Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (132)

Search Parameters:
Keywords = carbohydrate carrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3666 KiB  
Article
A Sensitive Sandwich-Type Electrochemical Immunosensor for Carbohydrate Antigen 19-9 Based on Covalent Organic Frameworks
by Ting Wu, Rongfang Chen, Yaqin Duan, Longfei Miao, Yongmei Zhu and Li Wang
Biosensors 2025, 15(8), 492; https://doi.org/10.3390/bios15080492 - 1 Aug 2025
Viewed by 190
Abstract
Since carbohydrate antigen 19-9 (CA 19-9) is a significant biomarker for the clinical diagnosis and treatment of pancreatic cancer, a sensitive sandwich-type immunosensor was proposed with an epoxy functionalized covalent organic framework (EP-COFTTA-DHTA) as the antibody carrier and an electroactive COF [...] Read more.
Since carbohydrate antigen 19-9 (CA 19-9) is a significant biomarker for the clinical diagnosis and treatment of pancreatic cancer, a sensitive sandwich-type immunosensor was proposed with an epoxy functionalized covalent organic framework (EP-COFTTA-DHTA) as the antibody carrier and an electroactive COFTTA-2,6-NA(OH)2 as the signal amplification probe for the sensitive detection of CA 19-9. The flexible covalent linkage between the epoxy-functionalized EP-COFTTA-DHTA and the antibodies was employed to improve the dynamics of the antigen–antibody interaction significantly. Meanwhile, AuNPs@COFTTA-2,6-NA(OH)2 with abundant electroactive sites enhanced the current response of the immunoreaction significantly. After optimizing the incubation time and concentration of the antibody, CA 19-9 was quantitatively detected by differential pulse voltammetry (DPV) based on the sensitive sandwich-type immunosensor with a low detection limit of 0.0003 U/mL and a wide linear range of 0.0009–100 U/mL. The electrochemical immunosensor exhibits high specificity, stability and repeatability, and it provides a feasible and efficient method for the pathologic analysis and treatment of tumor markers. Full article
(This article belongs to the Special Issue Advances in Biosensors Based on Framework Materials)
Show Figures

Figure 1

22 pages, 1916 KiB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 306
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

22 pages, 3027 KiB  
Article
Trade-Offs and Partitioning Strategy of Carbon Source-Sink During Fruit Development of Camellia oleifera
by Yueling Li, Yiqing Xie, Yue Zhang, Xuan Fang and Jian Wang
Plants 2025, 14(13), 1920; https://doi.org/10.3390/plants14131920 - 23 Jun 2025
Viewed by 412
Abstract
Non-structural carbohydrates (NSCs), the main substrates and energy carriers of plants, play an important role in mediating the source-sink balance of carbon (C). However, the trade-offs in the allocation of NSCs remain unclear at critical stages of fruit development. In this study, we [...] Read more.
Non-structural carbohydrates (NSCs), the main substrates and energy carriers of plants, play an important role in mediating the source-sink balance of carbon (C). However, the trade-offs in the allocation of NSCs remain unclear at critical stages of fruit development. In this study, we evaluated the dynamic and allometric partitioning characteristics of NSCs at the key stage of fruit development in Camellia oleifera. The seed NSCs pool was the highest in the middle stage of rapid fruit expansion, and an inverted “V” shape appeared from July to September and peaked in August. Notably, although the NSC pool of twigs was the smallest and did not change significantly at each stage, the starch pool was the largest. Significant correlations existed between the NSC content of different organs in C. oleifera in the early stage of slow development and the middle stage of rapid fruit expansion. In particular, NSC components, both of the twigs in the early stage and of the twigs and seeds in the middle stage, showed significant allometric partitioning relationships. In summary, seeds are the main carbon sink for fruit development trade-offs of C. oleifera, and twigs may play an important role in transferring C to seeds at the early and middle stages of fruit development. In the future, attention should be paid to controlling the factors affecting the balance of plant C during the rapid fruit expansion period to ensure high yield. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

