Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = cardiac troponins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1967 KiB  
Article
Evaluation of Myocardial Protection in Prolonged Aortic Cross-Clamp Times: Del Nido and HTK Cardioplegia in Adult Cardiac Surgery
by Murat Yücel, Emre Demir Benli, Kemal Eşref Erdoğan, Muhammet Fethi Sağlam, Gökay Deniz, Hakan Çomaklı and Emrah Uğuz
Medicina 2025, 61(8), 1420; https://doi.org/10.3390/medicina61081420 - 6 Aug 2025
Abstract
Background and Objectives: Effective myocardial protection is essential for successful cardiac surgery outcomes, especially in complex and prolonged procedures. To this end, Del Nido (DN) and histidine-tryptophan-ketoglutarate (HTK) cardioplegia solutions are widely used; however, their comparative efficacy in adult surgeries with prolonged aortic [...] Read more.
Background and Objectives: Effective myocardial protection is essential for successful cardiac surgery outcomes, especially in complex and prolonged procedures. To this end, Del Nido (DN) and histidine-tryptophan-ketoglutarate (HTK) cardioplegia solutions are widely used; however, their comparative efficacy in adult surgeries with prolonged aortic cross-clamp (ACC) times remains unclear. This study aimed to compare the efficacy and safety of DN and HTK for myocardial protection during prolonged ACC times in adult cardiac surgery and to define clinically relevant thresholds. Materials and Methods: This retrospective study included a total of 320 adult patients who underwent cardiac surgery under cardiopulmonary bypass (CPB) with an aortic cross-clamp time ≥ 90 min. Data were collected from the medical records of elective adult cardiac surgery cases performed at a single center between 2019 and 2025. Patients were categorized into two groups based on the type of cardioplegia received: Del Nido (n = 160) and HTK (n = 160). The groups were compared using 1:1 propensity score matching. Clinical and biochemical outcomes—including troponin I (TnI), CK-MB, lactate levels, incidence of low cardiac output syndrome (LCOS), and need for mechanical circulatory support—were analyzed between the two cardioplegia groups. Subgroup analyses were performed according to ACC duration (90–120, 120–150, 150–180 and >180 min). The predictive threshold of ACC duration for each complication was determined by ROC analysis, followed by the analysis of independent predictors of each endpoint by multivariate logistic regression. Results: Intraoperative cardioplegia volume and transfusion requirements were lower in the DN group (p < 0.05). HTK was associated with lower TnI levels and less intra-aortic balloon pump (IABP) requirement at ACC times exceeding 180 min. Markers of myocardial injury were lower in patients with an ACC duration of 120–150 min in favor of HTK. The propensity for ventricular fibrillation after ACC was significantly lower in the DN group. Significantly lower postoperative sodium levels were observed in the HTK group. Prolonged ACC duration was an independent risk factor for LCOS (odds ratio [OR]: 1.023, p < 0.001), VIS > 15 (OR, 1.015; p < 0.001), IABP requirement (OR: 1.020, p = 0.002), and early mortality (OR: 1.016, p = 0.048). Postoperative ejection fraction (EF), troponin I, and CK-MB levels were associated with the development of LCOS and a VIS > 15. Furthermore, according to ROC analysis, HTK cardioplegia was able to tolerate ACC for up to a longer duration in terms of certain complications, suggesting a higher physiological tolerance to ischemia. Conclusions: ACC duration is a strong predictor of major adverse outcomes in adult cardiac surgeries. Although DN cardioplegia is effective and economically advantageous for shorter procedures, HTK may provide superior myocardial protection in operations with long ACC duration. This study supports the need to individualize cardioplegia choice according to ACC duration. Further prospective studies are needed to establish standard dosing protocols and to optimize cardioplegia selection according to surgical duration and complexity. Full article
Show Figures

