Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = carbon storage ability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3325 KiB  
Article
Multi-Energy Flow Optimal Dispatch of a Building Integrated Energy System Based on Thermal Comfort and Network Flexibility
by Jian Sun, Bingrui Sun, Xiaolong Cai, Dingqun Liu and Yongping Yang
Energies 2025, 18(15), 4051; https://doi.org/10.3390/en18154051 - 30 Jul 2025
Viewed by 162
Abstract
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve [...] Read more.
An efficient integrated energy system (IES) can enhance the potential of building energy conservation and carbon mitigation. However, imbalances between user-side demand and supply side output present formidable challenges to the operational dispatch of building energy systems. To mitigate heat rejection and improve dispatch optimization, an integrated building energy system incorporating waste heat recovery via an absorption heat pump based on the flow temperature model is adopted. A comprehensive analysis was conducted to investigate the correlation among heat pump operational strategies, thermal comfort, and the dynamic thermal storage capacity of piping network systems. The optimization calculations and comparative analyses were conducted across five cases on typical season days via the CPLEX solver with MATLAB R2018a. The simulation results indicate that the operational modes of absorption heat pump reduced the costs by 4.4–8.5%, while the absorption rate of waste heat increased from 37.02% to 51.46%. Additionally, the utilization ratio of battery and thermal storage units decreased by up to 69.82% at most after considering the pipeline thermal inertia and thermal comfort, thus increasing the system’s energy-saving ability and reducing the pressure of energy storage equipment, ultimately increasing the scheduling flexibility of the integrated building energy system. Full article
(This article belongs to the Special Issue Energy Efficiency and Thermal Performance in Buildings)
Show Figures

Figure 1

37 pages, 1832 KiB  
Review
A Review of Biobutanol: Eco-Friendly Fuel of the Future—History, Current Advances, and Trends
by Victor Alejandro Serrano-Echeverry, Carlos Alberto Guerrero-Fajardo and Karol Tatiana Castro-Tibabisco
Fuels 2025, 6(3), 55; https://doi.org/10.3390/fuels6030055 - 29 Jul 2025
Viewed by 324
Abstract
Biobutanol is becoming more relevant as a promising alternative biofuel, primarily due to its advantageous characteristics. These include a higher energy content and density compared to traditional biofuels, as well as its ability to mix effectively with gasoline, further enhancing its viability as [...] Read more.
Biobutanol is becoming more relevant as a promising alternative biofuel, primarily due to its advantageous characteristics. These include a higher energy content and density compared to traditional biofuels, as well as its ability to mix effectively with gasoline, further enhancing its viability as a potential replacement. A viable strategy for attaining carbon neutrality, reducing reliance on fossil fuels, and utilizing sustainable and renewable resources is the use of biomass to produce biobutanol. Lignocellulosic materials have gained widespread recognition as highly suitable feedstocks for the synthesis of butanol, together with various value-added byproducts. The successful generation of biobutanol hinges on three crucial factors: effective feedstock pretreatment, the choice of fermentation techniques, and the subsequent enhancement of the produced butanol. While biobutanol holds promise as an alternative biofuel, it is important to acknowledge certain drawbacks associated with its production and utilization. One significant limitation is the relatively high cost of production compared to other biofuels; additionally, the current reliance on lignocellulosic feedstocks necessitates significant advancements in pretreatment and bioconversion technologies to enhance overall process efficiency. Furthermore, the limited availability of biobutanol-compatible infrastructure, such as distribution and storage systems, poses a barrier to its widespread adoption. Addressing these drawbacks is crucial for maximizing the potential benefits of biobutanol as a sustainable fuel source. This document presents an extensive review encompassing the historical development of biobutanol production and explores emerging trends in the field. Full article
Show Figures

