacques
Biomedicines 2025, 13(8), 1842; https://doi.org/10.3390/biomedicines13081842 - 29 Jul 2025
Viewed by 378
Abstract
Hyperinsulinemia refers to an elevated level of circulating insulin (80 and 100 µU/mL), often leading to metabolic disorders such as obesity, insulin resistance, and type 2 diabetes (T2D). There is no precise and universally accepted definition of hyperinsulinemia and insulin resistance. The literature [...] Read more.
Hyperinsulinemia refers to an elevated level of circulating insulin (80 and 100 µU/mL), often leading to metabolic disorders such as obesity, insulin resistance, and type 2 diabetes (T2D). There is no precise and universally accepted definition of hyperinsulinemia and insulin resistance. The literature in the field remains unclear regarding whether insulin resistance precedes the development of hyperinsulinemia. Recently, a new hypothesis has been proposed suggesting that chronic hyperinsulinemia precedes and causes insulin resistance. The causes of the initiation of hyperinsulinemia, insulin resistance, and type 2 diabetes are multifactorial. Thus, it is not easy to define in general. Recent work demonstrates that the main prediabetic factor leading to insulin resistance is chronic hyperinsulinemia. However, recent work in the literature proposes that relatively long-term hyperinsulinemia does precede insulin resistance and already promotes cardiovascular remodeling. This later may lead to the development of vascular diseases such as hypertension. Thus, defining hyperinsulinemia and insulin resistance, as well as their signaling pathways implicated in the development of type 2 diabetes (T2D), needs to be clarified. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