Figure 1

12 pages, 411 KiB  
Article
High Sensitive Cardiac Troponin-I (Hs-cTnI) Levels in Asymptomatic Hemodialysis Patients
by Ofir Rabi, Linda Shavit, Ranel Loutati, Louay Taha, Mohammad Karmi, Akiva Brin, Dana Deeb, Nir Levi, Noam Fink, Pierre Sabouret, Mohammed Manassra, Abed Qadan, Motaz Amro, Michael Glikson and Elad Asher
J. Clin. Med. 2025, 14(15), 5470; https://doi.org/10.3390/jcm14155470 - 4 Aug 2025
Viewed by 181
Abstract
Background: High-sensitivity cardiac troponin (hs-cTn) is useful for detecting acute myocardial infarction, but chronic hemodialysis patients often have elevated baseline levels that exceed the upper reference limit (URL). This study aimed to determine whether hs-cTnI levels in asymptomatic hemodialysis patients exceed the [...] Read more.
Background: High-sensitivity cardiac troponin (hs-cTn) is useful for detecting acute myocardial infarction, but chronic hemodialysis patients often have elevated baseline levels that exceed the upper reference limit (URL). This study aimed to determine whether hs-cTnI levels in asymptomatic hemodialysis patients exceed the URL established for the general population, evaluate the impact of high-flux hemodialysis on hs-cTnI concentrations, and examine associations between hs-cTnI levels and subsequent hospitalization or mortality. Methods: A prospective, single-center cohort study was conducted at a tertiary care center from August 2023 to July 2024. Blood samples for hs-cTnI were collected from asymptomatic hemodialysis patients aged ≥ 40 years, measured before and after dialysis within one month. Patients were followed for up to 12 months. Results: Fifty-six patients were enrolled. The mean hs-cTnI levels were 28.4 ng/L pre-dialysis and 27.9 ng/L post-dialysis, with ranges of <6–223 ng/L and <6–187 ng/L, respectively. The mean hs-cTnI delta between pre- and post-dialysis was −0.5 ng/L, with 52% showing a negative delta, 30% no change, and 18% a positive delta. No association was found between baseline hs-cTnI levels and mortality or hospitalization during follow-up. Conclusions: Most asymptomatic hemodialysis patients had hs-cTnI levels in the “gray zone”, thus neither confirming nor excluding acute myocardial infarction. Dialysis did not significantly affect hs-cTnI levels, and elevated baseline hs-cTnI was not linked to increased mortality or hospitalization over 12 months. Full article
Show Figures

Figure 1

16 pages, 3091 KiB  
Article
Fabrication and Evaluation of Screen-Printed Electrodes on Chitosan Films for Cardiac Patch Applications with In Vitro and In Vivo Evaluation
by Yu-Hsin Lin, Yong-Ji Chen, Jen-Tsai Liu, Ching-Shu Yen, Yi-Zhen Lin, Xiu-Wei Zhou, Shu-Ying Chen, Jhe-Lun Hu, Chi-Hsiang Wu, Ching-Jung Chen, Pei-Leun Kang and Shwu-Jen Chang
Polymers 2025, 17(15), 2088; https://doi.org/10.3390/polym17152088 - 30 Jul 2025
Viewed by 297
Abstract
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the [...] Read more.
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the fabrication and evaluation of screen-printed electrodes (SPEs) on chitosan film as a novel platform for cardiac patch applications. Chitosan is a biodegradable and biocompatible natural polymer that provides an ideal substrate for SPEs, providing mechanical stability and promoting cell adhesion. Silver ink was employed to enhance electrochemical performance, and the electrodes exhibited strong adhesion and structural integrity under wet conditions. Mechanical testing and swelling ratio analysis were conducted to assess the patch’s physical robustness and aqueous stability. Silver ink was employed to enhance electrochemical performance, which was evaluated using cyclic voltammetry. In vitro, electrical stimulation through the chitosan–SPE patch significantly increased the expression of cardiac-specific genes (GATA-4, β-MHC, troponin I) in bone marrow mesenchymal stem cells (BMSCs), indicating early cardiogenic differentiation potential. In vivo, the implantation of the chitosan–SPE patch in a rat MI model demonstrated good tissue integration, preserved myocardial structure, and enhanced ventricular wall thickness, indicating that the patch has the potential to serve as a functional cardiac scaffold. These findings support the feasibility of screen-printed electrodes fabricated on chitosan film substrates as a cost-effective and scalable platform for cardiac repair, offering a foundation for future applications in cardiac tissue engineering. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

16 pages, 7401 KiB  
Article
Sitagliptin Mitigates Diabetic Cardiomyopathy Through Oxidative Stress Reduction and Suppression of VEGF and FLT-1 Expression in Rats
by Qamraa H. Alqahtani, Tahani A. ALMatrafi, Amira M. Badr, Sumayya A. Alturaif, Raeesa Mohammed, Abdulaziz Siyal and Iman H. Hasan
Biomolecules 2025, 15(8), 1104; https://doi.org/10.3390/biom15081104 - 30 Jul 2025
Viewed by 319
Abstract
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s [...] Read more.
Diabetes mellitus (DM) is a global health challenge marked by chronic hyperglycemia, which can result in complications such as diabetic cardiomyopathy. Sitagliptin, an oral anti-hyperglycemic drug, has demonstrated efficacy in alleviating cardiovascular complications associated with DM. This study explored the impact of Sitagliptin’s potential as a therapeutic agent, functioning not only to control blood sugar levels but also to enhance vascular health and strengthen cardiac resilience in diabetes. The investigation focused on alterations in the vascular endothelial growth factor (VEGF) and its receptor-1 (FLT-1) signaling pathways, as well as its potential to suppress inflammation and oxidative stress. A number of rats received a single dose of streptozotocin (STZ) 55 mg/kg (i.p.) to induce DM. Sitagliptin was administered orally (100 mg/kg/90 days) to normal and diabetic rats, after which samples were collected for investigation. Sitagliptin significantly mitigated weight loss in diabetic rats. Its administration significantly reduced blood glucose levels and improved serum troponin I and CK-MB levels. Heart sections from diabetic rats showed a marked increase in mTOR, VEGF, and FLT-1 immune reaction, while sitagliptin-treated diabetic rats’ heart sections showed moderate immune reactions. Sitagliptin’s protective effect was also associated with reduced inflammation, and apoptotic markers. In conclusion, Sitagliptin is suggested to offer beneficial effects on the vascular health of cardiac blood vessels, thereby potentially reducing myocardial stress in diabetic patients. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Diseases)
Show Figures