Figure 1

25 pages, 1661 KiB  
Article
The Public Acceptance of Power-to-X Technologies—Results from Environmental–Psychological Research Using a Representative German Sample
by Jan Hildebrand, Timo Kortsch and Irina Rau
Sustainability 2025, 17(14), 6574; https://doi.org/10.3390/su17146574 - 18 Jul 2025
Viewed by 345
Abstract
Power-to-X (ptx) technologies are considered a promising solution for enabling the storage and sectoral integration of renewable energy, playing a vital role in the sustainable transition of industrialized energy systems. This study investigates the public acceptance of ptx technologies in Germany using a [...] Read more.
Power-to-X (ptx) technologies are considered a promising solution for enabling the storage and sectoral integration of renewable energy, playing a vital role in the sustainable transition of industrialized energy systems. This study investigates the public acceptance of ptx technologies in Germany using a quantitative, environmental–psychological framework. Key influencing factors such as social and personal norms, environmental awareness, and openness to innovation are analyzed. A particular focus is placed on generational differences, comparing the perceptions of youth (16–25 years) and adults (>25 years) through a representative online survey. The results reveal a general lack of knowledge about ptx technologies yet a positive assessment of their decarbonization potential. Ecological impact—particularly the ability to reduce CO2 emissions—emerges as the strongest predictor of acceptance. This is closely tied to conditions such as the use of renewable electricity and sustainable sourcing of carbon and water. Notably, acceptance among youth is also influenced by environmental awareness, prior knowledge, and perceived behavioral control. The results show that, in general, there is still a need for improved science communication to address the existing uncertainties in the population. At the same time, age-specific approaches are required, as perceptions and acceptance factors differ significantly between younger and older age groups. Full article
Show Figures

Figure 1

17 pages, 2066 KiB  
Article
A Mid-Term Scheduling Method for Cascade Hydropower Stations to Safeguard Against Continuous Extreme New Energy Fluctuations
by Huaying Su, Yupeng Li, Yan Zhang, Yujian Wang, Gang Li and Chuntian Cheng
Energies 2025, 18(14), 3745; https://doi.org/10.3390/en18143745 - 15 Jul 2025
Viewed by 175
Abstract
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility [...] Read more.
Continuous multi-day extremely low or high new energy outputs have posed significant challenges in relation to power supply and new energy accommodations. Conventional reservoir hydropower, with the advantage of controllability and the storage ability of reservoirs, can represent a reliable and low-carbon flexibility resource to safeguard against continuous extreme new energy fluctuations. This paper proposes a mid-term scheduling method for reservoir hydropower to enhance our ability to regulate continuous extreme new energy fluctuations. First, a data-driven scenario generation method is proposed to characterize the continuous extreme new energy output by combining kernel density estimation, Monte Carlo sampling, and the synchronized backward reduction method. Second, a two-stage stochastic hydropower–new energy complementary optimization scheduling model is constructed with the reservoir water level as the decision variable, ensuring that reservoirs have a sufficient water buffering capacity to free up transmission channels for continuous extremely high new energy outputs and sufficient water energy storage to compensate for continuous extremely low new energy outputs. Third, the mathematical model is transformed into a tractable mixed-integer linear programming (MILP) problem by using piecewise linear and triangular interpolation techniques on the solution, reducing the solution complexity. Finally, a case study of a hydropower–PV station in a river basin is conducted to demonstrate that the proposed model can effectively enhance hydropower’s regulation ability, to mitigate continuous extreme PV outputs, thereby improving power supply reliability in this hybrid renewable energy system. Full article
(This article belongs to the Special Issue Optimal Schedule of Hydropower and New Energy Power Systems)
Show Figures