34 pages, 5631 KiB  
Article
Unveiling the Biotechnological Potential of Cyanobacteria from the Portuguese LEGE-CC Collection Through Lipidomics and Antioxidant and Lipid-Lowering Properties
by Flavio Oliveira, Tiago Conde, Marisa Pinho, Tânia Melo, Guilherme Scotta Hentschke, Ralph Urbatzka, Hugo Pereira, Monya Costa, Vitor Vasconcelos and Maria Rosário Domingues
Molecules 2025, 30(12), 2504; https://doi.org/10.3390/molecules30122504 - 7 Jun 2025
Viewed by 1287
Abstract
Cyanobacteria are gram-negative prokaryotic microorganisms composed of both broad morphological and phylogenetic diversity inherited from diverse ecosystems like aquatic, terrestrial, or extremophilic environments. In this study, three cyanobacteria strains from the Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) were obtained from different environments [...] Read more.
Cyanobacteria are gram-negative prokaryotic microorganisms composed of both broad morphological and phylogenetic diversity inherited from diverse ecosystems like aquatic, terrestrial, or extremophilic environments. In this study, three cyanobacteria strains from the Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) were obtained from different environments in Portugal. Polyphasic analysis was applied for taxonomic identification. The proximate composition analysis indicated the lipid content (6.2% to 9.1% dry weight (DW)), protein content (28.2% to 62.9% DW), and carbohydrate content (19.5% to 46.1% DW). The fatty acid (FA) profiles of the strains revealed the presence of 19 different FAs, with FA 16:0 found in the highest abundance. The lipidomic analysis revealed 230 lipid species, with Laspinema sp. LEGE 06078 displaying the highest diversity (125 lipid species). These included species-specific and common lipids species that denote biochemical uniqueness that are also carriers of omega-3 FA (n−3). Biological assays exhibited strong antioxidant activity against ABTS•+ and DPPH in Laspinema sp. LEGE 06078, while Sphaerospermopsis sp. LEGE 00249 was renowned for reducing lipids in zebrafish larvae. The findings are of immense significance on the lipidomics diversity of cyanobacteria in terms of nutrition, health, and biotechnology, such as addressing obesity and sustainable resource production. Full article
Show Figures