Graphical abstract

24 pages, 10977 KiB  
Article
Potential of Pumpkin Pulp Carotenoid Extract in the Prevention of Doxorubicin-Induced Cardiotoxicity
by Milana Bosanac, Alena Stupar, Biljana Cvetković, Dejan Miljković, Milenko Čanković and Bojana Andrejić Višnjić
Pharmaceutics 2025, 17(8), 977; https://doi.org/10.3390/pharmaceutics17080977 - 28 Jul 2025
Viewed by 220
Abstract
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC [...] Read more.
Background/Objectives: Doxorubicin is a chemotherapeutic agent whose clinical use is limited by side effects (SEs). The most common SE is doxorubicin-induced cardiotoxicity (DIC), for which there is still no prevention. The hypothesis arises that active substances of natural origin could influence DIC prevention by affecting several pathways of DIC occurrence. Methods: Thirty Wistar rats were divided into six groups (control, NADES (C8:C10) solvent, pumpkin pulp extract, doxorubicin, NADES (C8:C10) solvent–doxorubicin, and pumpkin pulp extract–doxorubicin). During the experiment, parameters of general condition, body, and heart weight were observed. Heart function parameters were monitored by measuring the levels of serum NT-pro-BNP, CK-MB, and hsTnT. Tissue damage was evaluated by determining the doxorubicin damage score and the expression of anti-cardiac troponin I, anti-Nrf2, anti-Bcl-2, anti-caspase-3, anti-COX2, and anti-Ki67 antibodies. Results: Doxorubicin administration led to impaired general condition of animals and increased the levels of NT-proBNP, CK-MB, hsTnT, and myocardium tissue damage of medium grade. Its administration induced apoptosis (as evidenced by elevated Casp3), reduced antiapoptotic Bcl-2 and troponin I expression in cardiomyocytes. Reduced Nrf2 expression due to doxorubicin administration was restored when pumpkin pulp extract containing carotenoids was coadministered, which led to the normalization of Casp3, Bcl-2, and troponin I expression. Consequently, the general condition and body weight were better in animals treated with both doxorubicin and the other treatment compared to those treated with doxorubicin alone. Conclusions: The results of this study strongly suggest that pumpkin pulp extract containing carotenoids has a cardioprotective effect, possibly by regulating the Nrf2 pathway. Full article
(This article belongs to the Special Issue Plant Extracts and Their Biomedical Applications)
Show Figures

Figure 1

23 pages, 4112 KiB  
Article
Metabolic Culture Medium Enhances Maturation of Human iPSC-Derived Cardiomyocytes via Cardiac Troponin I Isoform Induction
by Daria V. Goliusova, Agnessa P. Bogomolova, Alina V. Davidenko, Kristina A. Lavrenteva, Margarita Y. Sharikova, Elena A. Zerkalenkova, Ekaterina M. Vassina, Alexandra N. Bogomazova, Maria A. Lagarkova, Ivan A. Katrukha and Olga S. Lebedeva
Int. J. Mol. Sci. 2025, 26(15), 7248; https://doi.org/10.3390/ijms26157248 - 26 Jul 2025
Viewed by 483
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This [...] Read more.
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This study aimed to identify practical culture conditions that promote iCMs maturation, thereby generating more physiologically relevant in vitro cardiac models. We evaluated the effects of short- and long-term culture in media supplemented with various stimulatory compounds under 2D conditions, focusing on intracellular content and localization of slow skeletal troponin I (ssTnI) and cardiac troponin I (cTnI) isoforms. Our findings demonstrate that the multicomponent metabolic maturation medium (MM-1) effectively enhances the transition toward a more mature iCM phenotype, as evidenced by increased cTnI expression and formation of cross-striated myofibrils. iCMs cultured in MM-1 more closely resemble adult cardiomyocytes and are compatible with high-resolution single-cell techniques such as electron microscopy and patch-clamp electrophysiology. This work provides a practical and scalable approach for advancing the maturation of iPSC-derived cardiac models, with applications in disease modeling and drug screening. Full article
Show Figures

