Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,974)

Search Parameters:
Keywords = carbon release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 70
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

15 pages, 258 KiB  
Article
The Pulmonary Manifestation of Mastocytosis: Experiences of the National Reference Centre of Excellence
by Marlena Sztormowska, Aleksandra Górska, Maciej Piskunowicz, Lucyna Górska, Wojciech Nazar, Marta Chełmińska, Krzysztof Kuziemski, Ewa Jassem and Marek Niedoszytko
J. Clin. Med. 2025, 14(15), 5455; https://doi.org/10.3390/jcm14155455 - 3 Aug 2025
Viewed by 56
Abstract
Background: Patients with mastocytosis may present with exacerbated respiratory symptoms and lung diseases resulting from mast cell mediator release. However, their prevalence and severity level remain under debate. The study aims to analyze the prevalence of respiratory symptoms and the usefulness of lung [...] Read more.
Background: Patients with mastocytosis may present with exacerbated respiratory symptoms and lung diseases resulting from mast cell mediator release. However, their prevalence and severity level remain under debate. The study aims to analyze the prevalence of respiratory symptoms and the usefulness of lung function tests like spirometry, diffusing capacity of the lung for carbon monoxide (DLCO), and high-resolution computed tomography (HRCT) of the chest in mastocytosis patients presenting with dyspnea, cough, and exercise intolerance. Methods: We included 104 patients with mastocytosis and 71 healthy controls. Data collection encompassed patient interview, clinical examination, spirometry, DLCO, and chest HRCT. Diagnosis of mastocytosis included bone marrow biopsies and serum tryptase measurements. Results: Compared to controls, patients with mastocytosis exhibited significantly lower values in FEV1/VC ratio, absolute DLCO/VA, predicted DLCO/VA, absolute DLCOcSB, and predicted DLCOcSB (p < 0.001). Commonly reported respiratory symptoms included dyspnea (36.5%), chest tightness (22.1%), and wheezing (9.6%). Airway obstruction was identified in 7.7% of patients; however, it appeared to be independent of the mastocytosis subtype. A decreased DLCO/VA ratio was observed in 4.8% of patients, but HRCT did not reveal any evidence of underlying lung disease. Conclusions: Mastocytosis appears to be a risk factor for the occurrence and exacerbation of respiratory symptoms. However, airway obstruction and impairment of the alveolar–capillary membrane seem to occur independently of the clinical subtype of mastocytosis. Additionally, the causal relationship between pulmonary involvement, mast cell infiltration of the alveolar–capillary membrane, and the systemic circulation of mast cell mediators remains unclear and requires further research. Full article
(This article belongs to the Section Respiratory Medicine)
23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 - 1 Aug 2025
Viewed by 178
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 (registering DOI) - 1 Aug 2025
Viewed by 229
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

16 pages, 2902 KiB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 - 31 Jul 2025
Viewed by 279
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

19 pages, 2442 KiB  
Article
Monitoring C. vulgaris Cultivations Grown on Winery Wastewater Using Flow Cytometry
by Teresa Lopes da Silva, Thiago Abrantes Silva, Bruna Thomazinho França, Belina Ribeiro and Alberto Reis
Fermentation 2025, 11(8), 442; https://doi.org/10.3390/fermentation11080442 - 31 Jul 2025
Viewed by 191
Abstract
Winery wastewater (WWW), if released untreated, poses a serious environmental threat due to its high organic load. In this study, Chlorella vulgaris was cultivated in diluted WWW to assess its suitability as a culture medium. Two outdoor cultivation systems—a 270 L raceway and [...] Read more.
Winery wastewater (WWW), if released untreated, poses a serious environmental threat due to its high organic load. In this study, Chlorella vulgaris was cultivated in diluted WWW to assess its suitability as a culture medium. Two outdoor cultivation systems—a 270 L raceway and a 40 L bubble column—were operated over 33 days using synthetic medium (control) and WWW. A flow cytometry (FC) protocol was implemented to monitor key physiological parameters in near-real time, including cell concentration, membrane integrity, chlorophyll content, cell size, and internal complexity. At the end of cultivation, the bubble column yielded the highest cell concentrations: 2.85 × 106 cells/mL (control) and 2.30 × 106 cells/mL (WWW), though with lower proportions of intact cells (25% and 31%, respectively). Raceway cultures showed lower cell concentrations: 1.64 × 106 (control) and 1.54 × 106 cells/mL (WWW), but higher membrane integrity (76% and 36% for control and WWW cultures, respectively). On average, cells grown in the bubble column had a 22% larger radius than those in the raceway, favouring sedimentation. Heterotrophic cells were more abundant in WWW cultures, due to the presence of organic carbon, indicating its potential for use as animal feed. This study demonstrates that FC is a powerful, real-time tool for monitoring microalgae physiology and optimising cultivation in complex effluents like WWW. Full article
Show Figures