Figure 1

13 pages, 265 KiB  
Review
Application Potential of Lactic Acid Bacteria in Horticultural Production
by Beata Kowalska and Anna Wrzodak
Sustainability 2025, 17(4), 1385; https://doi.org/10.3390/su17041385 - 8 Feb 2025
Cited by 1 | Viewed by 1839
Abstract
Lactic acid bacteria (LAB) are found on the surface of some plants, forming their natural microbiome, and are especially common in fermented plant products. They are microorganisms capable of performing lactic fermentation, during which they utilize carbohydrates and produce lactic acid. They are [...] Read more.
Lactic acid bacteria (LAB) are found on the surface of some plants, forming their natural microbiome, and are especially common in fermented plant products. They are microorganisms capable of performing lactic fermentation, during which they utilize carbohydrates and produce lactic acid. They are considered probiotic microorganisms. LAB are characterized by strong antagonistic activity against other microorganisms. The mechanism of action of these bacteria is mainly based on the production of substances with strong antimicrobial activity. Some strains of LAB also inhibit the secretion of mycotoxins by mold fungi or have the ability to eliminate them from the environment. With the changing climate and the need for plants to adapt to new, often stressful climatic conditions, the use of LAB in crops may offer a promising solution. These bacteria stimulate plant resistance to abiotic factors, i.e., drought and extreme temperatures. Research has also shown the ability of LAB to extend the storage life of fruits and vegetables. These bacteria reduce the number of unfavorable microorganisms that contaminate plant products and cause their spoilage. They also have a negative effect on human pathogenic bacteria, which can contaminate plant products and cause food poisoning in humans. When applied as an edible coating on leaves or fruits, LAB protect vegetables and fruits from microbial contamination; moreover, these vegetables and fruits can be served as carriers of probiotic bacteria that benefit human health. The presented properties of LAB predispose them to practical use, especially as components of biological plant protection products, growth biostimulants, and microbial fertilizer products. They have great potential to replace some agrochemicals and can be used as a safe component of biofertilizers and plant protection formulations for increasing plant resilience, crop productivity, and quality. The use of LAB is in line with the aims and objectives of sustainable horticulture. However, there are some limitations and gaps which should be considered before application, particularly regarding efficient and effective formulations and transfer of antibiotic resistance. Full article
19 pages, 301 KiB  
Article
Diet Diversification in Bombyx mori Larvae: The Impact of Dandelion on Nutritional and Bioactive Profiles for Targeted Farming Goals
by Aleksandra Trajković, Danka Dragojlović, Gordana Stojanović, Ivana Zlatanović Đaić, Milenko Ristić, Marijana Ilić Milošević, Saša S. Stanković, Vladimir Žikić and Nataša Joković
Insects 2025, 16(2), 107; https://doi.org/10.3390/insects16020107 - 22 Jan 2025
Viewed by 2056
Abstract
The domesticated silkworm, Bombyx mori, reared for sericulture, has gained attention as a promising, sustainable protein source. While studies have focused on pupal powders obtained through natural or artificial mulberry-based diets, this research builds on ethnoentomological knowledge of the use of dandelion [...] Read more.
The domesticated silkworm, Bombyx mori, reared for sericulture, has gained attention as a promising, sustainable protein source. While studies have focused on pupal powders obtained through natural or artificial mulberry-based diets, this research builds on ethnoentomological knowledge of the use of dandelion as a short-term mulberry substitute, in a mixed mulberry–dandelion diet throughout larval development. Through proximate analyses, amino acid and fatty acid profiling, mineral and carbohydrate composition, as well as antioxidant activity assays, we investigated how dietary variation affects B. mori larvae. The mixed diet achieved a distinct nutritional profile, increasing total amino acids to 38.40 g/100 g compared to 32.37 g/100 g in the mulberry-only group, with differences in the content of essential amino acids like isoleucine (2.24 vs. 1.42 g/100 g) and phenylalanine (3.34 vs. 2.82 g/100 g). It also elevated linolenic acid to 74.33% of total fatty acids and introduced sorbitol (13.35 mg/g). Those two compounds were not detected in the larvae reared on a single-plant diet. HPLC-DAD analysis revealed phenolic acids, flavonoids, and riboflavin in both groups, which may serve as potential carriers of antioxidant activity. These preliminary findings demonstrate how dietary modifications can change nutritional profiles and antioxidant properties of B. mori. At the same time, they lay the foundation for further research to fully understand diet-induced effects in edible insects. Full article
(This article belongs to the Special Issue Insect Rearing: Reserve Forces with Commercial and Ecological Values)
18 pages, 2402 KiB  
Article
Application of Biochar-Immobilized Bacillus megaterium for Enhancing Phosphorus Uptake and Growth in Rice
by Keru Yu, Zhenyu Wang, Wenyan Yang, Shuai Li, Dongtao Wu, Hongtao Zheng, Zhengqian Ye, Shaona Yang and Dan Liu
Plants 2025, 14(2), 214; https://doi.org/10.3390/plants14020214 - 14 Jan 2025
Cited by 1 | Viewed by 1228
Abstract
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar [...] Read more.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of Bacillus megaterium. Inoculating rice husk biochar-immobilized with Bacillus megaterium (BMB) resulted in dissolved inorganic and organic P levels of 39.55 and 31.97 mL L−1, respectively. Subsequently, rice pot experiments were conducted to investigate the response of soil microbial P mobilization and P uptake in rice to fertilizer inputs. The organic fertilizer (OF) combined with BMB treatment (MOF) showed the highest soil available phosphorus (AP) at 38 days, with a value of 7.83 mg kg−1, as well as increased the pqqC abundance while decreasing the abundance of phoD bacterial communities compared with the control. Furthermore, the bioavailable P reservoir (H2O–Pi and NaHCO3–Pi) in soil was greatly increased through the fertilizer input and microbial turnover, with the highest H2O–Pi (3.66 mg kg−1) in OF treatment and the highest NaHCO3–Pi (52.65 mg kg−1) in MOF treatment. Additionally, carbon utilization analysis was applied using the commercial Biolog system, revealing that the MOF treatment significantly increased the utilization of carbohydrates, polymers, and amino acid carbon sources. Moreover, compared to the control, MOF treatment significantly increased the shoot (0.469%) and root P (0.516%) content while promoting root development and thereby supporting rice growth. Our study demonstrates that the MOF treatment displayed higher P levels in both soil and rice plants, providing a theoretical basis for further understanding the role of biochar-based bacterial agents in rice P management. Full article
Show Figures

