Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,859)

Search Parameters:
Keywords = carbon management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1188 KB  
Review
Advances in Microbial Fuel Cells Using Carbon-Rich Wastes as Substrates
by Kexin Ren, Jianfei Wang, Xurui Hou, Jiaqi Huang and Shijie Liu
Processes 2026, 14(3), 416; https://doi.org/10.3390/pr14030416 (registering DOI) - 25 Jan 2026
Abstract
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to [...] Read more.
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to simultaneously address energy demand and waste management challenges. This review systematically examines the effects of various carbon-rich substrates on MFC performance, including lignocellulosic biomasses, molasses, lipid waste, crude glycerol, and C1 compounds. These substrates, characterized by wide availability, low cost, and high carbon content, have demonstrated considerable potential for efficient bioelectricity generation and resource recovery. Particular emphasis is placed on the roles of microbial community regulation and genetic engineering strategies in enhancing substrate utilization efficiency and power output. Additionally, the application of carbon-rich wastes in electrode fabrication is discussed, highlighting their contributions to improved electrical conductivity, sustainability, and overall system performance. The integration of carbon-rich substrates into MFCs offers promising prospects for alleviating energy shortages, improving wastewater treatment efficiency, and reducing environmental pollution, thereby supporting the development of a circular bioeconomy. Despite existing challenges related to scalability, operational stability, and system cost, MFCs exhibit strong potential for large-scale implementation across diverse industrial sectors. Full article
(This article belongs to the Special Issue Study on Biomass Conversion and Biorefinery)
Show Figures

Figure 1

31 pages, 3453 KB  
Article
The Effects of Carbon Emission Rights Trading Pilot Policy on Corporate Green Innovation: Evidence from PSM-DID and Policy Insights
by Huilu Jiang, Zhixi Liu and Zhenlin Chen
Sustainability 2026, 18(3), 1207; https://doi.org/10.3390/su18031207 (registering DOI) - 24 Jan 2026
Abstract
Global warming threatens sustainable human development, and carbon emission rights trading (CERT) has emerged as a key market-based tool for reducing emissions. Yet evidence on how CERT affects corporate green innovation—especially high-quality, substantive innovation—remains mixed and fragmented. Using unbalanced panel data on Chinese [...] Read more.
Global warming threatens sustainable human development, and carbon emission rights trading (CERT) has emerged as a key market-based tool for reducing emissions. Yet evidence on how CERT affects corporate green innovation—especially high-quality, substantive innovation—remains mixed and fragmented. Using unbalanced panel data on Chinese A-share listed firms from 2007 to 2016 and applying fixed-effect, DID, and PSM-DID models, this study examines the impact of China’s CERT pilot policy on quota-managed firms’ green innovation. The results show that the policy primarily stimulates substantive green innovation, reflected in green invention patents, with limited influence on strategic, low-novelty patents. Its effects are stronger for firms in central and western pilot regions, in non-high-tech industries, and at more mature stages of development, and differ between firms that anticipated regulation and those brought under quota management unexpectedly. Overall, the findings indicate that a well-designed carbon trading mechanism can reallocate resources to incentivize high-quality green innovation, offering micro-level support for Coasian market-based approaches to environmental externalities and informing the further development of China’s national carbon market. Full article
Show Figures

Figure 1

21 pages, 5515 KB  
Article
Short-Term Effects of Biochar on Soil Fluxes of Methane, Carbon Dioxide, and Water Vapour in a Tea Agroforestry System
by Md Abdul Halim, Md Rezaul Karim, Nigel V. Gale and Sean C. Thomas
Soil Syst. 2026, 10(2), 21; https://doi.org/10.3390/soilsystems10020021 (registering DOI) - 24 Jan 2026
Abstract
Tea (Camellia sinensis) cultivation is a major global industry that faces sustainability challenges due to soil degradation and greenhouse gas (GHG) emissions from intensive management. Biochar—charcoal designed and used as a soil amendment—has emerged as a potential tool to improve soil [...] Read more.