Figure 1

14 pages, 2166 KiB  
Article
Short-Term Nitrogen Enrichment Reshapes Carbon Allocation and Enhances Synergistic Ecosystem Services in Semi-Arid Sandy Grasslands in China
by Litao Lin, Huiyi Yu, Xuekai Sun, Guiyan Ai and Jie Bai
Plants 2025, 14(13), 1915; https://doi.org/10.3390/plants14131915 - 22 Jun 2025
Viewed by 333
Abstract
The capacity to develop resilience to global change, such as nitrogen deposition, is an important topic for the management of key ecological functional zones. In this study, nitrogen enrichment (10 g N m−2 yr−1, NE) and control plots (0 g [...] Read more.
The capacity to develop resilience to global change, such as nitrogen deposition, is an important topic for the management of key ecological functional zones. In this study, nitrogen enrichment (10 g N m−2 yr−1, NE) and control plots (0 g N m−2 yr−1, CL), each with eight replications, were randomly established in the Horqin Sandy Land to investigate how grassland carbon sequestration functions and herdsmen’s livelihoods respond to nitrogen deposition. In addition, three grazing scenarios (non-grazing, light grazing, and moderate grazing) were simulated to determine whether human activities affect the relationships (trade-off vs. synergistic) among forage supply, carbon sequestration, and windbreak and sand-fixing services under nitrogen deposition. The results showed that NE exhibited a significant increase in aboveground carbon storage (99.40 g C m−2, 117.34%) and the shoot carbon/root carbon ratio (1.90) when compared to the CL (0.95) (p < 0.05). NE significantly decreased soil carbon storage ability, particularly in the 10–30 cm soil layer (p < 0.05). The reduction in soil carbon storage was offset by increases in plant carbon storage, resulting in a neutral effect of the NE treatment on the total grassland carbon storage (p > 0.05). The synergistic effects of NE on grassland forage supply and windbreak and sand-fixing functions were observed under a light grazing scenario, which balanced ecological safety and livelihood more effectively than the non-grazing and moderate grazing scenarios. These findings indicate that the structure of grassland carbon storage is influenced by nitrogen deposition and that light grazing would enhance ecosystem services and promote sustainable grassland development. Full article
Show Figures

Figure 1

7 pages, 1376 KiB  
Brief Report
Estimating Carbon Acquisition in a Shade Cocoa Plantation in Southern Bahia, Brazil
by Deborah Faria, Eduardo Mariano-Neto, Regina Helena Rosa Sambuichi and Larissa Rocha-Santos
Forests 2025, 16(6), 929; https://doi.org/10.3390/f16060929 - 31 May 2025
Cited by 1 | Viewed by 540
Abstract
Cocoa (Theobroma cacao) is one of the world’s most traded commodities. Cocoa grown in agroforestry systems is considered a climate-smart agricultural practice, in part due to the role of shade trees as carbon reservoirs and carbon sinks. In Brazil, most production [...] Read more.
Cocoa (Theobroma cacao) is one of the world’s most traded commodities. Cocoa grown in agroforestry systems is considered a climate-smart agricultural practice, in part due to the role of shade trees as carbon reservoirs and carbon sinks. In Brazil, most production is concentrated in Bahia state, where traditional cocoa agroforests—locally known as cabrucas—are well known to harbor significant above- and below-ground carbon stocks, although their ability to act as carbon sinks is less well established. By analyzing previously published data on the dynamics of tree assemblages within a 1.7 ha area on a cabruca farm, we estimated an annual carbon increment of 3.46 Mg C ha−1, a value comparable to other shade cocoa plantations elsewhere but more than three times the previous estimate for a cabruca. We discuss the importance of these findings and highlight the potential role of traditional cocoa shade plantations as climate-friendly crops, thus contributing to climate mitigation. It is also essential to highlight the importance of the carbon sequestration and storage services provided by tropical agroforestry systems. Full article
(This article belongs to the Special Issue Forest Inventory: The Monitoring of Biomass and Carbon Stocks)
Show Figures

