Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = carbothioamides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3717 KB  
Article
Design, Synthesis, and Mechanistic Anticancer Evaluation of New Pyrimidine-Tethered Compounds
by Farida Reymova, Belgin Sever, Edanur Topalan, Canan Sevimli-Gur, Mustafa Can, Amaç Fatih Tuyun, Faika Başoğlu, Abdulilah Ece, Masami Otsuka, Mikako Fujita, Hasan Demirci and Halilibrahim Ciftci
Pharmaceuticals 2025, 18(2), 270; https://doi.org/10.3390/ph18020270 - 19 Feb 2025
Cited by 10 | Viewed by 2385
Abstract
Background: Despite recent breakthroughs in cancer treatment, non-small cell lung cancer (NSCLC) and breast cancer remain major causes of death from all malignancies. The epidermal growth factor receptor (EGFR) is an important mediator of the pathways involved in cell proliferation, apoptosis, and angiogenesis. [...] Read more.
Background: Despite recent breakthroughs in cancer treatment, non-small cell lung cancer (NSCLC) and breast cancer remain major causes of death from all malignancies. The epidermal growth factor receptor (EGFR) is an important mediator of the pathways involved in cell proliferation, apoptosis, and angiogenesis. Thus, its overexpression triggers several types of cancer, including NSCLC and breast cancer. Methods: In the current study, we synthesized new pyrimidine-tethered compounds (chalcone derivative (B-4), pyrazoline–carbothioamide (B-9), and pyrazoline–thiazole hybrids (BH1-7)). These compounds were then tested for cytotoxicity against A549 NSCLC and MCF-7 breast cancer cells. Results: Of these, B-4 displayed significant cytotoxicity against both cells (IC50 = 6.70 ± 1.02 µM for MCF-7; IC50 = 20.49 ± 2.7 µM for A549) compared to the standard agent lapatinib (IC50 = 9.71 ± 1.12 µM for MCF-7; IC50 = 18.21 ± 3.25 µM for A549). The anticancer potential of B-4 between Jurkat leukemic T cells and peripheral blood mononuclear cells (PBMCs) (healthy) was found to be selective. Mechanistically, 11.9% and 10.2% of A549 and MCF-7 cells treated with B-4, respectively, underwent apoptosis and B-4 produced 46% EGFR inhibition at a concentration of 10 μM. The B-4/EGFR complex obtained after induced fit docking was subjected to 300 ns of molecular dynamics simulation, which confirmed the stability of the complex in a mimicked biological environment. On the other hand, B-4 was shown to have drug-like properties by in silico pharmacokinetic estimation. Conclusions: B-4 is an EGFR inhibitor and apoptosis inducer for future NSCLC and breast cancer studies. Full article
Show Figures

Figure 1

10 pages, 3408 KB  
Communication
Synthesis of N-p-Fluorothiosemicarbazone and of Bis(N-p-Fluorophenylthiourea): Crystal Structure and Conformational Analysis of N,N′-Bis(4-Fluorophenyl)Hydrazine-1,2-Bis(Carbothioamide)
by Sirine Salhi, Dorra Kanzari-Mnallah, Isabelle Jourdain, Michael Knorr, Carsten Strohmann, Jan-Lukas Kirchhoff, Hédi Mrabet and Azaiez Ben Akacha
Molbank 2024, 2024(4), M1926; https://doi.org/10.3390/M1926 - 28 Nov 2024
Cited by 1 | Viewed by 1409
Abstract
The reaction of the phosphonated hydrazone (2-hydrazineylidenepropyl) diphenylphosphine oxide 1 with p-fluorophenyl-isothiocyanate yields as a major product the thiosemicarbazone Ph2P(=O)CH2{C=N-NH(C=S)-N(H)C6H4F}CH3 (2-(1-(diphenylphosphoryl)propan-2-ylidene)-N-(4-fluorophenyl)hydrazine-1-carbothioamide) 2 along with bis(N-p-fluorophenylthiourea) 3 as [...] Read more.
The reaction of the phosphonated hydrazone (2-hydrazineylidenepropyl) diphenylphosphine oxide 1 with p-fluorophenyl-isothiocyanate yields as a major product the thiosemicarbazone Ph2P(=O)CH2{C=N-NH(C=S)-N(H)C6H4F}CH3 (2-(1-(diphenylphosphoryl)propan-2-ylidene)-N-(4-fluorophenyl)hydrazine-1-carbothioamide) 2 along with bis(N-p-fluorophenylthiourea) 3 as a minor product. The latter compound 3 was isolated as the main product by direct treatment of p-FC6H4N=C=S with hydrazine in a 2:1 ratio. Both 2 and 3 were characterized by NMR. Furthermore, the molecular structure of 3 was elucidated by an X-ray diffraction study, revealing both intra- and intermolecular secondary interactions. A conformational DFT study, at the B3LYP/6-311 G++ (d, p) level of theory, confirms a good match between the calculated structure and the experimental one. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