Tea (Camellia sinensis) cultivation is a major global industry that faces sustainability challenges due to soil degradation and greenhouse gas (GHG) emissions from intensive management. Biochar—charcoal designed and used as a soil amendment—has emerged as a potential tool to improve soil health, enhance carbon sequestration, and mitigate GHG fluxes in agroecosystems. However, field-scale evidence of its effects on GHG dynamics in woody crops like tea remains limited, particularly regarding methane (CH4). Here, we present, to our knowledge, the first field assessment of biochar impacts on CO2, CH4, and H2O vapour fluxes in a subtropical tea agroforestry system with and without shade trees in northeastern Bangladesh. Using a closed dynamic chamber and real-time gas analysis, we found that biochar application (at 7.5 t·ha−1) significantly enhanced average soil methane (CH4) uptake by 84%, while soil respiration (CO2 efflux) rose modestly (+18%) and water-vapour fluxes showed a marginal increase. Canopy conditions modulated these effects: biochar strongly enhanced CH4 uptake under both shaded and open canopies, whereas biochar effects on water-vapour flux were detectable only when biochar was combined with a shade-tree canopy. Structural equation modelling suggests that CH4 flux was primarily governed by biochar-induced changes in soil pH, moisture, nutrient status, and temperature, while CO2 and H2O fluxes were shaped by organic matter availability, temperature, and phosphorus dynamics. These findings demonstrate that biochar can promote CH4 uptake and alter soil carbon–water interactions during the dry season in tea plantation systems and support operational biochar use in combination with shade-tree agroforestry. Full article
23 pages, 376 KB  
Article
The Green Side of the Machine: Industrial Robots and Corporate Energy Efficiency in China
by Ze Chen and Yuxuan Wang
Sustainability 2026, 18(3), 1193; https://doi.org/10.3390/su18031193 (registering DOI) - 24 Jan 2026
Abstract
In the context of the ongoing digital revolution in manufacturing and the simultaneous advancement toward dual carbon objectives, this study investigates the role of intelligent technological advancements, particularly industrial robotics, in improving firm-level energy efficiency. Utilizing panel data from Chinese listed companies spanning [...] Read more.
In the context of the ongoing digital revolution in manufacturing and the simultaneous advancement toward dual carbon objectives, this study investigates the role of intelligent technological advancements, particularly industrial robotics, in improving firm-level energy efficiency. Utilizing panel data from Chinese listed companies spanning the period 2012–2023, the research assesses the relationship between exposure to industrial robots and corporate energy efficiency metrics. The empirical analysis demonstrates that greater exposure to industry-level robotization substantially boosts corporate energy performance, verifying that intelligent modernization and green transition can be mutually reinforcing. This positive effect is particularly pronounced among superstar firms, in more competitive industries, and for capital-intensive enterprises. Mechanism analysis reveals that, first, robotization processes generate a scale effect that effectively dilutes the fixed energy consumption per unit of product. Second, the diffusion of robots intensifies market competition, creating a competition effect that compels all firms within the industry to optimize costs and management with a focus on energy conservation. This study demonstrates that enhancing human capital within organizations significantly amplifies the beneficial impact of robotic integration on energy efficiency metrics. By providing empirical data from an emerging market context, this research not only elucidates the role of industrial robots but also offers policy-relevant insights for developed economies navigating the concurrent challenges of industrial modernization and environmental sustainability. Full article
Show Figures

Figure 1

31 pages, 12177 KB  
Article
Regional Finance and Environmental Outcomes: Empirical Evidence from Kazakhstan’s Regions
by Nurlan Satanbekov, Ainagul Adambekova, Nurbek Adambekov, Akbota Anessova and Zhuldyz Adambekova
Economies 2026, 14(2), 37; https://doi.org/10.3390/economies14020037 (registering DOI) - 24 Jan 2026
Abstract
This study investigates how financial growth connects to regional environmental performance within the framework of policies aimed at reducing carbon emissions. It uses a comprehensive panel dataset covering the period from 2010 to 2024. Although Kazakhstan has set ambitious targets, significant differences in [...] Read more.