10 pages, 204 KiB  
Article
Evaluation of Pre-Treatment Assessment of Semaglutide Users: Balancing the Benefits of Weight Loss vs. Potential Health Consequences
by Faten F. Bin Dayel, Rakan J. Alanazi, Miteb A. Alenazi, Sahar Alkhalifah, Mohammed Alfaifi, Sultan Alghadeer and Abdulrahman Alwhaibi
Healthcare 2025, 13(15), 1827; https://doi.org/10.3390/healthcare13151827 - 26 Jul 2025
Viewed by 389
Abstract
Background: Although semaglutide (Ozempic®) is being prescribed off-label to individuals with obesity, some concerns have arisen regarding its use, particularly regarding the risk of thyroid and pancreatic disorders. Therefore, it is crucial to screen patients’ medical and family disease histories, as [...] Read more.
Background: Although semaglutide (Ozempic®) is being prescribed off-label to individuals with obesity, some concerns have arisen regarding its use, particularly regarding the risk of thyroid and pancreatic disorders. Therefore, it is crucial to screen patients’ medical and family disease histories, as well as certain clinical parameters, before initiating this treatment for obesity or weight management. However, there is limited research investigating whether pretreatment assessment is adopted in clinical practice. Method: This is a single-center retrospective study involving adults who were prescribed semaglutide for obesity or weight management. Demographic data, comorbid conditions, semaglutide-related lab work, and disease history assessments, including pancreatitis, thyroid abnormalities, oculopathy, neuropathy, and any family history of thyroid cancer, were evaluated and documented prior to treatment initiation. Results: In total, 715 patients were included in the study, with an average age of 40.2 ± 12.0 years, and 49.5% of participants were male. The average weight and BMI prior to using semaglutide were 99.8 ± 18.1 kg and 36.3 ± 8.3 kg/m2, respectively, with predominantly overweight and obese individuals (collectively 91.3%). Approximately 69% of patients had 3–5 complications, with a high prevalence of cardiovascular and metabolic diseases before using semaglutide. Although HbA1c, serum creatinine, TSH, T3, T4, triglycerides, HDL, LDL, total cholesterol, and total bilirubin were monitored prior to semaglutide use, none of the patients’ pancreatic lipase, amylase, or calcitonin levels were measured. Although it is important to investigate all personal and family disease histories, including thyroid abnormalities, thyroid cancer, pancreatitis, retinopathy, eye problems, and neuropathy prior to semaglutide initiation, checks were only conducted in 1.8% of patients, despite 98.6% having at least one of the diseases assessed pretreatment. Conclusions: The current pretreatment assessment approach for patients prescribed semaglutide for weight reduction is underdeveloped, particularly with regard to assessing the influence of disease history on semaglutide use. This predisposes patients to a risk of severe clinical outcomes, including thyroid cancer, pancreatitis, and retinopathy. Full article
25 pages, 10636 KiB  
Article
Qifu Decoction Alleviates Lipopolysaccharide-Induced Myocardial Dysfunction by Inhibiting TLR4/NF-κB/NLRP3 Inflammatory Pathway and Activating PPARα/CPT Pathway
by Lingxin Zhuo, Mingxuan Ma, Jiayi Zhang, Jiayu Zhou, Yuqi Zheng, Aiyin Liang, Qingqing Sun, Jia Liu and Wenting Liao
Pharmaceuticals 2025, 18(8), 1109; https://doi.org/10.3390/ph18081109 - 25 Jul 2025
Viewed by 312
Abstract
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular [...] Read more.
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular diseases. This study aimed to reveal the cardioprotective effects and underlying mechanisms of QFD against SIC. Methods: Electrocardiography, histopathological examination, and biochemical indicator determination were carried out to investigate the cardioprotective effects of QFD in the treatment of LPS-induced SIC mice. Metabolomics and network pharmacology strategies were employed to preliminarily analyze and predict the mechanisms of QFD against SIC. Molecular docking and Western blot were further applied to validate the core targets and potential pathways for the treatment of SIC in in vitro and in vivo models. Results: It was found that QFD considerably enhanced cardiac function; attenuated myocardial injury; and reduced the serum levels of LDH, CK-MB, IL-1β, and TNF-α by 28.7%, 32.3%, 38.6%, and 36.7%, respectively. Metabolomic analysis showed that QFD could regulate seven metabolic pathways, namely, glutathione metabolism; alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; glycerophospholipid metabolism; purine metabolism; sphingolipid metabolism; and fatty acid metabolism. Network pharmacology suggested that the anti-SIC effect of QFD may be mediated through the TNF, toll-like receptor, NOD-like receptor, NF-κB, and PPAR signaling pathways. Additionally, 26 core targets were obtained. Molecular docking revealed that active ingredients such as formononetin, kaempferol, quercetin, and (R)-norcoclaurine in QFD had a high affinity for binding to PPARα and TLR4. Further Western blot validation indicated that QFD could regulate the protein levels of NLRP3, TLR4, NF-κB, IL-6, TNF-α, COX2, sPLA2, PPARα, CPT1B, and CPT2. Conclusions: This study demonstrates that QFD can alleviate SIC by suppressing the TLR4/NF-κB/NLRP3 inflammatory pathway and modulating impaired FAO through the activation of the PPARα/CPT pathway, highlighting QFD as a promising candidate drug for SIC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

23 pages, 839 KiB  
Review
Catechins and Human Health: Breakthroughs from Clinical Trials
by Elena Ferrari and Valeria Naponelli
Molecules 2025, 30(15), 3128; https://doi.org/10.3390/molecules30153128 - 25 Jul 2025
Viewed by 275
Abstract
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated [...] Read more.
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated with various chronic conditions, including cardiovascular diseases, neurodegenerative disorders, metabolic diseases, and cancer. This review presents a comprehensive analysis of recent clinical studies focused on the therapeutic benefits and potential risks of interventions involving green tea extracts or EGCG. A systematic literature survey identified 17 relevant studies, classified into five key areas related to catechin interventions: toxicity and detoxification, drug pharmacokinetics, cognitive functions, anti-inflammatory and antioxidant properties, and obesity and metabolism. Findings from these clinical studies suggest that the health benefits of green tea catechins outweigh the potential risks. The review highlights the importance of subject genotyping for enzymes involved in catechin metabolism to aid in interpreting liver injury biomarkers, the necessity of assessing drug–catechin interactions in clinical contexts, and the promising effects of topical EGCG in reducing inflammation. This analysis underscores the need for further research to refine therapeutic applications while ensuring the safe and effective use of green tea catechins. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