12 pages, 2263 KB  
Article
Breaking New Ground towards Innovative Synthesis of Palladacycles: The Electrochemical Synthesis of a Tetranuclear Thiosemicarbazone-[C,N,S] Palladium(II) Complex
by María L. Durán-Carril, José Ignacio Fidalgo-Brandón, David Lombao-Rodríguez, Paula Munín-Cruz, Francisco Reigosa and José M. Vila
Molecules 2024, 29(17), 4185; https://doi.org/10.3390/molecules29174185 - 4 Sep 2024
Viewed by 1331
Abstract
The electrochemical oxidation of anodic metals (M = nickel and palladium) in an acetonitrile solution of the thiosemicarbazone ligands (E)-2-(1-(4-methoxyphenyl)ethylidene)-N-methylhydrazine-1-carbothioamide (a), (E)-2-(1-(p-tolyl)ethylidene)hydrazine-1-carbothioamide (b), and (E)-N-phenyl-2-(1-(p-tolyl)ethylidene)hydrazine-1-carbothioamide (c) yielded the homoleptic complexes [ML2], 1a, 1b, [...] Read more.
The electrochemical oxidation of anodic metals (M = nickel and palladium) in an acetonitrile solution of the thiosemicarbazone ligands (E)-2-(1-(4-methoxyphenyl)ethylidene)-N-methylhydrazine-1-carbothioamide (a), (E)-2-(1-(p-tolyl)ethylidene)hydrazine-1-carbothioamide (b), and (E)-N-phenyl-2-(1-(p-tolyl)ethylidene)hydrazine-1-carbothioamide (c) yielded the homoleptic complexes [ML2], 1a, 1b, 1c, and 2c and [M4L4], 2a as air-stable solids. The crystal structures for 1a, 1b, 1c, and 2c show the ligands in a transoid disposition with the [S,S] and [N,N] donor atom pairs occupying cis positions on the nearly square planar coordination plane of the metal. The structure for 2a of S4 symmetry comprises a tetranuclear palladacycle where the metalated ligands are arranged around a central Pd4S4 environment: a crown ring with alternating palladium and sulfur atoms. The latter complex is the first example of an electrochemical preparation of a cyclometalated palladium compound, marking a milestone in the chemistry of such species. The compounds have been fully characterized by elemental microanalysis, mass spectrometry, infrared (IR), and 1H nuclear magnetic resonance (NMR) spectra. Full article
Show Figures

Figure 1

9 pages, 433 KB  
Communication
Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives
by Kazimieras Anusevičius, Ignė Stebrytė and Povilas Kavaliauskas
Molbank 2024, 2024(3), M1872; https://doi.org/10.3390/M1872 - 19 Aug 2024
Viewed by 2962
Abstract
Fluorenyl-hydrazonothiazole derivatives 2–7 were synthesized by the Hantzsch reaction from 2-(9H-fluoren-9-ylidene)hydrazine-1-carbothioamide (1) and the corresponding α-halocarbonyl compounds in THF or 1,4-dioxane solvent. A base catalyst is not necessary for synthesising thiazoles, but it can shorten the reaction time. The [...] Read more.
Fluorenyl-hydrazonothiazole derivatives 2–7 were synthesized by the Hantzsch reaction from 2-(9H-fluoren-9-ylidene)hydrazine-1-carbothioamide (1) and the corresponding α-halocarbonyl compounds in THF or 1,4-dioxane solvent. A base catalyst is not necessary for synthesising thiazoles, but it can shorten the reaction time. The antimicrobial properties of all synthesized compounds were screened for multidrug-resistant microorganism strains. The minimum inhibitory concentration of the tested compounds against Gram-positive bacteria and fungi was higher than 256 μg/mL, but several compounds had activity against Gram-positive strains. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Graphical abstract