This study investigates how financial growth connects to regional environmental performance within the framework of policies aimed at reducing carbon emissions. It uses a comprehensive panel dataset covering the period from 2010 to 2024. Although Kazakhstan has set ambitious targets, significant differences in financing levels and institutional development across regions pose substantial obstacles to achieving the target emissions reductions. Employing regional panel data, we use a random-effects model to assess links among banking loans, governmental funding metrics, employment statistics, and pollution measurements. Principal component analysis is utilized to tackle potential collinearity and reveal fundamental patterns. This approach reflects the inherent differences between regions rather than evolutionary shifts. The obtained empirical data demonstrate a significant relationship between high levels of bank loans and reduced carbon emissions. Regions with better access to financial services are better positioned to invest in energy efficiency, green infrastructure, and green innovation. Conversely, increases in regional budgets are associated with rising emissions, as tax revenue growth primarily comes from industries most dependent on fossil fuels. Dependence on the national budget for subsidies exacerbates distortions in regional budgets’ relationship with the regions’ transition to low-carbon development. The findings confirm the importance of regional financial management in determining the path to reducing greenhouse gas emissions. Based on this, it is proposed to transform the mechanism of interbudgetary relations to grant regions greater financial autonomy and to localize credit resources at the regional level to accelerate the transition to a low-carbon economy in Kazakhstan. Full article
(This article belongs to the Section Economic Development)
Show Figures

Figure 1

22 pages, 824 KB  
Article
Success Conditions for Sustainable Geothermal Power Development in East Africa: Lessons Learned
by Helgi Thor Ingason and Thordur Vikingur Fridgeirsson
Sustainability 2026, 18(3), 1185; https://doi.org/10.3390/su18031185 (registering DOI) - 24 Jan 2026
Abstract
Geothermal energy is a crucial component of climate adaptation and sustainability transitions, as it provides a dependable, low-carbon source of baseload power that can accelerate sustainable energy transitions and enhance climate resilience. Yet, in East Africa—one of the world’s most promising geothermal regions, [...] Read more.
Geothermal energy is a crucial component of climate adaptation and sustainability transitions, as it provides a dependable, low-carbon source of baseload power that can accelerate sustainable energy transitions and enhance climate resilience. Yet, in East Africa—one of the world’s most promising geothermal regions, with the East African Rift—a unique climate-energy opportunity zone—the harnessing of geothermal power remains slow and uneven. This study examines the contextual conditions that facilitate the successful and sustainable development of geothermal power in the region. Drawing on semi-structured interviews with 17 experienced professionals who have worked extensively on geothermal projects across East Africa, the analysis identifies how technical, institutional, managerial, and relational circumstances interact to shape outcomes. The findings indicate an interdependent configuration of success conditions, with structural, institutional, managerial, and meta-conditions jointly influencing project trajectories rather than operating in isolation. The most frequently emphasised enablers were resource confirmation and technical design, leadership and team competence, long-term stakeholder commitment, professional project management and control, and collaboration across institutions and communities. A co-occurrence analysis reinforces these insights by showing strong patterns of overlap between core domains—particularly between structural and managerial factors and between managerial and meta-conditions, highlighting the mediating role of managerial capability in translating contextual conditions into operational performance. Together, these interrelated circumstances form a system in which structural and institutional foundations create the enabling context, managerial capabilities operationalise this context under uncertainty, and meta-conditions sustain cooperation, learning, and adaptation over time. The study contributes to sustainability research by providing a context-sensitive interpretation of how project success conditions manifest in geothermal development under climate transition pressures, and it offers practical guidance for policymakers and partners working to advance SDG 7 (Affordable and Clean Energy), SDG 9 (Industry, Innovation and Infrastructure), and SDG 13 (Climate Action) in Africa. Full article
Show Figures

Figure 1

21 pages, 2093 KB  
Article
From Pixels to Carbon Emissions: Decoding the Relationship Between Street View Images and Neighborhood Carbon Emissions
by Pengyu Liang, Jianxun Zhang, Haifa Jia, Runhao Zhang, Yican Zhang, Chunyi Xiong and Chenglin Tan
Buildings 2026, 16(3), 481; https://doi.org/10.3390/buildings16030481 - 23 Jan 2026
Abstract
Under the pressing imperative of achieving “dual carbon” goals and advancing urban low-carbon transitions, understanding how neighborhood spatial environments influence carbon emissions has become a critical challenge for enabling refined governance and precise planning in urban carbon reduction. Taking the central urban area [...] Read more.