13 pages, 543 KiB  
Article
Subclinical Hypothyroidism in Moderate-to-Severe Psoriasis: A Cross-Sectional Study of Prevalence and Clinical Implications
by Ricardo Ruiz-Villaverde, Marta Cebolla-Verdugo, Carlos Llamas-Segura, Pedro José Ezomo-Gervilla, Jose Molina-Espinosa and Jose Carlos Ruiz-Carrascosa
Diseases 2025, 13(8), 237; https://doi.org/10.3390/diseases13080237 - 25 Jul 2025
Viewed by 218
Abstract
Background: Psoriasis is a chronic inflammatory skin disease linked to systemic comorbidities, including metabolic, cardiovascular, and autoimmune disorders. Thyroid dysfunction, particularly hypothyroidism, has been observed in patients with moderate-to-severe psoriasis, suggesting possible shared inflammatory pathways. Objectives: This study aims to explore [...] Read more.
Background: Psoriasis is a chronic inflammatory skin disease linked to systemic comorbidities, including metabolic, cardiovascular, and autoimmune disorders. Thyroid dysfunction, particularly hypothyroidism, has been observed in patients with moderate-to-severe psoriasis, suggesting possible shared inflammatory pathways. Objectives: This study aims to explore the relationship between psoriasis and thyroid dysfunction in adults with moderate-to-severe psoriasis undergoing biologic therapy to determine whether psoriasis predisposes individuals to thyroid disorders and to identify demographic or clinical factors influencing this association. Materials and Methods: A cross-sectional study included adult patients with moderate-to-severe psoriasis receiving biologic therapy, recruited from the Psoriasis Unit at the Dermatology Department of Hospital Universitario San Cecilio in Granada, Spain, from 2017 to 2023. Patients with mild psoriasis or those treated with conventional systemic therapies were excluded. The data collected included demographics and clinical characteristics, such as age, sex, BMI (body mass index), and psoriasis severity (psoriasis severity was evaluated using the Psoriasis Area Severity Index (PASI), body surface area (BSA) involvement, Investigator’s Global Assessment (IGA), pruritus severity using the Numerical Rating Scale (NRS), and impact on quality of life through the Dermatology Life Quality Index (DLQI)). Thyroid dysfunction, including hypothyroidism and subclinical hypothyroidism, was assessed based on records from the Endocrinology Department. Results: Thyroid dysfunction was found in 4.2% of patients, all classified as hypothyroidism, primarily subclinical. The affected patients were generally older, with a mean age of 57.4 years. No significant differences in psoriasis severity (PASI, BSA) or treatment response were observed between patients with and without thyroid dysfunction. Conclusion: Our findings suggest hypothyroidism is the main thyroid dysfunction in psoriatic patients, independent of psoriasis severity. The lack of impact on psoriasis severity suggests hypothyroidism may be an independent comorbidity, warranting further research into shared inflammatory mechanisms. Full article
Show Figures

Figure 1

19 pages, 925 KiB  
Review
Muscle Wasting and Treatment of Dyslipidemia in COPD: Implications for Patient Management
by Andrea Bianco, Raffaella Pagliaro, Angela Schiattarella, Domenica Francesca Mariniello, Vito D’Agnano, Roberta Cianci, Ersilia Nigro, Aurora Daniele, Filippo Scialò and Fabio Perrotta
Biomedicines 2025, 13(8), 1817; https://doi.org/10.3390/biomedicines13081817 - 24 Jul 2025
Viewed by 447
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its [...] Read more.
Chronic Obstructive Pulmonary Disease (COPD) is a multifactorial condition associated with significant systemic complications such as cardiovascular disease (CVD), metabolic disorders, muscle wasting, and sarcopenia. While Body Mass Index (BMI) is a well-established indicator of obesity and has prognostic value in COPD, its role in predicting disease outcomes is complex. Muscle wasting is prevalent in COPD patients and exacerbates disease severity, contributing to poor physical performance, reduced quality of life, and increased mortality. Additionally, COPD is linked to metabolic disorders, such as dyslipidemia and diabetes, which contribute to systemic inflammation and worse prognosis and, therefore, should be treated. The systemic inflammatory response plays a central role in the development of sarcopenia. In this review, we highlight the mixed efficacy of statins in managing dyslipidemia in COPD, considering side effects, including muscle toxicity in such a frail population. Alternative lipid-lowering therapies and nutraceuticals, in addition to standard treatment, have the potential to target hypercholesterolemia, which is a coexisting condition present in more than 50% of all COPD patients, without worsening muscle wasting. The interference between adipose tissue and lung, and particularly the potential protective role of adiponectin, an adipocytokine with anti-inflammatory properties, is also reviewed. Respiratory, metabolic and muscular health in COPD is comprehensively assessed. Identifying and managing dyslipidemia and paying attention to other relevant COPD comorbidities, such as sarcopenia and muscle wasting, is important to improve the quality of life and to reduce the clinical burden of COPD patients. Future research should focus on understanding the relationships between these intimate mechanisms to facilitate specific treatment for systemic involvement of COPD. Full article
Show Figures