18 pages, 2637 KB  
Article
Novel Thiazole Derivatives Containing Imidazole and Furan Scaffold: Design, Synthesis, Molecular Docking, Antibacterial, and Antioxidant Evaluation
by Fatimah Agili
Molecules 2024, 29(7), 1491; https://doi.org/10.3390/molecules29071491 - 27 Mar 2024
Cited by 17 | Viewed by 3077
Abstract
Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4ac in EtOH with [...] Read more.
Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4ac in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6af. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes’ key amino acids. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

22 pages, 2912 KB  
Article
New Thiazolyl-Pyrazoline Derivatives as Potential Dual EGFR/HER2 Inhibitors: Design, Synthesis, Anticancer Activity Evaluation and In Silico Study
by Mariam M. Fakhry, Amr A. Mattar, Marwa Alsulaimany, Ebtesam M. Al-Olayan, Sara T. Al-Rashood and Hatem A. Abdel-Aziz
Molecules 2023, 28(21), 7455; https://doi.org/10.3390/molecules28217455 - 6 Nov 2023
Cited by 25 | Viewed by 3363
Abstract
A new series of thiazolyl-pyrazoline derivatives (4ad, 5ad 6a, b, 7ad, 8a, b, and 10a, b) have been designed and synthesized through the combination of thiazole and pyrazoline [...] Read more.
A new series of thiazolyl-pyrazoline derivatives (4ad, 5ad 6a, b, 7ad, 8a, b, and 10a, b) have been designed and synthesized through the combination of thiazole and pyrazoline moieties, starting from the key building blocks pyrazoline carbothioamides (1ab). These eighteen derivatives have been designed as anticipated EGFR/HER2 dual inhibitors. The efficacy of the developed compounds in inhibiting cell proliferation was assessed using the breast cancer MCF-7 cell line. Among the new synthesized thiazolyl-pyrazolines, compounds 6a, 6b, 10a, and 10b displayed potent anticancer activity toward MCF-7 with IC50 = 4.08, 5.64, 3.37, and 3.54 µM, respectively, when compared with lapatinib (IC50 = 5.88 µM). In addition, enzymatic assays were also run for the most cytotoxic compounds (6a and 6b) toward EGFR and HER2 to demonstrate their dual inhibitory activity. They revealed promising inhibition potency against EGFR with IC50 = 0.024, and 0.005 µM, respectively, whereas their IC50 = 0.047 and 0.022 µM toward HER2, respectively, compared with lapatinib (IC50 = 0.007 and 0.018 µM). Both compounds 6a and 10a induced apoptosis by arresting the cell cycle of the MCF-7 cell line at the G1 and G1/S phases, respectively. Molecular modeling studies for the promising candidates 6a and 10a showed that they formed the essential binding with the crucial amino acids for EGFR and HER2 inhibition, supporting the in vitro assay results. Furthermore, ADMET study predictions were carried out for the compounds in the study. Full article
Show Figures