Under the pressing imperative of achieving “dual carbon” goals and advancing urban low-carbon transitions, understanding how neighborhood spatial environments influence carbon emissions has become a critical challenge for enabling refined governance and precise planning in urban carbon reduction. Taking the central urban area of Xining as a case study, this research establishes a high-precision estimation framework by integrating Semantic Segmentation of Street View Images and Point of Interest data. This study employs a Geographically Weighted XGBoost model to capture the spatial non-stationarity of emission drivers, achieving a median R2 of 0.819. The results indicate the following: (1) Socioeconomic functional attributes, specifically POI Density and POI Mixture, exert a more dominant influence on carbon emissions than purely visual features. (2) Lane Marking General shows a strong positive correlation by reflecting traffic pressure, Sidewalks exhibit a clear negative correlation by promoting active travel, and Building features display a distinct asymmetric impact, where the driving effect of high density is notably less pronounced than the negative association observed in low-density areas. (3) The development of low-carbon neighborhoods should prioritize optimizing functional mixing and enhancing pedestrian systems to construct resilient and low-carbon urban spaces. This study reveals the non-linear relationship between street visual features and neighborhood carbon emissions, providing an empirical basis and strategic references for neighborhood planning and design oriented toward low-carbon goals, with valuable guidance for practices in urban planning, design, and management. Full article
(This article belongs to the Special Issue Low-Carbon Urban Planning: Sustainable Strategies and Smart Cities)
13 pages, 1715 KB  
Article
Effects of Long-Term Mulching on Soil Aggregation and Organic Carbon Sequestration in Sloping Croplands of the Loess Plateau
by Xicheng Cao, Zhiguo Yang, Guangxin Ren, Gaihe Yang, Na Yang, Ke Wang, Jian Wang, Xing Wang, Jiajie Song, Jiancheng Zhang and Yongzhong Feng
Agriculture 2026, 16(3), 294; https://doi.org/10.3390/agriculture16030294 - 23 Jan 2026
Abstract
Sloping cropland on the Loess Plateau faces severe challenges from soil organic carbon (SOC) depletion and structural instability due to erosion and intensive tillage. Although mulching can enhance SOC sequestration, its long-term effects on the spatial distribution of SOC and aggregates across slopes [...] Read more.
Sloping cropland on the Loess Plateau faces severe challenges from soil organic carbon (SOC) depletion and structural instability due to erosion and intensive tillage. Although mulching can enhance SOC sequestration, its long-term effects on the spatial distribution of SOC and aggregates across slopes remain unclear. A 15-year field experiment evaluated five practices—conventional tillage (T), no tillage (NT), straw mulching (SM), plastic film mulching (PM), and ridge–furrow plastic film mulching (RPM)—on SOC storage, aggregate stability, and their variation with different slope positions. Compared to T, all mulching treatments significantly increased SOC concentration by 4.19% to 83.48% in the 0–30 cm layer. SM and RPM notably increased macro-aggregates (>2 mm) and their associated SOC (24.04–56.49% higher than T) by adding organic matter and optimizing micro-topography. Different slope positions strongly influenced SOC redistribution: lower slopes accumulated more SOC than upper slopes due to erosion–deposition processes. Mulching reduced SOC spatial variability and minimized differences between slope positions. Although mulching increased cumulative SOC mineralization compared to T, the long-term net SOC gain was positive, driven by improved aggregate protection and reduced erosion. SM and RPM are recommended for sustainable slope farmland management due to their dual benefits in enhancing carbon sinks and soil stability. This study offers practical strategies for improving soil health and SOC sequestration in vulnerable sloping landscapes. Full article
Show Figures

Figure 1

28 pages, 8104 KB  
Article
Spatial and Temporal Dynamics and Climate Contribution of Forest Ecosystem Carbon Sinks in Guangxi During 2000–2023
by Jianfei Mo, Hao Yan, Bei Hu, Cheng Chen, Xiyuan Zhou and Yanli Chen
Forests 2026, 17(2), 151; https://doi.org/10.3390/f17020151 - 23 Jan 2026
Abstract
To clarify the spatial–temporal evolution patterns and climate-driven mechanisms of carbon sinks of forest ecosystems under climate change, we calculated the net ecosystem productivity (NEP) of forests in the Guangxi region using remote sensing and meteorological data from 2000 to 2023. By employing [...] Read more.