Figure 1

32 pages, 3233 KiB  
Article
Architecture and Sizing of Systems for the Remote Control of Sustainable Energy-Independent Stations for Electric Vehicle Charging Powered by Renewable Energy Sources
by Jovan Vujasinović, Goran Savić, Ilija Batas Bjelić and Željko Despotović
Sustainability 2025, 17(11), 5001; https://doi.org/10.3390/su17115001 - 29 May 2025
Cited by 1 | Viewed by 423
Abstract
Air-pollution-related issues, including the rise in carbon dioxide emissions, require, among others, solutions that include using electric vehicles supplied by the energy obtained from renewable sources. These solutions also include the infrastructure for electric vehicle charging. However, the existing systems mostly employ independent [...] Read more.
Air-pollution-related issues, including the rise in carbon dioxide emissions, require, among others, solutions that include using electric vehicles supplied by the energy obtained from renewable sources. These solutions also include the infrastructure for electric vehicle charging. However, the existing systems mostly employ independent subsystems (such as subsystems for the control of electric vehicle chargers, subsystems for the control of smart battery storage, etc.), leading to hardware redundancy, software complexity, increased hardware costs, and communication link complexity. An architecture of a system for remotely controlling a renewable-energy-source-powered sustainable electric vehicle charging station, which overcomes these deficiencies, is presented in this paper. Consideration is also given to the sizes and combinations of different parts (renewable sources, batteries, chargers, etc.) for various purposes (households, replacing current gas stations, big parking spaces in shopping centers, public garages, etc.). The ability to integrate a wide range of features into one system helps to optimize the use of several subsystems, including the ones that control electric vehicle chargers remotely, smart storage battery remote control, smart electricity meter remote control, and fiscal cash register remote control, creating a sustainable and economically efficient solution. In this manner, consumers of electric vehicles will have easier access to renewable-energy-powered sustainable charging stations. This helps to reduce the amount of air pollution and its harmful effects, including climate change, by promoting the use of electric vehicles that are powered by renewable energy sources. The energy independence and sustainability of the station were considered in such a way that the owner of the station achieves maximum economic benefits. Full article
(This article belongs to the Special Issue Energy Transition, Energy Economics, and Environmental Sustainability)
Show Figures

Figure 1

17 pages, 3690 KiB  
Article
Impacts of Ecological Restoration Projects on Ecosystem Carbon Storage of Tongluo Mountain Mining Area, Chongqing, in Southwest China
by Lei Ma, Manyi Li, Chen Wang, Hongtao Si, Mingze Xu, Dongxue Zhu, Cheng Li, Chao Jiang, Peng Xu and Yuhe Hu
Land 2025, 14(6), 1149; https://doi.org/10.3390/land14061149 - 25 May 2025
Viewed by 566
Abstract
Surface mining activities cause severe disruption to ecosystems, resulting in the substantial destruction of surface vegetation, the loss of soil organic carbon stocks, and a decrease in the ecosystem’s ability to sequester carbon. The ecological restoration of mining areas has been found to [...] Read more.
Surface mining activities cause severe disruption to ecosystems, resulting in the substantial destruction of surface vegetation, the loss of soil organic carbon stocks, and a decrease in the ecosystem’s ability to sequester carbon. The ecological restoration of mining areas has been found to significantly enhance the carbon storage capacity of ecosystems. This study evaluated ecological restoration strategies in Chongqing’s Tongluo Mountain mining area by integrating GF-6 satellite multispectral data (2 m panchromatic/8 m multispectral resolution) with ground surveys across 45 quadrats to develop a quadratic regression model based on vegetation indices and the field-measured biomass. The methodology quantified carbon storage variations among engineered restoration (ER), natural recovery (NR), and unmanaged sites (CWR) while identifying optimal vegetation configurations for karst ecosystems. The methodology combined the high-spatial-resolution satellite imagery for large-scale vegetation mapping with field-measured biomass calibration to enhance the quantitative accuracy, enabling an efficient carbon storage assessment across heterogeneous landscapes. This hybrid approach overcame the limitations of traditional plot-based methods by providing spatially explicit, cost-effective monitoring solutions for mining ecosystems. The results demonstrate that engineered restoration significantly enhances carbon sequestration, with the aboveground vegetation biomass reaching 5.07 ± 1.05 tC/ha, a value 21% higher than in natural recovery areas (4.18 ± 0.23 tC/ha) and 189% greater than at unmanaged sites (1.75 ± 1.03 tC/ha). In areas subjected to engineered restoration, both the vegetation and soil carbon storage showed an upward trend, with soil carbon sequestration being the primary form, contributing to 81% of the total carbon storage, and with engineered restoration areas exceeding natural recovery and unmanaged zones by 17.6% and 106%, respectively, in terms of their soil carbon density (40.41 ± 9.99 tC/ha). Significant variations in the carbon sequestration capacity were observed across vegetation types. Bamboo forests exhibited the highest carbon density (25.8 tC/ha), followed by tree forests (2.54 ± 0.53 tC/ha), while grasslands showed the lowest values (0.88 ± 0.52 tC/ha). For future restoration initiatives, it is advisable to select suitable vegetation types based on the local dominant species for a comprehensive approach. Full article
Show Figures