Figure 1

13 pages, 264 KiB  
Article
Dynamic Relationship Between High D-Dimer Levels and the In-Hospital Mortality Among COVID-19 Patients: A Moroccan Study
by Bouchra Benfathallah, Abdellatif Boutagayout, Abha Cherkani Hassani, Hassan Ihazmade, Redouane Abouqal and Laila Benchekroun
COVID 2025, 5(8), 116; https://doi.org/10.3390/covid5080116 - 26 Jul 2025
Viewed by 209
Abstract
This study included 221 patients with COVID-19 who were admitted to the emergency department of Avicenne Hospital in Rabat between August 2020 and August 2021. Patients were divided into three groups according to their D-dimer levels (<1, 1–2, and >2 µg/mL). Adjusted and [...] Read more.
This study included 221 patients with COVID-19 who were admitted to the emergency department of Avicenne Hospital in Rabat between August 2020 and August 2021. Patients were divided into three groups according to their D-dimer levels (<1, 1–2, and >2 µg/mL). Adjusted and unadjusted logistic regression analyses were performed to assess the association between elevated D-dimer levels and in-hospital mortality. Pearson’s correlation analysis was performed to explore the relationship between D-dimer levels and various biological and clinical parameters. The results revealed a statistically significant difference in the mean (SD) age among the three groups (p = 0.006). Analysis showed a statistically significant difference in the means (SD) of oxygen saturation, duration of hospital stay, and breathing rate among the three independent groups of COVID-19 patients. Patients with elevated D-dimer levels (greater than 2 µg/mL) experienced worse outcomes than those in the other groups, with severity, transfer to intensive care, and in-hospital mortality of 55 (40.7%), 35 (16%), and 24 (11%) patients, respectively, with p-values of 0.048, 0.002, and 0.002, respectively. Patients in the D-dimer > 2 µg/mL group had significantly higher C-reactive protein (CRP), lactate dehydrogenase, urea, cardiac troponin, B-type natriuretic peptide, and ferritin levels than those in the other two groups. The p-value was significant among the three groups (p = 0.044, p = 0.001, and p < 0.001). Age and elevated D-dimer levels (greater than 2 µg/mL) were associated with mortality in patients diagnosed with COVID-19. Correlation analysis indicated that D-dimer in COVID-19 patients is associated with worsening respiratory, hepatic, cardiac, and coagulation parameters, suggesting their utility as an integrative marker of disease severity. D-dimer levels > 2 µg/mL were identified as an independent risk factor for COVID-19 in-hospital mortality. Measuring and monitoring D-dimer levels can assist clinicians in taking timely actions and predicting the prognosis of patients with COVID-19. Full article
(This article belongs to the Section COVID Clinical Manifestations and Management)
14 pages, 1664 KiB  
Article
Depletion of IGFALS Serum Level up to 3 Months After Cardiac Surgery, with Exploration of Potential Relationships to Surrogates of Organ Failures and Clinical Outcomes
by Krzysztof Laudanski, Mohamed A. Mahmoud, Hossam Gad and Daniel A. Diedrich
Curr. Issues Mol. Biol. 2025, 47(8), 581; https://doi.org/10.3390/cimb47080581 - 23 Jul 2025
Viewed by 250
Abstract
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients [...] Read more.
The insulin-like growth factor binding protein, acid-labile subunit (IGFALS), plays a crucial role in glucose metabolism and immune regulation, key processes in recovery from surgery. Here, we studied the perioperative serum IGFALS dynamics and explored potential clinical implications. A total of 79 patients undergoing elective cardiac surgery with implementation of cardiopulmonary bypass had their serum isolated at baseline, 24 h, seven days, and three months postoperatively to assess serum concentrations of IGFALS and insulin growth factor 1 (IGF-1). Markers of perioperative injury included troponin I (TnI), high-mobility group box 1 (HMGB-1), and heat shock protein 60 (Hsp-60). Inflammatory status was assessed via interleukin-6 (IL-6) and interleukin-8 (IL-8). Additionally, we measured in vitro cytokine production to viral stimulation of whole blood and monocytes. Surrogates of neuronal distress included neurofilament light chain (NF-L), total tau (τ), phosphorylated tau at threonine 181 (τp181), and amyloid β40 and β42. Renal impairment was defined by RIFLE criteria. Cardiac dysfunction was denoted by serum N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. Serum IGFALS levels declined significantly after surgery and remained depressed even at 3 months. Administration of acetaminophen and acetylsalicylic acid differentiated IGFALS levels at the 24 h postoperatively. Serum IGFALS 24 h post-operatively correlated with production of cytokines by leukocytes after in vitro viral stimulation. Serum amyloid-β1-42 was significantly associated with IGFALS at baseline and 24 h post-surgery Patients discharged home had higher IGFALS levels at 28 days and 3 months than those discharged to healthcare facilities or who died. These findings suggest that IGFALS may serve as a prognostic biomarker for recovery trajectory and postoperative outcomes in cardiac surgery patients. Full article
(This article belongs to the Special Issue The Role of Neuroinflammation in Neurodegenerative Diseases)
Show Figures