Figure 1

18 pages, 2175 KiB  
Article
Valorization of Rosehip (Rosa canina L.) Pomace Using Unconventional Carbohydrate Carriers for Beverage Obtainment
by Anna Michalska-Ciechanowska, Jessica Brzezowska, Nancy Nicolet, Kamil Haładyn, Wolfram Manuel Brück, Aleksandra Hendrysiak and Wilfried Andlauer
Molecules 2025, 30(1), 141; https://doi.org/10.3390/molecules30010141 - 1 Jan 2025
Cited by 1 | Viewed by 1290
Abstract
Rosehip is of notable scientific interest due to its rich content of bioactives and its wide-ranging applications in nutrition, cosmetics and pharmaceuticals. The valorization of rosehip by-products, such as pomace, is highly significant for promoting sustainability. This study investigates the development of rosehip-based [...] Read more.
Rosehip is of notable scientific interest due to its rich content of bioactives and its wide-ranging applications in nutrition, cosmetics and pharmaceuticals. The valorization of rosehip by-products, such as pomace, is highly significant for promoting sustainability. This study investigates the development of rosehip-based powders and beverage prototypes derived from both juice and pomace to evaluate the potential use of pomace in instant beverage design and compare it with juice-based formulations. Three matrices were evaluated: non-pasteurized and pasteurized juice, as well as non-pasteurized pomace preparations. Powders were produced by freeze- and spray drying using maltodextrin, inulin and unconventional carriers, i.e., palatinose and trehalose. The results demonstrated that carrier addition significantly influenced the physical and techno-functional properties of the powders, such as moisture content (below 10%), water activity (below 0.35), solubility (above 85%), and color indexes (yellowness and browning). The water absorption capacity varied with drying techniques, particularly for inulin-enriched samples, while the matrix type affected the ascorbic acid content. Non-pasteurized pomace powders exhibited a higher antioxidant capacity (67.7 mmol Trolox/100 g dry matter) than their juice counterparts (52.2 mmol Trolox/100 g dry matter), highlighting the potential of the pomace matrix for beverage production. Because of their favorable properties, spray-dried samples were also selected for reconstitution into prototype beverages, among which those obtained from pomace showed a higher antioxidant potential. An analysis of particle sizes, which ranged between 34 nm and 7363 nm, revealed potential interactions between the carrier and matrix, reflected in the distinct behavior of carrier-only samples. Both the carrier type and the matrix significantly contributed to the final properties of the beverages, providing valuable insights for the design of functional food products. Full article
(This article belongs to the Special Issue Research and Application of Food By-Products, 2nd Edition)
Show Figures