Figure 1

25 pages, 1329 KiB  
Review
Research Progress and Prospects of Flavonoids in the Treatment of Hyperlipidemia: A Narrative Review
by Xingtong Chen, Jinbiao Yang, Yunyue Zhou, Qiao Wang, Shuang Xue, Yukun Zhang and Wenying Niu
Molecules 2025, 30(15), 3103; https://doi.org/10.3390/molecules30153103 - 24 Jul 2025
Viewed by 540
Abstract
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty [...] Read more.
Hyperlipidemia (HLP) is a disorder of human lipid metabolism or transport, primarily characterized by abnormally elevated levels of total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C) in the blood. It is a key factor contributing to the development of non-alcoholic fatty liver disease, obesity, diabetes, atherosclerosis, and cardiovascular and cerebrovascular diseases. Statistics show that the prevalence of dyslipidemia among Chinese adults is as high as 35.6%, and it has shown a trend of younger onset in recent years, posing a serious threat to public health. Therefore, the prevention and treatment of dyslipidemia carry significant social significance. The pathogenesis of hyperlipidemia is complex and diverse, and currently used medications are often accompanied by side effects during treatment, making the research and development of new therapeutic approaches a current focus. Numerous studies have shown that flavonoids, which are abundant in most medicinal plants, fruits, and vegetables, exert effects on regulating lipid homeostasis and treating hyperlipidemia through a multi-target mechanism. These compounds have demonstrated significant effects in inhibiting lipid synthesis, blocking lipid absorption, promoting cholesterol uptake, enhancing reverse cholesterol transport, and suppressing oxidative stress, inflammation, and intestinal microbiota disorders. This article reviews the latest progress in the mechanisms of flavonoids in the treatment of hyperlipidemia, providing a theoretical basis for future research on drugs for hyperlipidemia. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

42 pages, 2555 KiB  
Review
Prosaposin: A Multifaceted Protein Orchestrating Biological Processes and Diseases
by Xin Li and Liang Guo
Cells 2025, 14(15), 1131; https://doi.org/10.3390/cells14151131 - 22 Jul 2025
Viewed by 447
Abstract
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In [...] Read more.
Prosaposin (PSAP), a multifunctional protein, plays a central role in various biological processes and diseases. It is the precursor of lysosomal activating protein, which is important for lipid metabolism and glucose metabolism. PSAP is implicated in cell signaling, neuroprotection, immunomodulation, and tumorigenesis. In neurological disorders, PSAP acts as a neurotrophic factor influencing nerve cell survival and synapse growth, and its dysfunction is associated with a variety of diseases. It modulates immune responses and macrophage functions, affecting inflammation and immune cell activities. The role of PSAP in cancers is complex, because it promotes or inhibits tumor growth depending on the context and it serves as a potential biomarker for various malignancies. This review examines current research on the functional and pathological roles of PSAP, emphasizing the importance of PSAP in Gaucher disease, neurodegenerative diseases, cardiovascular diseases, and cancer. In order to develop targeted therapies for various diseases, it is essential to understand the mechanisms of action of PSAP in different biological processes. Full article
Show Figures

Figure 1

Back to TopTop