Figure 1

17 pages, 2437 KiB  
Article
Salvianolic Acid B Attenuates Liver Fibrosis via Suppression of Glycolysis-Dependent m1 Macrophage Polarization
by Hao Song, Ze-Wei Li, Wei Xu, Yang Tan, Ming Kuang, Gang Pei and Zhi-Qi Wang
Curr. Issues Mol. Biol. 2025, 47(8), 598; https://doi.org/10.3390/cimb47080598 - 29 Jul 2025
Viewed by 458
Abstract
Liver fibrosis, a critical pathological feature of chronic liver injury, is closely associated with macrophage-mediated inflammatory responses and metabolic reprogramming. Blocking the fibrosis process will be beneficial to the treatment and recovery of the disease. Liver macrophages are a remarkably heterogeneous population of [...] Read more.
Liver fibrosis, a critical pathological feature of chronic liver injury, is closely associated with macrophage-mediated inflammatory responses and metabolic reprogramming. Blocking the fibrosis process will be beneficial to the treatment and recovery of the disease. Liver macrophages are a remarkably heterogeneous population of immune cells that play multiple functions in homeostasis and are central to liver fibrosis. Glycolysis-mediated macrophage metabolic reprogramming leads to an increase in the proportion of M1 macrophages and the release of pro-inflammatory cytokines. The present study aimed to investigate the therapeutic effect and mechanism of acid B (SAL B) against carbon tetrachloride (CCl4)-induced liver fibrosis. Here, we demonstrate that SAL B reduced the production of inflammatory factors in CCl4-induced liver fibrosis. Mechanistically, SAL B increased the expression of migration inhibitor 1 (MIG1) by inhibiting DNMT1-mediated methylation of the MIG1 promoter. Subsequently, MIG1 reduced the transcription of lactate dehydrogenase A (LDHA) and hexokinase 2 (HK2) which blocked glycolysis-mediated macrophage M1 polarization. In summary, our results suggested that SAL B is a promising intervention for ameliorating liver fibrosis. Full article
Show Figures

Figure 1

27 pages, 5196 KiB  
Article
Impact of Hydrogen Release on Accidental Consequences in Deep-Sea Floating Photovoltaic Hydrogen Production Platforms
by Kan Wang, Jiahui Mi, Hao Wang, Xiaolei Liu and Tingting Shi
Hydrogen 2025, 6(3), 52; https://doi.org/10.3390/hydrogen6030052 - 29 Jul 2025
Viewed by 230
Abstract
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical [...] Read more.
Hydrogen is a potential key component of a carbon-neutral energy carrier and an input to marine industrial processes. This study examines the consequences of coupled hydrogen release and marine environmental factors during floating photovoltaic hydrogen production (FPHP) system failures. A validated three-dimensional numerical model of FPHP comprehensively characterizes hydrogen leakage dynamics under varied rupture diameters (25, 50, 100 mm), transient release duration, dispersion patterns, and wind intensity effects (0–20 m/s sea-level velocities) on hydrogen–air vapor clouds. FLACS-generated data establish the concentration–dispersion distance relationship, with numerical validation confirming predictive accuracy for hydrogen storage tank failures. The results indicate that the wind velocity and rupture size significantly influence the explosion risk; 100 mm ruptures elevate the explosion risk, producing vapor clouds that are 40–65% larger than 25 mm and 50 mm cases. Meanwhile, increased wind velocities (>10 m/s) accelerate hydrogen dilution, reducing the high-concentration cloud volume by 70–84%. Hydrogen jet orientation governs the spatial overpressure distribution in unconfined spaces, leading to considerable shockwave consequence variability. Photovoltaic modules and inverters of FPHP demonstrate maximum vulnerability to overpressure effects; these key findings can be used in the design of offshore platform safety. This study reveals fundamental accident characteristics for FPHP reliability assessment and provides critical insights for safety reinforcement strategies in maritime hydrogen applications. Full article
Show Figures