To clarify the spatial–temporal evolution patterns and climate-driven mechanisms of carbon sinks of forest ecosystems under climate change, we calculated the net ecosystem productivity (NEP) of forests in the Guangxi region using remote sensing and meteorological data from 2000 to 2023. By employing trend analysis, spatial clustering, the Hurst index, and climate contribution evaluation, we analyzed the spatial and temporal changes, sustainability, and the relative contribution of climate impacts on forest carbon sinks. The results are as follows: The carbon sink capacity of forests in Guangxi increased continuously from 2000 to 2023, at a rate of 3.57 g C·m−2·a−1, reaching 39.19% higher in 2023 than in 2000. The carbon sink capacity was higher in the southwest and lower in the northeast, with hotspots mainly located in evergreen/deciduous broad-leaved forest areas. The Hurst index indicates that 84.44% of regions are likely to maintain this increasing trend, suggesting stability in forest carbon sink function. The climate contribution rate to forest carbon sinks was moderate, with significant temporal fluctuations. Temperature governed annual variation in forest carbon sinks, influencing up to 36.37% of the area. The annual average contribution rate of climate change to forest carbon sinks was 30.28%, but there were temporal fluctuations and spatial heterogeneity. Over time, climate contributions had a positive driving impact; however, extreme climate events tended to produce a negative effect. The pattern of forest carbon sinks in Guangxi showed a “heat sink-coupling” phenomenon, with 16.23% of the hotspots of forest carbon sinks coinciding with temperature control zones, highlighting the enhancing effect of temperature rise on carbon sinks against a background of water and heat synergy. This study provides a scientific basis for the assessment of forest carbon sink potential and climate suitability management in Guangxi. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
28 pages, 1647 KB  
Review
A Review of the Literature on Wildfires in the Context of Climate Change
by Corinne Curt and Thomas Curt
Fire 2026, 9(2), 52; https://doi.org/10.3390/fire9020052 - 23 Jan 2026
Abstract
Wildfires are one of the main natural hazards around the world, and are becoming increasingly important in the current context of climate change. To limit the impacts of fires, policies are implemented following various phases of risk management. These concern prevention (risk communication [...] Read more.
Wildfires are one of the main natural hazards around the world, and are becoming increasingly important in the current context of climate change. To limit the impacts of fires, policies are implemented following various phases of risk management. These concern prevention (risk communication and information, forest monitoring, fuel management, the installation of firewalls, etc.) and suppression (firefighting interventions) measures. This article presents a systematic literature review analyzed through the prism of climate change and policy. It is carried out using a textometric approach. The corpus is composed of 720 articles published from 1997. A marked increase is evident from 2021. The analysis enables the clustering of the main issues. Six main themes were revealed by Reinert Clustering: Health issues, Disaster risk management, Natural environment, Management of the natural environment, Fire characteristics, and Fire modeling. These themes are composed of 36 sub-themes. In addition, the article shows that some issues (anthropogenic health and management/governance issues, and natural environment issues around fire and natural environment characterization) remain constant over time while others increase/decrease in importance (air quality, carbon storage and CO2 emissions, ecosystems and biodiversity, and the effects of fires on the natural environment at the expense of anthropogenic issues). Full article
26 pages, 2406 KB  
Article
Ecological Change in Minnesota’s Carbon Sequestration and Oxygen Release Service: A Multidimensional Assessment Using Multi-Temporal Remote Sensing Data
by Donghui Shi
Remote Sens. 2026, 18(3), 391; https://doi.org/10.3390/rs18030391 - 23 Jan 2026
Abstract
Carbon sequestration and oxygen release (CSOR) are core regulating functions of terrestrial ecosystems. However, regional assessments often fail to (i) separate scale-driven high supply from per-area efficiency, (ii) detect structural instability and degradation risk from long-term trajectories, and (iii) provide evidence that is [...] Read more.