Graphical abstract

25 pages, 6803 KB  
Article
Thiourea Derivative Metal Complexes: Spectroscopic, Anti-Microbial Evaluation, ADMET, Toxicity, and Molecular Docking Studies
by Ahmed T. F. Al-Halbosy, Adnan A. Hamada, Ahmed S. Faihan, Abdulrahman M. Saleh, Tarek A. Yousef, Mortaga M. Abou-Krisha, Mona H. Alhalafi and Ahmed S. M. Al-Janabi
Inorganics 2023, 11(10), 390; https://doi.org/10.3390/inorganics11100390 - 30 Sep 2023
Cited by 12 | Viewed by 4526
Abstract
The treatment of N-Phenylmorpholine-4-carbothioamide (HPMCT) with bivalent metal ions in a 2:1 mol ratio without a base present affords [MCl2(κ1S-HPMCT)2] {M = Cu(1), Pd(2), Pt(3), and Hg(4)} in [...] Read more.
The treatment of N-Phenylmorpholine-4-carbothioamide (HPMCT) with bivalent metal ions in a 2:1 mol ratio without a base present affords [MCl2(κ1S-HPMCT)2] {M = Cu(1), Pd(2), Pt(3), and Hg(4)} in a good yield. Furthermore, the reaction of two equivalents of HPMCT and one equivalent of bivalent metal ions in the presence of Et3N has afforded [M(κ2S,N-PMCT)2] {M = Ni(5), Cu(6), Pd(7), Pt(8), Zn(9), Cd(10), and Hg(11)}. Infrared, 1H, 13C Nuclear Magnetic Resonance molar conductivity, and elemental analysis were used to characterize the synthesized complexes. The results suggest that HPMCT is bonded as monodentate via an S atom in Complexes (14), whereas linkage as a bidentate chelating ligand via S and N atoms gives two chelate rings. Moreover, the synthesized ligand and the complexes were screened for antibacterial activity, which displayed that the very best antibacterial activities for Complexes (1), (6), and (3). In addition, the cytotoxic activity of the HPMCT ligand, [PdCl2(HPMCT)2] (2), and [PtCl2(HPMCT)2] (3) were screened on breast cancer cell lines (MCF-7), and Complex (3) reveals the most promising activity with an IC50 value 12.72 ± 0.4 μM. Using the B3LYP method and 6-311++G(d,p) basis sets for the ligand and the SDD basis set for the central metal, the synthesized complexes utilizing the prepared ligand were optimized. Various quantum parameters such as hardness, electron affinity, dipole moment, vibrational frequencies, and ionization energy for the ligand and its complexes have been calculated. In general, a favorable agreement was found between the experimental results and the obtained theoretical results. Full article
Show Figures

Figure 1

24 pages, 36252 KB  
Article
Green Synthesis and Molecular Docking Study of Some New Thiazoles Using Terephthalohydrazide Chitosan Hydrogel as Ecofriendly Biopolymeric Catalyst
by Jehan Y. Al-Humaidi, Sobhi M. Gomha, Nahed A. Abd El-Ghany, Basant Farag, Magdi E. A. Zaki, Tariq Z. Abolibda and Nadia A. Mohamed
Catalysts 2023, 13(9), 1311; https://doi.org/10.3390/catal13091311 - 20 Sep 2023
Cited by 28 | Viewed by 3213
Abstract
Terephthalohydrazide chitosan hydrogel (TCs) was prepared and investigated as an ecofriendly biopolymeric catalyst for synthesis of some novel thiazole and thiadiazole derivatives. Thus, TCs was used as a promising ecofriendly basic biocatalyst for preparation of three new series of thiazoles and two thiadiazoles [...] Read more.
Terephthalohydrazide chitosan hydrogel (TCs) was prepared and investigated as an ecofriendly biopolymeric catalyst for synthesis of some novel thiazole and thiadiazole derivatives. Thus, TCs was used as a promising ecofriendly basic biocatalyst for preparation of three new series of thiazoles and two thiadiazoles derivatives via reacting 2-(2-oxo-1,2-diphenylethylidene) hydrazine-1-carbothio-amide with various hydrazonoyl chlorides and α-haloketones under mild ultrasonic irradiation. Also, their yield% was estimated using chitosan and TCs in a comparative study. The procedure being employed has the advantages of mild reaction conditions, quick reaction durations, and high reaction yields. It also benefits from the catalyst’s capacity to be reused several times without significantly losing potency. The chemical structures of the newly prepared compounds were confirmed by IR, MS, and 1H-NMR. Docking analyses of the synthesized compounds’ binding modes revealed promising binding scores against the various amino acids of the selected protein (PDB Code—1JIJ). SwissADME’s online tool is then used to analyze the physiochemical and pharmacokinetic characteristics of the most significant substances. The majority of novel compounds showed zero violation from Lipinski’s rule (Ro5). Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