Figure 1

29 pages, 1727 KiB  
Review
Technology–Economy–Policy: Biochar in the Low-Carbon Energy Transition—A Review
by Aneta Saletnik and Bogdan Saletnik
Appl. Sci. 2025, 15(11), 5882; https://doi.org/10.3390/app15115882 - 23 May 2025
Viewed by 730
Abstract
Biochar can be regarded as a high-energy type of solid fuel produced via pyrolysis, which is the thermal modification of biomass of plant or animal origins. The biggest advantage of biomass relative to classic fossil fuels is the significant reduction in carbon dioxide [...] Read more.
Biochar can be regarded as a high-energy type of solid fuel produced via pyrolysis, which is the thermal modification of biomass of plant or animal origins. The biggest advantage of biomass relative to classic fossil fuels is the significant reduction in carbon dioxide emissions in the combustion process. Biochar is also considered a natural soil additive for improving soil parameters, increasing crop yields, remediating pollutants, and reducing emissions of methane, among other things. Over the past few years, the range of biochar applications has expanded significantly, as reflected in the number of scientific articles on the topic. Pyrolysates are used in the production of cosmetics, pharmaceuticals, building materials, animal feed, sorbents, and water filters, as well as in the field of modern energy storage and conversion, such as supercapacitors. The key importance of this material is attributed to its ability to sequestrate carbon and reduce greenhouse gas emissions. The relentless growth of the global economy and the high demand for energy generate large amounts of CO2 in the atmosphere. Solving the carbon balance problem and the low-carbon energy transition toward carbon neutrality is very challenging. Biochar therefore appears to be an excellent tool for creating systems that can play an important role in mitigating climate change. The purpose of this review is to consolidate the existing knowledge and assess the potential of biochar in carbon neutrality based on the application sector. Full article
(This article belongs to the Special Issue The Pyrolysis of Biomass: Reaction Mechanism and Product Application)
Show Figures

Figure 1

26 pages, 10996 KiB  
Article
Altitudinal Variations in Coniferous Vegetation and Soil Carbon Storage in Kalam Temperate Forest, Pakistan
by Bilal Muhammad, Umer Hayat, Lakshmi Gopakumar, Shuangjiang Xiong, Jamshid Ali, Muhammad Tariq Badshah, Saif Ullah, Arif UR Rehman, Qun Yin and Zhongkui Jia
Plants 2025, 14(10), 1534; https://doi.org/10.3390/plants14101534 - 20 May 2025
Viewed by 727
Abstract
Understanding the complex interplay among altitudinal gradients, tree species diversity, structural attributes, and soil carbon (C) is critical for effective coniferous forest management and climate change mitigation. This study addresses a knowledge gap by investigating the effects of altitudinal gradient on coniferous tree [...] Read more.
Understanding the complex interplay among altitudinal gradients, tree species diversity, structural attributes, and soil carbon (C) is critical for effective coniferous forest management and climate change mitigation. This study addresses a knowledge gap by investigating the effects of altitudinal gradient on coniferous tree diversity, biomass, carbon stock, regeneration, and soil organic carbon storage (SOCs) in the understudied temperate forests of the Hindu-Kush Kalam Valley. Using 120 sample plots 20 × 20 m (400 m2) each via a field inventory approach across five altitudinal gradients [E1 (2000–2200 m)–E5 (2801–3000 m)], we comprehensively analyzed tree structure, composition, and SOCs. A total of four coniferous tree species and 2172 individuals were investigated for this study. Our findings reveal that elevation indirectly influences species diversity, SOCs, and forest regeneration. Notably, tree height has a positive relationship with altitudinal gradients, while tree carbon stock exhibits an inverse relationship. Forest disturbance was high in the middle elevation gradients E2–E4, with high deforestation rate at E1 and E2. Cedrus deodara, the dominant species, showed the highest deforestation rate at lower elevations (R2 = 0.72; p < 0.05) and regeneration ability (R2 = 0.77; p < 0.05), which declined with increasing elevation. Middle elevations had the highest litter carbon stock and SOCs values emphasizing the critical role of elevation gradients in carbon sink and species distribution. The regeneration status and number of trees per ha in Kalam Valley forests showed a significant decline with increasing elevation (p < 0.05), with Cedrus deodara recording the highest regeneration rate at E1 and Abies pindrow the lowest at E5. The PCA revealed that altitudinal gradients factor dominate variability via PCA1, while the Shannon and Simpson Indices drives PCA2, highlighting ecological diversity’s independent role in shaping distinct yet complementary vegetative and ecological perspectives. This study reveals how altitudinal gradients shape forest structure and carbon sequestration, offering critical insights for biodiversity conservation and climate-resilient forest management. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