Carbon sequestration and oxygen release (CSOR) are core regulating functions of terrestrial ecosystems. However, regional assessments often fail to (i) separate scale-driven high supply from per-area efficiency, (ii) detect structural instability and degradation risk from long-term trajectories, and (iii) provide evidence that is comparable across units for management prioritization. Using Minnesota, USA, we integrated satellite-derived net primary productivity (NPP; 1998–2021) with a Quantity–Intensity–Structure (Q–I–S) framework to quantify CSOR, detect trends and change points (Mann–Kendall and Pettitt tests), map spatial clustering and degradation risk (Exploratory Spatial Data Analysis, ESDA), and attribute natural and human drivers (principal component regression and GeoDetector). CSOR increased overall from 1998 to 2021, with a marked shift around 2013 from a slight, variable decline to sustained recovery. Spatially, CSOR showed a persistent north–south gradient, with higher and improving services in northern Minnesota and lower, more degraded services in the south; persistent degradation was concentrated in a central high-risk belt. The Q–I–S framework also revealed inconsistencies between total supply and condition, identifying high-supply yet degrading areas and low-supply areas with recovery potential that are not evident from the totals alone. Climate variables primarily controlled CSOR quantity and structure, whereas human factors more strongly influenced intensity; the interactions of the two further shaped observed patterns. These results provide an interpretable and transferable basis for diagnosing degradation and prioritizing restoration under long-term environmental change. Full article
51 pages, 1843 KB  
Systematic Review
Remote Sensing of Woody Plant Encroachment: A Global Systematic Review of Drivers, Ecological Impacts, Methods, and Emerging Innovations
by Abdullah Toqeer, Andrew Hall, Ana Horta and Skye Wassens
Remote Sens. 2026, 18(3), 390; https://doi.org/10.3390/rs18030390 - 23 Jan 2026
Abstract
Globally, grasslands, savannas, and wetlands are degrading rapidly and increasingly being replaced by woody vegetation. Woody Plant Encroachment (WPE) disrupts natural landscapes and has significant consequences for biodiversity, ecosystem functioning, and key ecosystem services. This review synthesizes findings from 159 peer-reviewed studies identified [...] Read more.
Globally, grasslands, savannas, and wetlands are degrading rapidly and increasingly being replaced by woody vegetation. Woody Plant Encroachment (WPE) disrupts natural landscapes and has significant consequences for biodiversity, ecosystem functioning, and key ecosystem services. This review synthesizes findings from 159 peer-reviewed studies identified through a PRISMA-guided systematic literature review to evaluate the drivers of WPE, its ecological impacts, and the remote sensing (RS) approaches used to monitor it. The drivers of WPE are multifaceted, involving interactions among climate variability, topographic and edaphic conditions, hydrological change, land use transitions, and altered fire and grazing regimes, while its impacts are similarly diverse, influencing land cover structure, water and nutrient cycles, carbon and nitrogen dynamics, and broader implications for ecosystem resilience. Over the past two decades, RS has become central to WPE monitoring, with studies employing classification techniques, spectral mixture analysis, object-based image analysis, change detection, thresholding, landscape pattern and fragmentation metrics, and increasingly, machine learning and deep learning methods. Looking forward, emerging advances such as multi-sensor fusion (optical– synthetic aperture radar (SAR), Light Detection and Ranging (LiDAR)–hyperspectral), cloud-based platforms including Google Earth Engine, Microsoft Planetary Computer, and Digital Earth, and geospatial foundation models offer new opportunities for scalable, automated, and long-term monitoring. Despite these innovations, challenges remain in detecting early-stage encroachment, subcanopy woody growth, and species-specific patterns across heterogeneous landscapes. Key knowledge gaps highlighted in this review include the need for long-term monitoring frameworks, improved socio-ecological integration, species- and ecosystem-specific RS approaches, better utilization of SAR, and broader adoption of analysis-ready data and open-source platforms. Addressing these gaps will enable more effective, context-specific strategies to monitor, manage, and mitigate WPE in rapidly changing environments. Full article