Figure 1

11 pages, 428 KiB  
Article
False Troponin Elevation in Pediatric Patients: A Long-Term Biochemical Conundrum Without Cardiac Effects
by Ceren Yapar Gümüş, Taner Kasar, Meltem Boz and Erkut Ozturk
Diagnostics 2025, 15(15), 1847; https://doi.org/10.3390/diagnostics15151847 - 22 Jul 2025
Viewed by 278
Abstract
Background/Objectives: Elevated troponin levels are widely recognized as key biomarkers of myocardial injury and are frequently used in clinical decision making. However, not all instances of troponin elevation indicate true cardiac damage. In some cases, biochemical or immunological interferences may lead to [...] Read more.
Background/Objectives: Elevated troponin levels are widely recognized as key biomarkers of myocardial injury and are frequently used in clinical decision making. However, not all instances of troponin elevation indicate true cardiac damage. In some cases, biochemical or immunological interferences may lead to false-positive results. These situations may lead to unnecessary diagnostic interventions and clinical uncertainty, ultimately impacting patient management negatively. This study aims to investigate the underlying mechanisms of false-positive troponin elevation in pediatric patients, focusing on factors such as macrotroponin formation, autoantibodies, and heterophile antibody interference. Methods: This retrospective study analyzed data from 13 pediatric patients who presented with elevated cardiac troponin levels between 2017 and 2024. Clinical evaluations included transthoracic echocardiography (TTE), electrocardiography (ECG), coronary computed tomography angiography (CTA), cardiac magnetic resonance imaging (MRI), and rheumatologic testing. Laboratory findings included measurements of cardiac troponins (cTnI and hs-cTnT) and pro-BNP levels. Results: Among 70 patients evaluated for elevated troponin levels, 13 (18.6%) were determined to have no identifiable cardiac etiology. The median age of these 13 patients was 13.0 years (range: 9–16), with 53.8% being female. The most common presenting complaints were chest pain (53.8%) and palpitations (30.8%). TTE findings were normal in 61.5% of the patients, and all patients had normal coronary CTA and cardiac MRI findings. Although initial troponin I levels were elevated in all cases, persistent positivity was observed up to 12 months. Median cTnI levels were 1.00 ng/mL (range: 0.33–7.19) at week 1 and 0.731 ng/mL (range: 0.175–4.56) at month 12. PEG precipitation testing identified macrotroponin in three patients (23.1%). No etiological explanation could be identified in 10 cases (76.9%), which were considered idiopathic. All patients had negative results for heterophile antibody and rheumatologic tests. Conclusions: When interpreting elevated troponin levels in children, biochemical interferences—especially macrotroponin—should not be overlooked. This study emphasizes the diagnostic uncertainty associated with non-cardiac troponin elevation. To better guide clinical practice and clarify false positivity rates, larger, multicenter prospective studies are needed. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

10 pages, 783 KiB  
Article
The Prognostic Value of High-Sensitive Troponin T Rise Within the Upper Reference Limit in Breast Cancer: A Prospective Pilot Study
by Sergey Kozhukhov and Nataliia Dovganych
Cancers 2025, 17(14), 2412; https://doi.org/10.3390/cancers17142412 - 21 Jul 2025
Viewed by 411
Abstract
Background: We investigated the role of a high-sensitive cardiac troponin T (hsTnT) increase below the upper limit of normal (ULN) in patients with breast cancer (BC). hsTnT assays accurately quantify very low plasma troponin concentrations and enable the early detection of cardiomyocyte injury [...] Read more.
Background: We investigated the role of a high-sensitive cardiac troponin T (hsTnT) increase below the upper limit of normal (ULN) in patients with breast cancer (BC). hsTnT assays accurately quantify very low plasma troponin concentrations and enable the early detection of cardiomyocyte injury before a drop in the left ventricular ejection fraction (LVEF). The increase in hsTnT below the ULN in response to chemotherapy has not previously been studied. Method: This was an open-label pilot study. Female patients with newly diagnosed BC scheduled to receive systemic cancer treatment were recruited. Blood sampling and echocardiography were performed at baseline, at 3 and 6 months of cancer treatment. hsTnT concentrations were measured using the Elecsys TnT hs assay (Roche Diagnostics). The limit of blank and 99th percentile cutoff values for the hsTnT assay were 3 and 14 ng/L. We calculated the rise in hsTnT (ΔhsTnT) by the difference (%) between its baseline level and during follow-up (FU) in each patient. Results: Among eligible subjects, we excluded 4 patients before the start of treatment and 17 patients during the follow-up with values for the hsTnT >14 ng/L. Finally, 60 women with a median age of 48.6 ± 1.3 years were included in the study. The median baseline hsTnT concentration was 5.5 ± 1.4 ng/L. During 6 months of cancer treatment, hsTnT increased in all patients by up to 10–305% from baseline, with an average of 94.2%. LV EF was normal at baseline and decreased significantly compared to the value before cancer treatment (61.9 ± 3.3% vs. 56.3 ± 7.0%; p < 0.045). We correlated the hsTnT rise with a drop in LV EF ≥ 10% from its baseline level. Logistic regression analysis showed that Δ hsTnT has a good predictive value for LV dysfunction, 0.78 (p = 0.05), 95% CI (0.67–0.90). The increase in hsTnT > 81% was determined as the optimal threshold value for detecting early biochemical cardiotoxicity. Conclusion: It was investigated that hsTnT rise within the cutoff < 14 ng/L can be used as a marker of early biochemical cardiotoxicity and is valuable for predicting LV drop in 6 months of FU. We conclude that BC patients with increased hsTnT plasma concentration > 81% from the baseline value should be considered as high-risk patients for cardiotoxicity and need more precise cardiac monitoring and early preventive medical intervention strategies. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Graphical abstract