13 pages, 2730 KB  
Article
Green Synthetic Approaches of 2-Hydrazonothiazol-4(5H)-ones Using Sustainable Barium Oxide-Chitosan Nanocomposite Catalyst
by Khaled D. Khalil, Sayed M. Riyadh, Ali H. Bashal, Tariq Z. Abolibda and Sobhi M. Gomha
Polymers 2023, 15(18), 3817; https://doi.org/10.3390/polym15183817 - 19 Sep 2023
Cited by 4 | Viewed by 2167
Abstract
The diverse applications of metal oxide-biopolymer matrix as a nanocomposite heterogenous catalyst have caused many researches to scrutinize the potential of this framework. In this study, a novel hybrid barium oxide-chitosan nanocomposite was synthesized through a facile and cost-effective co-precipitation method by doping [...] Read more.
The diverse applications of metal oxide-biopolymer matrix as a nanocomposite heterogenous catalyst have caused many researches to scrutinize the potential of this framework. In this study, a novel hybrid barium oxide-chitosan nanocomposite was synthesized through a facile and cost-effective co-precipitation method by doping barium oxide nanoparticles within the chitosan matrix at a weight percentage of 20 wt.% BaO-chitosan. A thin film of the novel hybrid material was produced by casting the nanocomposite solution in a petri dish. Several instrumental methods, including Fourier-transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), were used to analyze and characterize the structure of the BaO-CS nanocomposite. The chemical interaction with barium oxide molecules resulted in a noticeable displacement of the most significant chitosan-specific peaks in the FTIR spectra. When the surface morphology of SEM graphs was analyzed, a dramatic morphological change in the chitosan surface was also discovered; this morphological change can be attributed to the surface adsorption of BaO molecules. Additionally, the patterns of the XRD demonstrated that the crystallinity of the material, chitosan, appears to be enhanced upon interaction with barium oxide molecules with the active sites, OH and NH2 groups, along the chitosan backbone. The prepared BaO-CS nanocomposite can be used successfully as an effective heterogenous recyclable catalyst for the reaction of N,N′-(alkane-diyl)bis(2-chloroacetamide) with 2-(arylidinehydrazine)-1-carbothioamide as a novel synthetic approach to prepare 2-hydrazonothiazol-4(5H)-ones. This new method provides a number of benefits, including quick and permissive reaction conditions, better reaction yields, and sustainable catalysts for multiple uses. Full article
(This article belongs to the Special Issue Advances in Polymer Composites II)
Show Figures

Graphical abstract

18 pages, 5970 KB  
Article
Antitumor and Antibacterial Activity of Ni(II), Cu(II), Ag(I), and Hg(II) Complexes with Ligand Derived from Thiosemicarbazones: Characterization and Theoretical Studies
by Heba Alshater, Ahlam I. Al-Sulami, Samar A. Aly, Ehab M. Abdalla, Mohamed A. Sakr and Safaa S. Hassan
Molecules 2023, 28(6), 2590; https://doi.org/10.3390/molecules28062590 - 13 Mar 2023
Cited by 34 | Viewed by 3456
Abstract
Four new complexes (Ni2+, Cu2+, Ag+, and Hg2+) were prepared from the ligand N-(4-chlorophenyl)-2-(phenylglycyl)hydrazine-1-carbothioamide (H2L). Analytical and spectroscopic techniques were used to clarify the structural composition of the new chelates. In addition, all [...] Read more.
Four new complexes (Ni2+, Cu2+, Ag+, and Hg2+) were prepared from the ligand N-(4-chlorophenyl)-2-(phenylglycyl)hydrazine-1-carbothioamide (H2L). Analytical and spectroscopic techniques were used to clarify the structural composition of the new chelates. In addition, all chelates were tested against bacterial strains and the HepG2 cell line to determine their antiseptic and carcinogenic properties. The Ni(II) complex was preferable to the other chelates. Molecular optimization revealed that H2L had the highest reactivity, followed by Hg-chelate, Ag-chelate, Ni-chelate, and Cu-chelate. Moreover, molecular docking was investigated against two different proteins: the ribosyltransferase enzyme (code: 3GEY) and the EGFR tyrosine kinase receptor (code: 1m17). Full article
(This article belongs to the Special Issue Metal-Based Complex: Preparation and Medicinal Characteristics)
Show Figures