20 pages, 2647 KB  
Article
Spatial-Scale Dependence and Non-Stationarity of Ecosystem Service Interactions and Their Drivers in the Black Soil Region of Northeast China During Multiple Ecological Restoration Projects
by Si-Yuan Yang, Ming Zhang, Hao-Rui Li, Shuai Ma and Liang-Jie Wang
Forests 2026, 17(2), 149; https://doi.org/10.3390/f17020149 - 23 Jan 2026
Abstract
The black soil region of Northeast China (NEC) is China’s most important food production base. Long-term inefficient land use has made its ecosystem vulnerable to widespread degradation, prompting the implementation of ecological restoration projects (ERPs) to enhance ecosystem service (ES) resilience. Yet, the [...] Read more.
The black soil region of Northeast China (NEC) is China’s most important food production base. Long-term inefficient land use has made its ecosystem vulnerable to widespread degradation, prompting the implementation of ecological restoration projects (ERPs) to enhance ecosystem service (ES) resilience. Yet, the complex interactions among key ESs, including grain production (GP), water yield (WY), soil conservation (SC), and carbon storage (CS), as well as the spatial non-stationarity of their driving factors post-ERPs, have caused spatially heterogeneous, scale-dependent ES relationships. To address these gaps, this study aims to analyze temporal changes in ESs across multiple scales in NEC from 2000 to 2020. By mapping the interactions and quantifying their intensities, we revealed spatial variations in driving factors under different ERPs. The results show that the Natural Wetland Conservation Project (NWCP) and Three-North Shelterbelt Program (TNSP) have led to overall improvements in all ESs. In contrast, the Grain for Green Program (GFGP), the Land Salinity/Sodicity Amelioration Project (LASP), and the Natural Forests Conservation Program (NFCP) are associated with trade-offs between ESs. Interactions between ESs exhibited clear spatial scale dependence, and the dominant drivers varied across scales and restoration contexts. These findings highlight the importance of considering spatial scale and non-stationarity when evaluating ecological restoration outcomes. This study provides a scientific basis for the development and management of ecological restoration programs in intensively managed agricultural regions worldwide, particularly those undergoing multiple, overlapping restoration interventions, from a multi-scale spatial perspective. Full article
(This article belongs to the Section Forest Ecology and Management)
32 pages, 4450 KB  
Article
On-Farm Assessment of No-Till Onion Production and Cover Crop Effects on Soil Physical and Chemical Properties and Greenhouse Gas Emissions
by Paulo Henrique da Silva Câmara, Bruna da Rosa Dutra, Guilherme Wilbert Ferreira, Lucas Dupont Giumbelli, Lucas Raimundo Rauber, Denílson Dortzbach, Júlio César Ramos, Marisa de Cássia Piccolo, José Luiz Rodrigues Torres, Daniel Pena Pereira, Claudinei Kurtz, Cimélio Bayer, Jucinei José Comin and Arcângelo Loss
Agronomy 2026, 16(3), 278; https://doi.org/10.3390/agronomy16030278 - 23 Jan 2026
Abstract
The adoption of conservation systems in agriculture has been increasingly explored as a strategy to improve soil quality and potentially influence greenhouse gas (GHG) emissions. This study reports the first assessment of GHG emissions within a long-term (14 years) agroecological field experiment evaluating [...] Read more.