15 pages, 4699 KiB  
Article
Carbon Dot-Modulated Phase-Change Composites for Wide Temperature Range and High-Density Heat Storage and Release
by Jingya Liang, Ning Li, Jie Wu, Qing Chang, Jinlong Yang and Shengliang Hu
Energies 2025, 18(10), 2597; https://doi.org/10.3390/en18102597 - 16 May 2025
Viewed by 425
Abstract
Organic phase-change materials (PCMs) offer great promise in addressing challenges in thermal energy storage and heat management, but their applications are greatly limited by low energy density and a rigid phase transition temperature. Herein, by introducing carbon dots (CDs) with abundant oxygen-related groups, [...] Read more.
Organic phase-change materials (PCMs) offer great promise in addressing challenges in thermal energy storage and heat management, but their applications are greatly limited by low energy density and a rigid phase transition temperature. Herein, by introducing carbon dots (CDs) with abundant oxygen-related groups, we develop a novel kind of erythritol (ET)-based composite PCMs (CD-ETs) featuring an enhanced latent heat storage capacity and a reduced degree of supercooling compared to pure ETs. The optimally formulated CD-ETs increase the latent heat storage capacity from 377.3 to 410.2 J·g−1 and the heat release capacity from 209.0 to 240.2 J·g−1 compared to the pristine ETs. Moreover, the subcooled degree of CD-ETs is more than 30 °C lower than that of pristine ETs. By successively encapsulating CD-ETs and CD-containing polyethylene glycol (PEG) with a low melting point in a reduced graphene oxide-modified melamine sponge, the resultant shape-stabilized system not only prevents leakage of molten PCMs but also allows for a wide response temperature window and promotes the heat transfer ability of melted PEG in close contact with solid CD-ETs. Stepped melting and crystallization guarantee phase changes in high-melting-point ETs via solar heating, Joule heating or a combination thereof. Specifically, the melting enthalpy of this system is as high as 306.5 J·g−1, and its cold crystallization enthalpy reaches 196.5 J·g−1, surpassing numerous organic PCMs. This work provides a facile and efficient strategy for the design of ideal thermal energy storage materials to meet the needs of application scenarios in a cost-effective manner. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