14 pages, 971 KiB  
Article
High Voltage and Train-Surfing Injuries: A 30-Year Retrospective Analysis of High-Voltage Trauma and Its Impact on Cardiac Biomarkers
by Viktoria Koenig, Maximilian Monai, Alexandra Christ, Marita Windpassinger, Gerald C. Ihra, Alexandra Fochtmann-Frana and Julian Joestl
J. Clin. Med. 2025, 14(14), 4969; https://doi.org/10.3390/jcm14144969 - 14 Jul 2025
Viewed by 292
Abstract
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these [...] Read more.
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these behaviors expose individuals to the invisible danger of electric arcs from 15,000-volt railway lines, often resulting in extensive burns, cardiac complications, and severe trauma. This study presents a 30-year retrospective analysis comparing cardiac biomarkers and clinical outcomes in train-surfing injuries versus work-related HVEIs. Methods: All patients with confirmed high-voltage injury (≥1000 volts) admitted to a Level 1 burn center between 1994 and 2024 were retrospectively analyzed. Exclusion criteria comprised low-voltage trauma, suicide, incomplete records, and external treatment. Clinical and laboratory parameters—including total body surface area (TBSA), Abbreviated Burn Severity Index (ABSI), electrocardiogram (ECG) findings, intensive care unit (ICU) and hospital stay, mortality, and cardiac biomarkers (creatine kinase [CK], CK-MB, lactate dehydrogenase [LDH], aspartate transaminase [AST], troponin, and myoglobin)—were compared between the two cohorts. Results: Of 81 patients, 24 sustained train-surfing injuries and 57 were injured in occupational settings. Train surfers were significantly younger (mean 16.7 vs. 35.2 years, p = 0.008), presented with greater TBSA (49.9% vs. 17.9%, p = 0.008), higher ABSI scores (7.3 vs. 5.1, p = 0.008), longer ICU stays (53 vs. 17 days, p = 0.008), and higher mortality (20.8% vs. 3.5%). ECG abnormalities were observed in 51% of all cases, without significant group differences. However, all cardiac biomarkers were significantly elevated in train-surfing injuries at both 72 h and 10 days post-injury (p < 0.05), suggesting more pronounced cardiac and muscular damage. Conclusions: Train-surfing-related high-voltage injuries are associated with markedly more severe systemic and cardiac complications than occupational HVEIs. The significant biomarker elevation and critical care demands highlight the urgent need for targeted prevention, public awareness, and early cardiac monitoring in this high-risk adolescent population. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

14 pages, 789 KiB  
Review
Unplanned Postoperative Angiography After Isolated Coronary Artery Bypass Grafting: State of the Art and Future Perspective
by Konrad Wisniewski, Giovanni Concistrè and Angelo Maria Dell’Aquila
Medicina 2025, 61(7), 1241; https://doi.org/10.3390/medicina61071241 - 9 Jul 2025
Viewed by 294
Abstract
Unplanned postoperative coronary angiography (uCAG) following isolated coronary artery bypass grafting (CABG) represents a significant clinical challenge, reflecting postoperative myocardial ischemia (PMI) with substantial impact on outcomes. The incidence of uCAG varies from 0.39 to 5.3%, depending on institutional protocols and diagnostic thresholds. [...] Read more.
Unplanned postoperative coronary angiography (uCAG) following isolated coronary artery bypass grafting (CABG) represents a significant clinical challenge, reflecting postoperative myocardial ischemia (PMI) with substantial impact on outcomes. The incidence of uCAG varies from 0.39 to 5.3%, depending on institutional protocols and diagnostic thresholds. Elevated cardiac biomarkers (high-sensitivity troponin and CK-MB), ECG changes, and hemodynamic instability are key indicators guiding uCAG. While associated with increased short-term mortality and morbidity, timely identification and treatment of graft-related complications via uCAG can improve midterm survival. Percutaneous coronary intervention (PCI) often emerges as the preferred therapeutic strategy over redo CABG. Future efforts should focus on refining risk stratification models, expanding the role of non-invasive imaging modalities, and validating early intervention strategies through prospective studies. Establishing standardized criteria for diagnosing and managing PMI remains critical to enhance outcomes and healthcare efficiency. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