Graphical abstract

10 pages, 645 KiB  
Article
The Glycopeptide PV-PS A1 Immunogen Elicits Both CD4+ and CD8+ Responses
by Sharmeen Nishat, Md Kamal Hossain, Geraud Valentin, Farzana Hossain, Shanika Gamage, Katherine A. Wall and Peter R. Andreana
Vaccines 2024, 12(12), 1375; https://doi.org/10.3390/vaccines12121375 - 6 Dec 2024
Viewed by 1106
Abstract
Background/Objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes [...] Read more.
Background/Objectives: The MHCII-dependent, CD4+ T-cell zwitterionic polysaccharide PS A1 has been investigated as a promising carrier for vaccine development because it can induce an MHCII-dependent CD4+ response towards a variety of tumor-associated carbohydrate antigens (TACAs). However, PS A1 cannot elicit cytotoxic T lymphocytes through MHCI, which may or may not hamper its potential clinical use in cancer, infectious and viral vaccine development. This paper addresses PS A1 MHCI independence through the introduction of an MHCI epitope, the poliovirus (PV) peptide, to establish an MHCI- and MHCII-dependent vaccine. Methods: We synthesized a glycopeptide construct targeting the Thomsen-nouveau TACA (Tn-PV-PS A1) and a control Tn-PV peptide. C57BL/6 mice were immunized with both constructs, and the resulting T-cells were extracted from spleens. Results: Through cell proliferation assays, we show that Tn-PV-PS A1 elicits a robust CD4+ and CD8+ immune response. The resulting cytotoxic T lymphocytes are specific towards Tn-PV and trigger cell lysis of Tn-expressing EL4 cells. Conclusions: This study confirms PV-PS A1 as a robust MHCI- and MHCII-dependent carrier. This is the first report of MHCI dependence in a zwitterionic polysaccharide. Full article
(This article belongs to the Special Issue Role of Next Generation Vaccines in Immunotherapeutics)
Show Figures

Figure 1

22 pages, 761 KiB  
Review
Exogenous Ketones in Cardiovascular Disease and Diabetes: From Bench to Bedside
by Urna Kansakar, Crystal Nieves Garcia, Gaetano Santulli, Jessica Gambardella, Pasquale Mone, Stanislovas S. Jankauskas and Angela Lombardi
J. Clin. Med. 2024, 13(23), 7391; https://doi.org/10.3390/jcm13237391 - 4 Dec 2024
Cited by 2 | Viewed by 3537
Abstract
Ketone bodies are molecules produced from fatty acids in the liver that act as energy carriers to peripheral tissues when glucose levels are low. Carbohydrate- and calorie-restricted diets, known to increase the levels of circulating ketone bodies, have attracted significant attention in recent [...] Read more.
Ketone bodies are molecules produced from fatty acids in the liver that act as energy carriers to peripheral tissues when glucose levels are low. Carbohydrate- and calorie-restricted diets, known to increase the levels of circulating ketone bodies, have attracted significant attention in recent years due to their potential health benefits in several diseases. Specifically, increasing ketones through dietary modulation has been reported to be beneficial for cardiovascular health and to improve glucose homeostasis and insulin resistance. Interestingly, although excessive production of ketones may lead to life-threatening ketoacidosis in diabetic patients, mounting evidence suggests that modest levels of ketones play adaptive and beneficial roles in pancreatic beta cells, although the exact mechanisms are still unknown. Of note, Sodium-Glucose Transporter 2 (SGLT2) inhibitors have been shown to increase the levels of beta-hydroxybutyrate (BHB), the most abundant ketone circulating in the human body, which may play a pivotal role in mediating some of their protective effects in cardiovascular health and diabetes. This systematic review provides a comprehensive overview of the scientific literature and presents an analysis of the effects of ketone bodies on cardiovascular pathophysiology and pancreatic beta cell function. The evidence from both preclinical and clinical studies indicates that exogenous ketones may have significant beneficial effects on both cardiomyocytes and pancreatic beta cells, making them intriguing candidates for potential cardioprotective therapies and to preserve beta cell function in patients with diabetes. Full article
(This article belongs to the Section Endocrinology & Metabolism)
Show Figures