28 pages, 6799 KiB  
Article
Spatiotemporal Changes and Driving Forces of the Ecosystem Service Sustainability in Typical Watertown Region of China from 2000 to 2020
by Zhenhong Zhu, Chen Xu, Jianwan Ji, Liang Wang, Wanglong Zhang, Litao Wang, Eshetu Shifaw and Weiwei Zhang
Systems 2025, 13(5), 340; https://doi.org/10.3390/systems13050340 - 1 May 2025
Viewed by 403
Abstract
Quantitative assessment of the ability of the ecosystem service (ES) and its driving forces is of great significance for achieving regional SDGs. In view of the scarcity of existing research that evaluates the sustainability of multiple ES types over a long time series [...] Read more.
Quantitative assessment of the ability of the ecosystem service (ES) and its driving forces is of great significance for achieving regional SDGs. In view of the scarcity of existing research that evaluates the sustainability of multiple ES types over a long time series at the township scale in a typical Watertown Region, this study aims to address two key scientific questions: (1) what are the spatiotemporal changes in the ecosystem service supply–demand index (ESSDI) and ecosystem service sustainability index (ESSI) of a typical Watertown Region? and (2) what are the key factors driving the changes in ESSI? To answer the above two questions, this study takes the Yangtze River Delta Integrated Demonstration Zone (YRDIDZ) as the study area, utilizing multi-source remote sensing and other spatiotemporal geographical datasets to calculate the supply–demand levels and sustainable development ability of different ES in the YRDIDZ from 2000 to 2020. The main findings were as follows: (1) From 2000 to 2020, the mean ESSDI values for habitat quality, carbon storage, crop production, water yield, and soil retention all showed a declining trend. (2) During the same period, the mean ESSI exhibited a fluctuating downward trend, decreasing from 0.31 in 2000 to 0.17 in 2020, with low-value areas expanding as built-up areas grew, while high-value areas were mainly distributed around Dianshan Lake, Yuandang, and parts of ecological land. (3) The primary driving factors within the YRDIDZ were human activity factors, including POP and GDP, with their five-period average explanatory powers being 0.44 and 0.26, whereas the explanatory power of natural factors was lower. However, the interaction of POP and soil showed higher explanatory power. The results of this study could provide actionable ways for regional sustainable governance: (1) prioritizing wetland protection and soil retention in high-population-density areas based on targeted land use quotas; (2) integrating ESSI coldspots (built-up expansion zones) into ecological redline adjustments, maintaining high green infrastructure coverage in new urban areas; and (3) establishing a population–soil co-management framework in agricultural–urban transition zones. Full article
(This article belongs to the Special Issue Applying Systems Thinking to Enhance Ecosystem Services)
Show Figures

Figure 1

23 pages, 25798 KiB  
Article
Characteristics of Ecosystem Services in Megacities Within the Yellow River Basin, Analyzed Through a Resilience Perspective: A Case Study of Xi’an and Jinan
by Bowen Zhang, Xianglong Tang, Jiexin Cui and Leshan Cai
Sustainability 2025, 17(8), 3371; https://doi.org/10.3390/su17083371 - 10 Apr 2025
Viewed by 546
Abstract
Megacities in developing countries are still undergoing rapid urbanization, with different cities exhibiting ecosystem services (ESs) heterogeneity. Evaluating ESs among various cities and analyzing the influencing factors from a resilience perspective can effectively enhance the ability of cities to deal with and react [...] Read more.
Megacities in developing countries are still undergoing rapid urbanization, with different cities exhibiting ecosystem services (ESs) heterogeneity. Evaluating ESs among various cities and analyzing the influencing factors from a resilience perspective can effectively enhance the ability of cities to deal with and react quickly to the risks of uncertainty. This approach is also crucial for optimizing ecological security patterns. This study focuses on Xi’an and Jinan, two important megacities along the Yellow River in China. First, we quantified four ecosystem services for both cities: carbon storage (CS), habitat quality (HQ), food production (FP), and soil conservation (SC). Second, we analyzed the synergies and trade-offs between these ESs using bivariate local spatial autocorrelation and Spearman’s rank correlation coefficient. Finally, we conducted a driver analysis using the Geographic Detector. Results: (1) The spatial and temporal distribution of the four ESs in Xi’an and Jinan is quite different, but both cities show lower ES levels in the urban core area. (2) ESs in Xi’an showed a strong synergistic effect. Among them, CS-HQ had the strongest synergy of 0.93. In terms of space, the north is dominated by low–low clustering, while the south is dominated by high–high clustering. The FP-SC in Jinan showed a trade-off effect of −0.35 in 2000, which gradually weakened over time and was mainly distributed in the northern area of the city where cropland and construction were concentrated. (3) Edge density, patch density, and NDVI have the greatest influence on CS in Xi’an and Jinan. DEM, slope, and patch density have the greatest influence on Xi’an HQ. Temperature, edge density, and patch density have the greatest impact on Jinan HQ. NDVI and temperature have the greatest influence on FP in the two cities. DEM, slope, and edge density have the greatest influence on SC. Landscape fragmentation has a great impact on CS, HQ, and SC in Xi’an and Jinan. Due to insufficient research data, this study focused on only four ESs in Xi’an and Jinan, the megacities in the middle and lower reaches of the Yellow River. However, the research results can provide a new perspective for solving the problem of regional sustainable development and new directions and ideas for follow-up research in this field. Full article
Show Figures