Figure 1

25 pages, 4401 KiB  
Article
Impact of High Energy Milling and Mineral Additives on a Carbonate–Quartz–Apatite System for Ecological Applications
by Vilma Petkova, Katerina Mihaylova, Ekaterina Serafimova, Rositsa Titorenkova, Liliya Tsvetanova and Andres Trikkel
Materials 2025, 18(15), 3508; https://doi.org/10.3390/ma18153508 - 26 Jul 2025
Viewed by 327
Abstract
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of [...] Read more.
In this study, high-energy milled (HEM) samples of natural phosphorites from Estonian deposits were investigated. The activation was performed via planetary mill with Cr-Ni grinders with a diameter of 20 mm. This method is an ecological alternative, since it eliminates the disadvantages of conventional acid methods, namely the release of gaseous and solid technogenic products. The aim of the study is to determine the changes in the structure to follow the solid-state transitions and the isomorphic substitutions in the anionic sub-lattice in the structure of the main mineral apatite in the samples from Estonia, under the influence of HEM activation. It is also interesting to investigate the influence of HEM on structural-phase transformations on the structure of impurity minerals-free calcite/dolomite, pyrite, quartz, as well as to assess their influence on the thermal behavior of the main mineral apatite. The effect of HEM is monitored by using a complex of analytical methods, such as chemical analysis, powder X-ray diffraction (PXRD), wavelength-dispersive X-ray fluorescence (WD-XRF) analysis, and Fourier-transformed infrared (FTIR) analysis. The obtained results prove the correlation in the behavior of the studied samples with regard to their quartz content and bonded or non-bonded carbonate ions. After HEM activation of the raw samples, the following is established: (i) anionic isomorphism with formation of A and A-B type carbonate-apatites and hydroxyl-fluorapatite; (ii) solid-phase synthesis of calcium orthophosphate-CaHPO4 (monetite) and dicalcium diphosphate-β-Ca2P2O7; (iii) enhanced chemical reactivity by approximately three times by increasing the solubility via HEM activation. The dry milling method used is a suitable approach for solving technological projects to improve the composition and structure of soils, increasing soil fertility by introducing soluble forms of calcium phosphates. It provides a variety of application purposes depending on the composition, impurities, and processing as a soil improver, natural mineral fertilizer, or activator. Full article
(This article belongs to the Special Issue Advances in Rock and Mineral Materials—Second Edition)
Show Figures

Figure 1

12 pages, 1803 KiB  
Article
Valorization of Eggshell Powder as a Catalytic Activation Agent for Producing Porous Carbon Materials from Lignocellulosic Waste
by Chi-Hung Tsai, Hervan Marion Morgan and Wen-Tien Tsai
Catalysts 2025, 15(8), 712; https://doi.org/10.3390/catal15080712 - 26 Jul 2025
Viewed by 344
Abstract
This study explored the potential of reusing eggshell powders as a renewable activating agent for producing porous carbon materials from coffee husk. Carbonization and activation experiments were conducted by heating the samples at a rate of 10 °C/min up to 850 °C under [...] Read more.
This study explored the potential of reusing eggshell powders as a renewable activating agent for producing porous carbon materials from coffee husk. Carbonization and activation experiments were conducted by heating the samples at a rate of 10 °C/min up to 850 °C under a nitrogen atmosphere. A custom-designed double steel-mesh sample holder was used to hold approximately 2.0 g coffee husk on the top, with varying masses of eggshell at the bottom to achieve eggshells to coffee husk mass ratios of 2:1, 4:1, 6:1 and 8:1. The results demonstrated that CO2 released from the thermal decomposition of the eggshell powder significantly enhanced pore development at 850 °C. Compared to the pore properties of carbon material produced without eggshell (e.g., BET surface area of 321 m2/g), the activated carbon samples exhibited substantially improved pore properties (e.g., BET surface area in the range of 592 to 715 m2/g). Furthermore, the pore characteristics improved consistently with increasing eggshell content. Observations by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FTIR) confirmed the structural and chemical transformations of the resulting carbon materials. Under optimal carbonization-activation conditions, the resulting carbon materials derived from coffee husk exhibited microporous structures and slit-shaped pores, as indicated by the Type I isotherms and H4 hysteresis loops. Full article
Show Figures