Figure 1

23 pages, 8520 KiB  
Article
Investigation of Spray Drying Parameters to Formulate Novel Spray-Dried Proliposome Powder Formulations Followed by Their Aerosolization Performance
by Iftikhar Khan, Kaylome Edes, Ismail Alsaadi, Mohammed Q. Al-Khaial, Ruba Bnyan, Saeed A. Khan, Sajid K. Sadozai, Wasiq Khan and Sakib Yousaf
Pharmaceutics 2024, 16(12), 1541; https://doi.org/10.3390/pharmaceutics16121541 - 1 Dec 2024
Cited by 2 | Viewed by 1996
Abstract
Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture. Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate [...] Read more.
Background: Spray drying, whilst a popularly employed technique for powder formulations, has limited applications for large-scale proliposome manufacture. Objectives: Thus, the aim of this study was to investigate spray drying parameters, such as inlet temperature (80, 120, 160, and 200 °C), airflow rate (357, 473, and 601 L/h) and pump feed rate (5, 15, and 25%), for individual carbohydrate carriers (trehalose, lactose monohydrate (LMH), and mannitol) for 24 spray-dried (SD) formulations (F1–F24). Methods: Following optimization, the SD parameters were trialed on proliposome formulations based on the same carriers and named as spray-dried proliposome (SDP) formulations. Drug delivery of the formulations was assessed using a dry powder inhaler (DPI) in combination with a next-generation impactor (NGI). Results: Upon analysis, formulations F6 (SD-mannitol), F15 (SD-trehalose), and F20 (SD-LMH) demonstrated high production yields (84.01 ± 3.25, 72.55 ± 5.42, and 70.03 ± 3.39%, respectively), small particle sizes (2.96 ± 1.42, 4.55 ± 0.46, and 5.16 ± 1.32 µm, respectively) and low moisture contents (0.25 ± 0.03, 3.76 ± 0.75, and 1.99 ± 0.77%). These SD optimized parameters were then employed for SDP formulations employing dimyristoly phosphatidylcholine (DMPC) as a phospholipid and beclomethasone dipropionate (BDP) as the model drug. Upon spray drying, SDP-mannitol provided the highest production yield (82.45%) and smallest particle size (2.64 µm), as well as high entrapment efficiency (98%) and a high fine particle dose, fine particle fraction, and respirable fraction (285.81 µg, 56.84%, 86.44%, respectively). Conclusions: The study results are a promising step in the optimization of the large-scale manufacture of proliposome formulations and highlight the versatility of the instrument and variability of formulation properties with respect to the carriers employed for targeting the pulmonary system using dry powder inhalers. Full article
(This article belongs to the Special Issue Development of Spray-Dried Powders for Pulmonary Drug Delivery)
Show Figures