10 pages, 418 KiB  
Article
Assessing Analytical Performance and Correct Classification for Cardiac Troponin Deltas Across Diagnostic Pathways Used for Myocardial Infarction
by Peter A. Kavsak, Sameer Sharif, Wael L. Demian, Won-Shik Choi, Emilie P. Belley-Cote, Jennifer Taher, Jennifer L. Shea, David W. Blank, Michael Knauer, Laurel Thorlacius, Joshua E. Raizman, Yun Huang, Daniel R. Beriault, Angela W. S. Fung, Paul M. Yip, Lorna Clark, Beth L. Abramson, Steven M. Friedman, Jesse McLaren, Paul Atkinson, Annabel Chen-Tournoux, Neville Suskin, Marco L. A. Sivilotti, Venkatesh Thiruganasambandamoorthy, Frank Scheuermeyer, Karin H. Humphries, Kristin M. Aakre, Shawn E. Mondoux, Craig Ainsworth, Flavia Borges, Andrew Worster, Andrew McRae and Allan S. Jaffeadd Show full author list remove Hide full author list
Diagnostics 2025, 15(13), 1652; https://doi.org/10.3390/diagnostics15131652 - 28 Jun 2025
Viewed by 480
Abstract
Background: In the emergency setting, many diagnostic pathways incorporate change in high-sensitivity cardiac troponin (hs-cTn) concentrations (i.e., the delta) to classify patients as low-risk (rule-out) or high-risk (rule-in) for possible myocardial infarction (MI). However, the impact of analytical variation on the delta for [...] Read more.
Background: In the emergency setting, many diagnostic pathways incorporate change in high-sensitivity cardiac troponin (hs-cTn) concentrations (i.e., the delta) to classify patients as low-risk (rule-out) or high-risk (rule-in) for possible myocardial infarction (MI). However, the impact of analytical variation on the delta for correct classification is unknown, especially at concentrations below and around the 99th percentile. Our objective was to assess the impact of delta variation for correct risk classification across the European Society of Cardiology (ESC 0/1 h and 0/2 h), the High-STEACS, and the common change criteria (3C) pathways. Methods: A yearlong accuracy study for hs-cTnT was performed where laboratories across Canada tested three patient-based samples (level 1 target value = 6 ng/L, level 2 target value = 9 ng/L, level 3 target value = 12 ng/L) monthly across 41 different analyzers. The assigned low-delta between levels 1 and 2 was 3 ng/L (i.e., 9 − 6 = 3 ng/L) and the assigned high-delta between levels 1 and 3 was 6 ng/L (i.e., 12 − 6 = 6 ng/L). The low- and high-deltas for each analyzer were determined monthly from the measured values, with the difference calculated from the assigned deltas. The obtained deltas were then assessed via the different pathways on correct classification (i.e., percent correct with 95% confidence intervals, CI) and using non-parametric analyses. Results: The median (interquartile range) difference between the measured versus assigned low-delta (n = 436) and high-delta (n = 439) was −1 ng/L (−1 to 0). The correct classification differed among the pathways. The ESC 0/1 h pathway yielded the lowest percentage of correct classification at 35.3% (95% CI: 30.8 to 40.0) for the low-delta and 90.0% (95% CI: 86.8 to 92.6) for the high-delta. The 3C and ESC 0/2 h pathways yielded higher and equivalent estimates on correct classification: 95.2% (95% CI: 92.7 to 97.0) for the low-delta and 98.2% (95% CI: 96.4 to 99.2) for the high-delta. The High-STEACS pathway yielded 99.5% (95% CI: 98.4 to 99.9) of correct classifications for the high-delta but only 36.2% (95% CI: 31.7 to 40.9) for the low-delta. Conclusions: Analytical variation will impact risk classification for MI when using hs-cTn deltas alone per the pathways. The 3C and ESC 0/2 h pathways have <5% misclassification when using deltas for hs-cTnT in this dataset. Additional studies with different hs-cTnI assays at concentrations below and near the 99th percentile are warranted to confirm these findings. Full article
(This article belongs to the Special Issue Recent Advances in Clinical Biochemistry)
Show Figures