Figure 1

37 pages, 23423 KiB  
Review
Thermally Stable Carbon Materials from Polybenzoxazines: Structure, Properties, and Supercapacitor Potential
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Batteries 2025, 11(4), 140; https://doi.org/10.3390/batteries11040140 - 4 Apr 2025
Viewed by 719
Abstract
This review explores the structural and electrochemical characteristics of carbon materials derived from polybenzoxazines, emphasizing their potential in supercapacitors. A detailed analysis of thermal degradation by-products during carbonization reveals distinct competing mechanisms, underscoring the exceptional thermal stability of benzoxazines. These materials exhibit significant [...] Read more.
This review explores the structural and electrochemical characteristics of carbon materials derived from polybenzoxazines, emphasizing their potential in supercapacitors. A detailed analysis of thermal degradation by-products during carbonization reveals distinct competing mechanisms, underscoring the exceptional thermal stability of benzoxazines. These materials exhibit significant pseudocapacitive behavior and excellent charge retention, making them strong candidates for energy storage applications. The versatility of polybenzoxazine-based carbons enables the formation of diverse morphologies—nanospheres, foams, films, nanofibers, and aerogels—each tailored for specific functionalities. Advanced synthesis techniques allow for precise control over porosity at the nanoscale, optimizing performance for supercapacitors and beyond. Their exceptional thermal stability, electrical conductivity, and tunable porosity extend their utility to gas adsorption, catalysis, and electromagnetic shielding. Additionally, their intumescent properties (unique ability to expand when exposed to high heat) make them promising candidates for flame-retardant coatings. The combination of customizable architecture, superior electrochemical performance, and high thermal resistance highlights their transformative potential in sustainable energy solutions and advanced protective applications. Full article
(This article belongs to the Special Issue High-Performance Supercapacitors: Advancements & Challenges)
Show Figures

Figure 1

21 pages, 9636 KiB  
Article
Low-Carbon Control of Integrated Energy by Combining Cuckoo Search Algorithm and Particle Swarm Optimization Algorithm
by Dandan Wang, Jian Guan, Hongyan Liu, Hanwen Zhang, Qi Wang, Lijian Zhang and Jingzheng Dong
Sustainability 2025, 17(7), 3206; https://doi.org/10.3390/su17073206 - 3 Apr 2025
Viewed by 402
Abstract
With the increasing severity of global climate change, low-carbon development has become a key issue in the energy industry. As an effective way to optimize energy utilization and reduce carbon emissions, integrated energy system is receiving increasing attention. However, existing low-carbon control methods [...] Read more.
With the increasing severity of global climate change, low-carbon development has become a key issue in the energy industry. As an effective way to optimize energy utilization and reduce carbon emissions, integrated energy system is receiving increasing attention. However, existing low-carbon control methods still face many challenges in improving system efficiency and reducing carbon emissions, and the ability of multi-energy cooperative scheduling and optimal control is insufficient. Therefore, a hybrid algorithm combining the particle swarm optimization and cuckoo search algorithms is designed to adjust the integrated energy low-carbon control capability. The proposed algorithm required fewer iterations than the genetic cuckoo algorithm, which only went through 43 iterations. The convergence speed was improved by 34.8% compared with a single cuckoo algorithm. Among the four scenarios, scenario 4 and scenario 3 had the highest utilization rates of 99.75%, while scenario 1 had the lowest utilization rate of 61.96%. This indicates that the integrated energy system controlled by the particle swarm optimization cuckoo algorithm, while considering carbon capture and storage as well as power-to-gas conversion, can effectively utilize solar energy resources for power generation and achieve energy-saving and emission reduction effects. In summary, this method can help the integrated energy system adapt to various optimization strategies, which promotes the development of low-carbon control technologies in the energy industry. Full article
(This article belongs to the Special Issue Innovation and Low Carbon Sustainability in the Digital Age)
Show Figures

Figure 1

Back to TopTop