Graphical abstract

19 pages, 5269 KiB  
Article
Three-Dimensional Ordered Porous SnO2 Nanostructures Derived from Polystyrene Sphere Templates for Ethyl Methyl Carbonate Detection in Battery Safety Applications
by Peijiang Cao, Linlong Qu, Fang Jia, Yuxiang Zeng, Deliang Zhu, Chunfeng Wang, Shun Han, Ming Fang, Xinke Liu, Wenjun Liu and Sachin T. Navale
Nanomaterials 2025, 15(15), 1150; https://doi.org/10.3390/nano15151150 - 25 Jul 2025
Viewed by 307
Abstract
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling [...] Read more.
As lithium-ion batteries (LIBs) gain widespread use, detecting electrolyte–vapor emissions during early thermal runaway (TR) remains critical to ensuring battery safety; yet, it remains understudied. Gas sensors integrating oxide nanostructures offer a promising solution as they possess high sensitivity and fast response, enabling rapid detection of various gas-phase indicators of battery failure. Utilizing this approach, 3D ordered tin oxide (SnO2) nanostructures were synthesized using polystyrene sphere (PS) templates of varied diameters (200–1500 nm) and precursor concentrations (0.2–0.6 mol/L) to detect key electrolyte–vapors, especially ethyl methyl carbonate (EMC), released in the early stages of TR. The 3D ordered SnO2 nanostructures with ring- and nanonet-like morphologies, formed after PS template removal, were characterized, and the effects of template size and precursor concentration on their structure and sensing performance were investigated. Among various nanostructures of SnO2, nanonets achieved by a 1000 nm PS template and 0.4 mol/L precursor showed higher mesoporosity (~28 nm) and optimal EMC detection. At 210 °C, it detected 10 ppm EMC with a response of ~7.95 and response/recovery times of 14/17 s, achieving a 500 ppb detection limit alongside excellent reproducibility/stability. This study demonstrates that precise structural control of SnO2 nanostructures using templates enables sensitive EMC detection, providing an effective sensor-based strategy to enhance LIB safety. Full article
(This article belongs to the Special Issue Trends and Prospects in Gas-Sensitive Nanomaterials)
Show Figures

Figure 1

13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 421
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

17 pages, 11097 KiB  
Article
Experimental Study on Single-Particle Combustion Characteristics of Large-Sized Wheat Straw in a Drop Tube Furnace
by Haoteng Zhang, Lihui Yu, Cuina Qin, Shuo Jiang and Chunjiang Yu
Energies 2025, 18(15), 3968; https://doi.org/10.3390/en18153968 - 24 Jul 2025
Viewed by 188
Abstract
Co-firing large-sized straw biomass in pulverized coal boilers is a potential pathway for carbon emission reduction in China’s thermal power plants. However, experimental data on large-sized straw combustion under pulverized coal boiler combustion conditions are critically lacking. This study selected typical large-sized wheat [...] Read more.
Co-firing large-sized straw biomass in pulverized coal boilers is a potential pathway for carbon emission reduction in China’s thermal power plants. However, experimental data on large-sized straw combustion under pulverized coal boiler combustion conditions are critically lacking. This study selected typical large-sized wheat straw particles. Employing a two-mode experimental setup in a drop tube furnace (DTF) system simulating pulverized coal boiler conditions, we systematically investigated the combustion behavior and alkali metal release characteristics of this large-sized straw biomass, with combustion processes summarized for diverse particle types. The findings reveal asynchronous combustion progression across particle surfaces due to heterogeneous mass transfer and gas diffusion; unique behaviors distinct from denser woody biomass, including bending deformation, fiber branching, and fragmentation, occur; significant and morphology-specific deformations occur during devolatilization; fragmentation universally produces particles of varied shapes (needle-like, flaky, blocky, semi-tubular) during char combustion; and potassium release exceeds 35% after complete devolatilization and surpasses 50% at a burnout degree exceeding 80%. This work provides essential experimental data on the fundamental combustion characteristics and alkali metal release of large-sized wheat straw particles under pulverized coal boiler combustion conditions, offering engineering application guidance for the direct co-firing of large-sized flexible straw biomass in pulverized coal boilers. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