Figure 1

21 pages, 9565 KiB  
Article
Impact Mechanisms of Different Ecological Forest Restoration Modes on Soil Microbial Diversity and Community Structure in Loess Hilly Areas
by Gang Chen, Jinjun Cai, Weiqian Li, Yitong Liu, Yan Wu and Tongtong Wang
Appl. Sci. 2024, 14(23), 11162; https://doi.org/10.3390/app142311162 - 29 Nov 2024
Viewed by 1039
Abstract
The Loess Plateau, with a fragile ecological environment, is one of the most serious water- and soil-eroded regions in the world, which has been improved by large-scale projects involving returning farmland to forest and grassland. This work is mainly aimed at exploring a [...] Read more.
The Loess Plateau, with a fragile ecological environment, is one of the most serious water- and soil-eroded regions in the world, which has been improved by large-scale projects involving returning farmland to forest and grassland. This work is mainly aimed at exploring a more reasonable and efficient ecological forest restoration mode and revealing synergistic restoration mechanisms. This study sampled typical Loess Plateau areas and designed the restoration modes for pure forests of Armeniaca sibirica L. (AR), Amygdalus davidiana (Carrière) de Vos ex Henry. (AM), Medicago sativa L. (MS), and mixed forests of apricot–peach–alfalfa (AR&AM&MS), using abandoned land (AL) as a control treatment. The effects of these modes on the physical and chemical properties and enzyme activities of various soils were investigated in detail. Moreover, the soil microbial diversity and community structure, functional gene diversity, and differences in the restoration modes were deeply analyzed by meta-genomic sequencing technology, and the inherent driving correlation and mechanisms among these indicators were discussed. The results showed that the soil water content and porosity of the AR, AM, and AR&AM&MS treatments increased significantly, while the bulk density decreased significantly, compared with AL. Moreover, the total carbon, total nitrogen, nitrate nitrogen, total phosphorus, available phosphorus, total potassium, and available potassium contents of the AR&AM&MS restoration mode increased significantly. Compared to CK, there was no significant change in the catalase content of pure forest and mixed forest; however, the contents of urease, phosphatase, sucrase, B-glycanase, and N-acetylglucosaminidase in the restoration mode of the mixed forest all increased significantly. The species diversity index of the restoration modes is similar, and the dominant bacteria in soil microorganisms include Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Gemmatimonadetes. The mixed forest restoration mode had the highest microbial abundance. The functional gene diversity of the different restoration modes was also similar, including kegg genes, eggNOG genes, and carbohydrate enzymes. The functional genes of the mixed forest restoration mode were the most abundant, and their restoration mechanism was related to the coupling effect of soil–forest grass. After evaluation, the restoration mode of mixed forest was superior to that of pure forest or pure grass. This is attributed to the fact that the mode can improve soil structure, retain soil moisture, enhance soil enzyme activity, optimize soil microbial community structure, and improve microbial diversity and functional gene activity. This provides key data for the restoration of fragile ecological areas, and the promotion of sustainable management of forests and grass in hilly areas of the Loess Plateau. Full article
Show Figures

Figure 1

20 pages, 1706 KiB  
Review
Exploring Edible Insects: From Sustainable Nutrition to Pasta and Noodle Applications—A Critical Review
by Carlos Gabriel Arp and Gabriella Pasini
Foods 2024, 13(22), 3587; https://doi.org/10.3390/foods13223587 - 10 Nov 2024
Cited by 4 | Viewed by 2793
Abstract
Edible insects provide an alternative source of high-quality proteins, essential lipids, minerals, and vitamins. However, they lack the acceptability and consumption rates of more common staple foods. In contrast, pasta and noodles are globally appreciated foods that are consumed across various cultures. These [...] Read more.
Edible insects provide an alternative source of high-quality proteins, essential lipids, minerals, and vitamins. However, they lack the acceptability and consumption rates of more common staple foods. In contrast, pasta and noodles are globally appreciated foods that are consumed across various cultures. These products contribute greatly to the population’s energy intake but generally lack essential nutrients. Recently, edible insects have gained in popularity due to their numerous benefits, both environmental and nutritional. Current research indicates that incorporating edible insect ingredients into pasta and noodle formulations enhances their nutritional quality by increasing protein and fiber content and reducing carbohydrates. However, adding new ingredients to enrich common foods often carries technological and sensory challenges, such as changes in processing parameters, texture, flavor, and appearance. Technology assessment, scientific research, information campaigns, and public policies can help overcome these issues. This review aims to summarize the benefits of entomophagy (the consumption of insects as food) for sustainability, nutrition, and health; highlight the potential of pasta and noodles as carriers of nutritious and bioactive ingredients, including insects; and critically address the advancements in insect-enriched pasta and noodle technology, identifying current challenges, knowledge gaps, and opportunities. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

20 pages, 6293 KiB  
Article
FgUbiH Is Essential for Vegetative Development, Energy Metabolism, and Antioxidant Activity in Fusarium graminearum
by Jinwen Ge, Huanchen Zhai, Lei Tang, Shuaibing Zhang, Yangyong Lv, Pingan Ma, Shan Wei, Yu Zhou, Xiaofu Wu, Yang Lei, Fengguang Zhao and Yuansen Hu
Microorganisms 2024, 12(10), 2093; https://doi.org/10.3390/microorganisms12102093 - 20 Oct 2024
Cited by 1 | Viewed by 1335
Abstract
Fusarium head blight in wheat is mainly caused by Fusarium graminearum and results in significant economic losses. Coenzyme Q (CoQ) is ubiquitously produced across organisms and functions as a hydrogen carrier in energy metabolism. While UbiH in Escherichia coli serves as a hydroxylase [...] Read more.
Fusarium head blight in wheat is mainly caused by Fusarium graminearum and results in significant economic losses. Coenzyme Q (CoQ) is ubiquitously produced across organisms and functions as a hydrogen carrier in energy metabolism. While UbiH in Escherichia coli serves as a hydroxylase in CoQ biosynthesis, its role in phytopathogenic fungi is not well understood. This study explored the role of the hydroxylase FgUbiH in F. graminearum. Using a FgUbiH deletion mutant, we observed reduced hyphal growth, conidial production, germination, toxin synthesis, and pathogenicity compared to the wild-type. A transcriptome analysis indicated FgUbiH’s involvement in regulating carbohydrate and amino acid metabolism. Deletion of FgUbiH impaired mitochondrial function, reducing adenosine triphosphate synthesis and increasing reactive oxygen species. Additionally, genes related to terpene skeleton synthesis and aldehyde dehydrogenase were downregulated. Our results underscore the importance of FgUbiH in F. graminearum’s growth, toxin production, and energy metabolism, aiding in the development of strategies for disease management. Full article
(This article belongs to the Special Issue Plant Pathogens: Monitoring, Identification and Biological Control)
Show Figures

Figure 1

14 pages, 2870 KiB  
Article
Immobilization and Kinetic Properties of ß-N-Acetylhexosaminidase from Penicillium oxalicum
by Vladimír Štefuca, Mária Bláhová, Helena Hronská and Michal Rosenberg
Catalysts 2024, 14(10), 725; https://doi.org/10.3390/catal14100725 - 16 Oct 2024
Viewed by 1163
Abstract
The application of immobilized enzymes often plays a key role in successfully implementing an economically feasible biocatalytic process at an industrial scale. Designing an immobilized biocatalyst involves solving several tasks, from the selection of the carrier and immobilization method to the characterization of [...] Read more.
The application of immobilized enzymes often plays a key role in successfully implementing an economically feasible biocatalytic process at an industrial scale. Designing an immobilized biocatalyst involves solving several tasks, from the selection of the carrier and immobilization method to the characterization of the kinetic properties of the immobilized enzyme. In this study, we focused on the kinetic properties of free and immobilized ß-N-acetylhexosaminidase (Hex), a promising enzyme for application in the field of biotechnology, especially for the synthesis of bioactive carbohydrates. Hex was immobilized via covalent binding in methacrylate particles. The effect of immobilizing Hex from Penicillium oxalicum into porous particles on kinetic properties was investigated, and mathematical and experimental modeling showed that the kinetic behavior of the enzyme was significantly influenced by diffusion in the particles. Along with the study on kinetics, a simple method was developed to investigate the reversible inhibition of the immobilized enzyme in a continuous-flow system. The method is suitable for application in cases where a chromogenic substrate is used, and here it was applied to demonstrate the inhibitory effects of N-acetyl-glucosaminyl thiazoline (NAG-thiazoline) and O-(2-Acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate ((Z)-PugNAc) on Hex. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

Back to TopTop