Figure 1

13 pages, 4273 KB  
Article
Toxicity Study and Binding Analysis of Newly Synthesized Antifungal N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazinecarbothioamide Derivative with Bovine Serum Albumin
by Tanveer A. Wani, Ahmed H. Bakheit, Seema Zargar, Nojood Altwaijry, Mashooq Ahmad Bhat, Hamad M. Alkahtani and Lamees S. Al-Rasheed
Int. J. Mol. Sci. 2023, 24(5), 4942; https://doi.org/10.3390/ijms24054942 - 3 Mar 2023
Cited by 27 | Viewed by 2445
Abstract
The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C [...] Read more.
The presence of the p-aryl/cyclohexyl ring in the N-(4-aryl/cyclohexyl)-2-(pyridine-4-yl carbonyl) hydrazine carbothioamide derivative (2C) is reported to enhance the antifungal properties when compared to those of itraconazole. Serum albumins present in plasma bind and transport ligands, including pharmaceuticals. This study explored 2C interactions with BSA using spectroscopic methods such as fluorescence and UV-visible spectroscopy. In order to acquire a deeper comprehension of how BSA interacts with binding pockets, a molecular docking study was carried out. The fluorescence of BSA was quenched by 2C via a static quenching mechanism since a decrease in quenching constants was observed from 1.27 × 105 to 1.14 × 105. Thermodynamic parameters indicated hydrogen and van der Waals forces responsible for the BSA–2C complex formation with binding constants ranging between 2.91 × 105 and 1.29 × 105, which suggest a strong binding interaction. Site marker studies displayed that 2C binds to BSA’s subdomains IIA and IIIA. Molecular docking studies were conducted to further comprehend the molecular mechanism of the BSA–2C interaction. The toxicity of 2C was predicted by Derek Nexus software. Human and mammalian carcinogenicity and skin sensitivity predictions were associated with a reasoning level of equivocal, inferring 2C to be a potential drug candidate. Full article
Show Figures

Figure 1

20 pages, 3702 KB  
Article
De Novo Design of Imidazopyridine-Tethered Pyrazolines That Target Phosphorylation of STAT3 in Human Breast Cancer Cells
by Akshay Ravish, Rashmi Shivakumar, Zhang Xi, Min Hee Yang, Ji-Rui Yang, Ananda Swamynayaka, Omantheswara Nagaraja, Mahendra Madegowda, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, Vijay Pandey, Gautam Sethi, Kwang Seok Ahn, Peter E. Lobie and Basappa Basappa
Bioengineering 2023, 10(2), 159; https://doi.org/10.3390/bioengineering10020159 - 24 Jan 2023
Cited by 10 | Viewed by 2774
Abstract
In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone [...] Read more.
In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with 2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited the viability of MCF-7 cells with an IC50 value of 9.2 μM. A dose- and time-dependent inhibition of STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound 3f was added in vitro. Calculations using density functional theory showed that the title compounds HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively. Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating that these structures may be an alternative synthon to target STAT3 signaling in BC. Full article
Show Figures

Figure 1

16 pages, 2887 KB  
Article
Hydroxylated Coumarin-Based Thiosemicarbazones as Dual Antityrosinase and Antioxidant Agents
by Sebastiano Masuri, Benedetta Era, Francesca Pintus, Enzo Cadoni, Maria Grazia Cabiddu, Antonella Fais and Tiziana Pivetta
Int. J. Mol. Sci. 2023, 24(2), 1678; https://doi.org/10.3390/ijms24021678 - 14 Jan 2023
Cited by 21 | Viewed by 2973
Abstract
The design of novel antityrosinase agents appears extremely important in medical and industrial sectors because an irregular production of melanin is related to the insurgence of several skin-related disorders (e.g., melanoma) and the browning process of fruits and vegetables. Because melanogenesis also involves [...] Read more.
The design of novel antityrosinase agents appears extremely important in medical and industrial sectors because an irregular production of melanin is related to the insurgence of several skin-related disorders (e.g., melanoma) and the browning process of fruits and vegetables. Because melanogenesis also involves a nonenzymatic oxidative process, developing dual antioxidant and antityrosinase agents is advantageous. In this work, we evaluated the antioxidant and tyrosinase inhibition ability of two new bishydroxylated and two new monohydroxylated derivatives of (1E)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazine-1-carbothioamide (T1) using different experimental and computational approaches. The study was also carried out on another monohydroxylated derivative of T1 for comparison. Interestingly, these molecules have more potent tyrosinase-inhibitory properties than the reference compound, kojic acid. Moreover, the antioxidant activity appears to be influenced according to the number and substitution pattern of the hydroxyl groups. The safety of the compounds without (T1), with one (T3), and with two (T6) hydroxyl groups, has also been assessed by studying their cytotoxicity on melanocytes. These results indicate that (1E)-2-(1-(2-oxo-2H-chromen-3-yl)ethylidene)hydrazine-1-carbothioamide and its hydroxylated derivatives are promising molecules for further drug development studies. Full article
(This article belongs to the Special Issue The Role of Tyrosinase in Human Health and Disease)
Show Figures