Figure 1

18 pages, 783 KiB  
Review
COVID-19 and Myocarditis: Trends, Clinical Characteristics, and Future Directions
by Mohammad Abumayyaleh, Tobias Schupp, Michael Behnes, Ibrahim El-Battrawy, Nazha Hamdani and Ibrahim Akin
J. Clin. Med. 2025, 14(13), 4560; https://doi.org/10.3390/jcm14134560 - 27 Jun 2025
Viewed by 736
Abstract
Summary: COVID-19, caused by SARS-CoV-2, has been associated with a range of cardiovascular complications, including myocarditis. This review aims to systematically present the clinical manifestations, underlying pathophysiological mechanisms, diagnostic approaches, and management strategies for both COVID-19-associated myocarditis and myocarditis related to SARS-CoV-2 vaccination. [...] Read more.
Summary: COVID-19, caused by SARS-CoV-2, has been associated with a range of cardiovascular complications, including myocarditis. This review aims to systematically present the clinical manifestations, underlying pathophysiological mechanisms, diagnostic approaches, and management strategies for both COVID-19-associated myocarditis and myocarditis related to SARS-CoV-2 vaccination. We conducted a literature search using the PubMed database, covering studies published up to early 2024. Search terms included combinations of “COVID-19”, “Coronavirus”, “SARS-CoV-2”, and/or “vaccination” with “cardiac injury”, “cardiac inflammation”, “myocarditis”. The reported prevalence of COVID-19-associated myocarditis varies between 2.3% and 5.0%, though myocardial injury is more frequently observed than confirmed myocarditis. Pathophysiological mechanisms include direct viral damage, immune-mediated injury, and molecular mimicry. Clinically, patients may present with chest pain, dyspnea, and fever. Diagnostic workup includes electrocardiography (ECG), troponin measurement, echocardiography, cardiac magnetic resonance imaging (cMRI), and in selected cases, endomyocardial biopsy (EMB). The management and disposition of COVID-19-associated myocarditis varies according to severity, especially to allow targeted treatment of complications. Glucocorticoids are a mainstay of treatment in severe cases. Myocarditis following SARS-CoV-2 vaccination is rare, more frequently reported in males under 30 years, and is generally associated with a favorable prognosis. Despite this, the benefits of vaccination continue to outweigh the risks. COVID-19 is associated with an increased risk of heart failure and other cardiovascular complications, underlining the importance of long-term follow-up and preventive strategies. Further research is needed to better understand the pathogenesis and optimal management of myocarditis in the context of COVID-19, with the goal of developing evidence-based therapeutic algorithms. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

13 pages, 471 KiB  
Article
The Clinical Significance and Potential of Complex Diagnosis for a Large Scar Area Following Myocardial Infarction
by Valentin Oleynikov, Lyudmila Salyamova, Nikolay Alimov, Natalia Donetskaya, Irina Avdeeva and Elena Averyanova
Diagnostics 2025, 15(13), 1611; https://doi.org/10.3390/diagnostics15131611 - 25 Jun 2025
Viewed by 434
Abstract
Background/Objectives: The aim of this study is to identify markers and develop a multifactorial model for characterizing extensive scar tissue after revascularization in patients with myocardial infarction (MI). Methods: A total of 123 patients with MI were examined. The patients underwent [...] Read more.
Background/Objectives: The aim of this study is to identify markers and develop a multifactorial model for characterizing extensive scar tissue after revascularization in patients with myocardial infarction (MI). Methods: A total of 123 patients with MI were examined. The patients underwent contrast-enhanced cardiac magnetic resonance imaging (MRI) with a 1.5 Tesla GE SIGNA Voyager (GE HealthCare, Chicago, IL, USA) on the 7th–10th days from the onset of the disease. At the first stage, we performed a comparative analysis and built a multifactorial model based on the examination results of 92 (75%) patients enrolled from April 2021 to October 2023. These patients formed the group used for model development, or the “modeling group”. The mass of the scar was calculated, including relative to the left ventricular (LV) myocardium mass (Mscar/LVMM, in %). Results: The first subgroup consisted of 36 (39%) patients with a large scar, denoted as “LS” (Mscar/LVMM > 20%). The second subgroup included 56 (61%) patients with a smaller scar, referred to as “SS” (Mscar/LVMM ≤ 20%). Logistic regression was used to identify independent factors affecting scar tissue size. A multifactorial model was created. This model predicts Mscar/LVMM > 20% on MRI. It uses readily available clinical parameters: high-sensitivity troponin I (HscTn I) and N-terminal pro B-type natriuretic peptide (NT-proBNP) levels, and LV relative wall thickness (RWT). We tested the multifactorial model on the “modeling group” (n = 31). The sensitivity was 63.6% and the specificity was 85.7%. Conclusions: These indicates the feasibility of its application in clinical practice. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
Show Figures

Graphical abstract

Back to TopTop