17 pages, 5410 KiB  
Article
Mineral Phase Transformation and Leaching Behavior During the Roasting–Acid–Leaching Process of Clay-Type Lithium Ore in the Qaidam Basin
by Xiaoou Zhang, Jing Zhao, Yan Li, Dong An, Huaigang Cheng, Yuliang Ma and Huiping Song
Minerals 2025, 15(8), 777; https://doi.org/10.3390/min15080777 - 24 Jul 2025
Viewed by 166
Abstract
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching [...] Read more.
To address lithium extraction from clay-type lithium ore from the Qaidam Basin, this study identified key controlling factors through particle fractionation, acid-leaching–roasting experiments, and mineral characterization. The results demonstrate that particle size optimization enriched the lithium to 87.65 ppm, where a 74% leaching rate was achieved with 65 ppm extraction, which established intermediate-sized samples as optimal. During acid leaching, adsorbed lithium ions with a phyllosilicate interlayer were released via the ion exchange process instead of mineral dissolution, as verified by the Li-O/S-O peak shifts in the FTIR spectra. The roasting induced hydroxyl elimination, carbonate decomposition, and silicate restructuring but triggered lithium encapsulation via mineral phase reorganization, which caused a sharp leaching rate decline. Effective lithium extraction requires integrated particle size screening, acid-leaching optimization, and roasting-induced phase encapsulation disruption. This study established theoretical foundations for clay-type lithium ore exploitation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 1398 KiB  
Article
Hydrochar as a Potential Soil Conditioner for Mitigating H+ Production in the Nitrogen Cycle: A Comparative Study
by Weijia Yu, Qingyue Zhang, Shengchang Huai, Yuwen Jin and Changai Lu
Agronomy 2025, 15(8), 1777; https://doi.org/10.3390/agronomy15081777 - 24 Jul 2025
Viewed by 283
Abstract
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and [...] Read more.
Pyrochar has been identified as a favorable soil conditioner that can effectively ameliorate soil acidification. Hydrochar is considered a more affordable carbon material than pyrochar, but its effect on the process of soil acidification has yet to be investigated. An indoor incubation and a soil column experiment were conducted to study the effect of rice straw hydrochar application on nitrification and NO3-N leaching in acidic red soil. Compared to the control and pyrochar treatments, respectively, hydrochar addition mitigated the net nitrification rate by 3.75–48.75% and 57.92–78.19%, in the early stage of urea fertilization. This occurred mainly because a greater amount of dissolved organic carbon (DOC) was released from hydrochar than the other treatments, which stimulated microbial nitrogen immobilization. The abundances of ammonia-oxidizing archaea and ammonia-oxidizing bacteria were dramatically elevated by 25.62–153.19% and 12.38–22.39%, respectively, in the hydrochar treatments because of DOC-driven stimulation. The cumulative leaching loss of NO3-N in soils amended with hydrochar was markedly reduced by 43.78–59.91% and 61.70–72.82% compared with that in the control and pyrochar treatments, respectively, because hydrochar promoted the soil water holding capacity by 2.70–9.04% and reduced the residual NO3-N content. Hydrochar application can dramatically diminish total H+ production from soil nitrification and NO3-N leaching. Thus, it could be considered an economical soil amendment for ameliorating soil acidification. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop