Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives
Abstract
1. Introduction
2. Results and Discussion
Synthesis and Characterization
3. Materials and Methods
Chemistry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, R.; Sachan, N.; Kumar, N.; Mishra, I.; Chand, P. Thiophene Scaffold as Prospective Antimicrobial Agent: A Review. J. Heterocycl. Chem. 2018, 55, 2019–2034. [Google Scholar] [CrossRef]
- Mishra, I.; Mishra, R.; Mujwar, S.; Chandra, P.; Sachan, N. A Retrospect on Antimicrobial Potential of Thiazole Scaffold. J. Heterocycl. Chem. 2020, 57, 2304–2329. [Google Scholar] [CrossRef]
- Gürsoy, E.; Güzeldemirci, N.U. Synthesis and Primary Cytotoxicity Evaluation of New Imidazo[2,1-b]Thiazole Derivatives. Eur. J. Med. Chem. 2007, 42, 320–326. [Google Scholar] [CrossRef]
- Aridoss, G.; Amirthaganesan, S.; Kim, M.S.; Kim, J.T.; Jeong, Y.T. Synthesis, Spectral and Biological Evaluation of Some New Thiazolidinones and Thiazoles Based on t-3-Alkyl-r-2,c-6-Diarylpiperidin-4-Ones. Eur. J. Med. Chem. 2009, 44, 4199–4210. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, S.J.; Garg, V.K.; Sharma, P.K.; Kumar, N.; Dudhe, R.; Gupta, J.K. Thiazoles: Having Diverse Biological Activities. Med. Chem. Res. 2012, 21, 2123–2132. [Google Scholar] [CrossRef]
- Abdel-Wahab, B.F.; Khidre, R.E.; Awad, G.E.A. Design and Synthesis of Novel 6-(5-Methyl-1H-1,2,3-Triazol-4-Yl)-5-[(2-(Thiazol-2-Yl)Hydrazono)Methyl]Imidazo[2,1-b]Thiazoles as Antimicrobial Agents. J. Heterocycl. Chem. 2017, 54, 489–494. [Google Scholar] [CrossRef]
- Abu-Melha, S.; Edrees, M.M.; Salem, H.H.; Kheder, N.A.; Gomha, S.M.; Abdelaziz, M.R. Synthesis and Biological Evaluation of Some Novel Thiazole-Based Heterocycles as Potential Anticancer and Antimicrobial Agents. Molecules 2019, 24, 539. [Google Scholar] [CrossRef]
- Althagafi, I.; El-Metwaly, N.; Farghaly, T.A. New Series of Thiazole Derivatives: Synthesis, Structural Elucidation, Antimicrobial Activity, Molecular Modeling and MOE Docking. Molecules 2019, 24, 1741. [Google Scholar] [CrossRef] [PubMed]
- Deshineni, R.; Velpula, R.; Koppu, S.; Pilli, J.; Chellamella, G. One-pot Multi-component Synthesis of Novel Ethyl-2-(3-((2-(4-(4-aryl)Thiazol-2-yl)Hydrazono)Methyl)-4-hydroxy/Isobutoxyphenyl)-4-methylthiazole-5-carboxylate Derivatives and Evaluation of Their in Vitro Antimicrobial Activity. J. Heterocycl. Chem. 2020, 57, 1361–1367. [Google Scholar] [CrossRef]
- Jagadale, S.; Chavan, A.; Shinde, A.; Sisode, V.; Bobade, V.D.; Mhaske, P.C. Synthesis and Antimicrobial Evaluation of New Thiazolyl-1,2,3-Triazolyl-Alcohol Derivatives. Med. Chem. Res. 2020, 29, 989–999. [Google Scholar] [CrossRef]
- Minickaitė, R.; Grybaitė, B.; Vaickelionienė, R.; Kavaliauskas, P.; Petraitis, V.; Petraitienė, R.; Tumosienė, I.; Jonuškienė, I.; Mickevičius, V. Synthesis of Novel Aminothiazole Derivatives as Promising Antiviral, Antioxidant and Antibacterial Candidates. Int. J. Mol. Sci. 2022, 23, 7688. [Google Scholar] [CrossRef] [PubMed]
- Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, Their Benzofused Systems, and Thiazolidinone Derivatives: Versatile and Promising Tools to Combat Antibiotic Resistance. J. Med. Chem. 2020, 63, 7923–7956. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, P.; Grybaitė, B.; Vaickelionienė, R.; Sapijanskaitė-Banevič, B.; Anusevičius, K.; Kriaučiūnaitė, A.; Smailienė, G.; Petraitis, V.; Petraitienė, R.; Naing, E.; et al. Synthesis and Development of N-2,5-Dimethylphenylthioureido Acid Derivatives as Scaffolds for New Antimicrobial Candidates Targeting Multidrug-Resistant Gram-Positive Pathogens. Antibiotics 2023, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Sadek, B.; Al-Tabakha, M.M.; Fahelelbom, K.M.S. Antimicrobial Prospect of Newly Synthesized 1,3-Thiazole Derivatives. Molecules 2011, 16, 9386–9396. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.F.; Alam, A.; Alshammari, A.A.; Alhazza, M.B.; Alzimam, I.M.; Alam, M.A.; Mustafa, G.; Ansari, M.S.; Alotaibi, A.M.; Alotaibi, A.A.; et al. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022, 27, 3994. [Google Scholar] [CrossRef] [PubMed]
- Al-Omair, M.A.; Sayed, A.R.; Youssef, M.M. Synthesis and Biological Evaluation of Bisthiazoles and Polythiazoles. Molecules 2018, 23, 1133. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Gomha, S.M.; Zaki, M.E.A.; Abolibda, T.Z.; Kheder, N.A. A Green Synthesis, DFT Calculations, and Molecular Docking Study of Some New Indeno[2,1-b]Quinoxalines Containing Thiazole Moiety. J. Mol. Struct. 2023, 1292, 136044. [Google Scholar] [CrossRef]
- Ivasechko, I.; Yushyn, I.; Roszczenko, P.; Senkiv, J.; Finiuk, N.; Lesyk, D.; Holota, S.; Czarnomysy, R.; Klyuchivska, O.; Khyluk, D.; et al. Development of Novel Pyridine-Thiazole Hybrid Molecules as Potential Anticancer Agents. Molecules 2022, 27, 6219. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Lu, L.; Cen, J.; Wu, Z.; Yang, B.; Zhu, C.; Cao, J.; Yu, Y.; Chen, W. Identification of 5-Thiocyanatothiazol-2-Amines Disrupting WDR5-MYC Protein-Protein Interactions. ACS Med. Chem. Lett. 2024, 15, 1143–1150. [Google Scholar] [CrossRef]
- Shahin, I.G.; Abutaleb, N.S.; Alhashimi, M.; Kassab, A.E.; Mohamed, K.O.; Taher, A.T.; Seleem, M.N.; Mayhoub, A.S. Evaluation of N-Phenyl-2-Aminothiazoles for Treatment of Multi-Drug Resistant and Intracellular Staphylococcus Aureus Infections. Eur. J. Med. Chem. 2020, 202, 112497. [Google Scholar] [CrossRef]
- Khayyat, A.N.; Mohamed, K.O.; Malebari, A.M.; El-Malah, A. Design, Synthesis, and Antipoliferative Activities of Novel Substituted Imidazole-Thione Linked Benzotriazole Derivatives. Molecules 2021, 26, 5983. [Google Scholar] [CrossRef] [PubMed]
- Fouad, M.A.; Zaki, M.Y.; Lotfy, R.A.; Mahmoud, W.R. Insight on a New Indolinone Derivative as an Orally Bioavailable Lead Compound against Renal Cell Carcinoma. Bioorg. Chem. 2021, 112, 104985. [Google Scholar] [CrossRef]
- Liu, W.; Tao, C.; Tang, L.; Li, J.; Jin, Y.; Zhao, Y.; Hu, H. A Convenient and Efficient Synthesis of Heteroaromatic Hydrazone Derivatives via Cyclization of Thiosemicarbazone with Ω-bromoacetophenone. J. Heterocycl. Chem. 2011, 48, 361–364. [Google Scholar] [CrossRef]
- Sim, K.-M.; Chung, L.-P.; Tan, K.-L.; Tan, Y.-T.; Kee, X.-L.; Teo, K.-C. One-Pot Multicomponent Synthesis of Hydrazinyl Thiazoles Bearing an Isatin Moiety in Aqueous Medium. Lett. Org. Chem. 2024, 21, 192–200. [Google Scholar] [CrossRef]
- Wang, Y.T.; Huang, X.; Cai, X.C.; Kang, X.X.; Zhu, H.L. Synthesis, Biological Evaluation and Molecular Docking of Thiazole Hydrazone Derivatives Grafted with Indole as Novel Tubulin Polymerization Inhibitors. J. Mol. Struct. 2024, 1301, 137343. [Google Scholar] [CrossRef]
- Urade, R.; Chang, W.-T.; Ko, C.-C.; Li, R.-N.; Yang, H.-M.; Chen, H.-Y.; Huang, L.-Y.; Chang, M.-Y.; Wu, C.-Y.; Chiu, C.-C. A Fluorene Derivative Inhibits Human Hepatocellular Carcinoma Cells by ROS-Mediated Apoptosis, Anoikis and Autophagy. Life Sci. 2023, 329, 121835. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Yu, J.; Qiu, Q.; Liao, R.; Zhang, S.; Luo, C. Reduction-Hypersensitive Podophyllotoxin Prodrug Self-Assembled Nanoparticles for Cancer Treatment. Pharmaceutics 2023, 15, 784. [Google Scholar] [CrossRef]
- Vlad, I.M.; Nuță, D.C.; Ancuceanu, R.V.; Costea, T.; Coanda, M.; Popa, M.; Marutescu, L.G.; Zarafu, I.; Ionita, P.; Pirvu, C.E.D.; et al. Insights into the Microbicidal, Antibiofilm, Antioxidant and Toxicity Profile of New O-Aryl-Carbamoyl-Oxymino-Fluorene Derivatives. Int. J. Mol. Sci. 2023, 24, 7020. [Google Scholar] [CrossRef] [PubMed]
- Pasieka, A.; Panek, D.; Zaręba, P.; Sługocka, E.; Gucwa, N.; Espargaró, A.; Latacz, G.; Khan, N.; Bucki, A.; Sabaté, R.; et al. Novel Drug-like Fluorenyl Derivatives as Selective Butyrylcholinesterase and β-Amyloid Inhibitors for the Treatment of Alzheimer’s Disease. Bioorg. Med. Chem. 2023, 88–89, 117333. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.-K.; Wang, J.; Wang, N.-L.; Kurihara, H.; Kitanaka, S.; Yao, X.-S. Bioactive Bibenzyl Derivatives and Fluorenones from Dendrobium Nobile. J. Nat. Prod. 2007, 70, 24–28. [Google Scholar] [CrossRef]
- Ray, S.; Pathak, S.R.; Chaturvedi, D. Organic Carbamates in Drug Development. Part II: Antimicrobial Agents—Recent Reports. Drugs Future 2005, 30, 0161. [Google Scholar] [CrossRef]
- Parašotas, I.; Anusevičius, K.; Vaickelionienė, R.; Jonuškienė, I.; Stasevych, M.; Zvarych, V.; Komarovska-Porokhnyavets, O.; Novikov, V.; Belyakov, S.; Mickevicius, V. Synthesis and Evaluation of the Antibacterial, Antioxidant Activities of Novel Functionalized Thiazole and Bis(Thiazol-5-Yl)Methane Derivatives. Arkivoc 2018, 2018, 240–256. [Google Scholar] [CrossRef]
- Youssef, N.S.; El Zahany, E.A.; Anwar, M.M.; Hassan, S.A. Synthesis, Characterization, and Antitumor Activity of Some Metal Complexes with Schiff Bases Derived from 9-Fluorenone as a Polycyclic Aromatic Compound. Phosphorus Sulfur Silicon Relat. Elem. 2008, 184, 103–125. [Google Scholar] [CrossRef]
- Pavlenko, A.F.; Moshchitskii, S.D. Synthesis of Physiologically Active Compounds of the Thiosemicarbazone Series and Derivatives. Chem. Heterocycl. Compd. 1967, 3, 195–196. [Google Scholar] [CrossRef]
- Doddagaddavalli, M.A.; Kalalbandi, V.K.A.; Naik, T.R.R.; Joshi, S.D.; Seetharamappa, J. Fluorenone–Thiazolidine-4-One Scaffolds as Antidiabetic and Antioxidant Agents: Design, Synthesis, X-ray Crystal Structures, and Binding and Computational Studies. New J. Chem. 2023, 47, 13581–13599. [Google Scholar] [CrossRef]
- Kaur, A.P.; Gautam, D. Ultrasound Aided Expedient Synthesis, Characterization and Antimicrobial Studies of Fluorenyl-Hydrazono-Thiazole Derivatives. Asian J. Chem. 2019, 31, 2245–2248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anusevičius, K.; Stebrytė, I.; Kavaliauskas, P. Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives. Molbank 2024, 2024, M1872. https://doi.org/10.3390/M1872
Anusevičius K, Stebrytė I, Kavaliauskas P. Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives. Molbank. 2024; 2024(3):M1872. https://doi.org/10.3390/M1872
Chicago/Turabian StyleAnusevičius, Kazimieras, Ignė Stebrytė, and Povilas Kavaliauskas. 2024. "Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives" Molbank 2024, no. 3: M1872. https://doi.org/10.3390/M1872
APA StyleAnusevičius, K., Stebrytė, I., & Kavaliauskas, P. (2024). Synthesis and Antimicrobial Evaluation of 2-[2-(9H-Fluoren-9-ylidene)hydrazin-1-yl]-1,3-thiazole Derivatives. Molbank, 2024(3), M1872. https://doi.org/10.3390/M1872