Figure 1

12 pages, 3564 KB  
Article
Synthesis, Biological Evaluation, and Molecular Dynamics of Carbothioamides Derivatives as Carbonic Anhydrase II and 15-Lipoxygenase Inhibitors
by Pervaiz Ali Channar, Rima D. Alharthy, Syeda Abida Ejaz, Aamer Saeed and Jamshed Iqbal
Molecules 2022, 27(24), 8723; https://doi.org/10.3390/molecules27248723 - 9 Dec 2022
Cited by 5 | Viewed by 2796
Abstract
A series of hydrazine-1-carbothioamides derivatives (3a3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found [...] Read more.
A series of hydrazine-1-carbothioamides derivatives (3a3j) were synthesized and analyzed for inhibitory potential towards bovine carbonic anhydrase II (b-CA II) and 15-lipoxygenase (15-LOX). Interestingly, four derivatives, 3b, 3d, 3g, and 3j, were found to be selective inhibitors of CA II, while other derivatives exhibited CA II and 15-LOX inhibition. In silico studies of the most potent inhibitors of both b-CA II and 15-LOX were carried out to find the possible binding mode of compounds in their active site. Furthermore, MD simulation results confirmed that these ligands are stably bound to the two targets, while the binding energy further confirmed the inhibitory effects of the 3h compound. As these compounds may have a role in particular diseases, the reported compounds are of great relevance for future applications in the field of medicinal chemistry. Full article
Show Figures

Figure 1

18 pages, 4029 KB  
Article
X-ray Structures and Computational Studies of Two Bioactive 2-(Adamantane-1-carbonyl)-N-substituted Hydrazine-1-carbothioamides
by Lamya H. Al-Wahaibi, Kowsalya Alagappan, Olivier Blacque, Ahmed A. B. Mohamed, Hanan M. Hassan, María Judith Percino, Ali A. El-Emam and Subbiah Thamotharan
Molecules 2022, 27(23), 8425; https://doi.org/10.3390/molecules27238425 - 1 Dec 2022
Cited by 4 | Viewed by 4215
Abstract
Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of [...] Read more.
Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of the molecules in the solid state. X-ray analysis reveals that compound 1 exhibits folded conformation, whereas compound 2 adopts extended conformation. The Hirshfeld surface analysis indicates that the contributions of the major intercontacts involved in the stabilization of the crystal structures do not change much as a result of the t-butyl and cyclohexyl moieties. However, the presence and absence of these contacts is revealed by the 2D-fingerprint plots. The CLP–Pixel method was used to identify the energetically significant molecular dimers. These dimers are stabilized by different types of intermolecular interactions such as N–H···S, N–H···O, C–H···S, C–H···O, H–H bonding and C–H···π interactions. The strength of these interactions was quantified by using the QTAIM approach. The results suggest that N–H···O interaction is found to be stronger among other interactions. The in vitro assay suggests that both compounds 1 and 2 exhibit urease inhibition potential, and these compounds also display moderate antiproliferative activities. Molecular docking analysis shows the key interaction between urease enzyme and title compounds. Full article
(This article belongs to the Special Issue Molecular Sensitivity and Weak Interactions)
Show Figures

Figure 1

Back to TopTop