The adoption of conservation systems in agriculture has been increasingly explored as a strategy to improve soil quality and potentially influence greenhouse gas (GHG) emissions. This study reports the first assessment of GHG emissions within a long-term (14 years) agroecological field experiment evaluating soil management systems for onion (Allium cepa L.) production in a Humic Dystrudept (Cambissolo Húmico Distrófico, Brazilian Soil Classification System) in Southern Brazil. Three management systems based on permanent soil cover and crop diversification were evaluated in an onion–maize rotation: conventional tillage (CT) without cover crops, no-till (NT) without cover crops, and a no-till vegetable system (NTV) with a summer cover crop mixture of pearl millet (Pennisetum americanum), velvet bean (Mucuna aterrima), and sunflower (Helianthus annuus). Short-term GHG emissions were monitored during one onion growing season (106 days), while soil chemical and physical properties reflect long-term management effects. Evaluations included (i) daily and cumulative GHG (N2O, CH4, and CO2) emissions, (ii) soil carbon (C) and nitrogen (N) stocks, (iii) soil aggregation, porosity, and bulk density in different soil layers (0.00–0.05, 0.05–0.10, and 0.10–0.30 m), and (iv) onion yield and cover crop dry matter production. The NTV system improved soil physical and chemical quality and increased onion yield compared to NT and CT. However, higher cumulative N2O emissions were observed in NTV, highlighting a short-term trade-off between increased N2O emissions and long-term improvements in soil quality and crop productivity. All systems acted as methane sinks, with greater CH4 uptake under NTV. Despite higher short-term emissions, the NTV system maintained a positive C balance due to long-term C accumulation in soil. Short-term greenhouse gas emissions were assessed during a single onion growing season, whereas soil carbon stocks reflect long-term management effects; CO2 fluxes measured using static chambers represent ecosystem respiration rather than net ecosystem carbon balance. These results provide an initial baseline of GHG dynamics within a long-term agroecological system and support future multi-year assessments aimed at refining mitigation strategies in diversified vegetable production systems. Full article
16 pages, 2002 KB  
Review
A Dual Soil Carbon Framework for Enhanced Silicate Rock Weathering: Integrating Organic and Inorganic Carbon Pathways Across Forest and Cropland Ecosystems
by Yang Ding, Zhongao Yan, Hao Wang, Yifei Mao, Zeding Liu, Jordi Sardans, Chao Fang and Zhaozhong Feng
Forests 2026, 17(1), 144; https://doi.org/10.3390/f17010144 - 22 Jan 2026
Abstract
Enhanced silicate rock weathering (ESRW) has been proposed as a promising carbon dioxide removal strategy, yet its carbon sequestration pathways, durability, and ecosystem dependence remain incompletely understood. Here, we synthesize evidence from field experiments, observational studies, and modeling to compare ESRW-induced carbon dynamics [...] Read more.
Enhanced silicate rock weathering (ESRW) has been proposed as a promising carbon dioxide removal strategy, yet its carbon sequestration pathways, durability, and ecosystem dependence remain incompletely understood. Here, we synthesize evidence from field experiments, observational studies, and modeling to compare ESRW-induced carbon dynamics across forest and cropland ecosystems using a unified SOC–SIC dual-pool framework. Across both systems, ESRW operates through shared geochemical processes, including proton consumption during silicate dissolution and base cation release, which promote atmospheric CO2 uptake. However, carbon fate diverges markedly among ecosystems. Forest systems, characterized by high biomass production, deep rooting, and strong hydrological connectivity, primarily favor biologically mediated pathways, enhancing net primary productivity and mineral-associated organic carbon (MAOC) formation, while facilitating downstream export of dissolved inorganic carbon (DIC). In contrast, intensively managed croplands more readily accumulate measurable soil inorganic carbon (SIC) and soil DIC over short to medium timescales, particularly under evapotranspiration-dominated or calcium-rich conditions, although SOC responses are often moderate and variable. Importantly, only a subset of ESRW-driven pathways—such as MAOC formation and secondary carbonate precipitation—represent durable carbon storage on decadal to centennial timescales. By explicitly distinguishing carbon storage from carbon transport, this synthesis clarifies the conditions under which ESRW can contribute to climate change mitigation and highlights the need for ecosystem-specific deployment and monitoring strategies. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop