Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = capsule degrading depolymerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6435 KB  
Article
Characterization of Novel Przondovirus Phage Adeo Infecting Klebsiella pneumoniae of the K39 Capsular Type
by Nadezhda V. Kolupaeva, Peter V. Evseev, Victoria A. Avdeeva, Angelika A. Sizova, Natalia E. Suzina, Nikolay V. Volozhantsev and Anastasia V. Popova
Viruses 2025, 17(12), 1600; https://doi.org/10.3390/v17121600 - 10 Dec 2025
Viewed by 501
Abstract
Klebsiella pneumoniae is one of the most significant nosocomial pathogens and an important cause of human infections worldwide. The microorganism is capable of producing different capsular polysaccharides (CPSs), which are the primary receptors for capsule-specific K. pneumoniae bacteriophages encoding tailspike proteins (TSPs) with [...] Read more.
Klebsiella pneumoniae is one of the most significant nosocomial pathogens and an important cause of human infections worldwide. The microorganism is capable of producing different capsular polysaccharides (CPSs), which are the primary receptors for capsule-specific K. pneumoniae bacteriophages encoding tailspike proteins (TSPs) with polysaccharide-degrading activity. In this study, the novel virulent Przondovirus phage Adeo was isolated and characterized. The phage was able to infect K. pneumoniae strain with a K39 capsular polysaccharide structure. The morphology, biological properties, stability, and genomic organization of Adeo were studied. Comparative genomic and phylogenetic analyses were performed to establish the relationship between the phage and other bacterial viruses. The gene encoding TSP Adeo_gp48 was identified and cloned. Recombinant depolymerase lacking the N-terminal part was expressed, purified, and formed an opaque zone of CPS depolymerization on the K39 K. pneumoniae bacterial lawns. The structural and phylogenetic similarities of Adeo’s TSP to other phage-encoded depolymerases were discussed. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

20 pages, 2497 KB  
Article
Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae
by Yanjun Lu, Chengju Fang, Li Xiang, Ming Yin, Lvxin Qian, Yi Yan, Luhua Zhang and Ying Li
Microorganisms 2025, 13(7), 1544; https://doi.org/10.3390/microorganisms13071544 - 30 Jun 2025
Cited by 1 | Viewed by 1843
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our [...] Read more.
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our knowledge, depolymerases targeting K. pneumoniae K54-type strains have rarely been identified. Here, we identified and characterized three novel capsule depolymerases, Dep_C, Dep_Y, and Dep_Z, derived from three different K. pneumoniae phages, which retained robust activity across a broad pH range (pH 3.0–12.0) and demonstrated thermal stability up to 50 °C. These depolymerases could efficiently digest the CPS of K. pneumoniae K54-serotype strains, significantly inhibit biofilm formation, and remove their mature biofilms. Although no bactericidal activity was detected, these depolymerases rendered host bacteria susceptible to serum complement-mediated killing. We further demonstrate that Dep_C, Dep_Y, and Dep_Z can effectively and significantly prolong the survival time of mice in a pneumonia model infected with K54-type K. pneumoniae and reduce the colonization and virulence of the bacteria in the mice. These findings indicate that depolymerases Dep_C, Dep_Y, and Dep_Z could increase bacterial susceptibility to host immune responses of hvKp to the host through their degradation effect on the CPS. In conclusion, our study demonstrates that the three capsule depolymerases are promising antivirulent agents to combat CR-hvKp infections. Full article
Show Figures

Figure 1

13 pages, 3295 KB  
Article
Structure of K102 Capsular Polysaccharide from Acinetobacter baumannii KZ-1102 and Its Cleavage by Phage Cato Depolymerase
by Anastasia A. Kasimova, Nikolay P. Arbatsky, Ekaterina A. Gornostal, Mikhail M. Shneider, Eugene A. Sheck, Alexander S. Shashkov, Andrey A. Shelenkov, Yulia V. Mikhailova, Ilya S. Azizov, Mikhail V. Edelstein, Andrey V. Perepelov, Anna M. Shpirt, Konstantin A. Miroshnikov, Anastasia V. Popova and Yuriy A. Knirel
Int. J. Mol. Sci. 2025, 26(10), 4727; https://doi.org/10.3390/ijms26104727 - 15 May 2025
Cited by 2 | Viewed by 1491
Abstract
Acinetobacter baumannii is a significant nosocomial pathogen characterized by the ability to produce a wide variety of capsular polysaccharides (CPSs). The structures of a K102-type CPS isolated from A. baumannii KZ-1102 and its Smith degradation product were determined by sugar analysis, 1D and [...] Read more.
Acinetobacter baumannii is a significant nosocomial pathogen characterized by the ability to produce a wide variety of capsular polysaccharides (CPSs). The structures of a K102-type CPS isolated from A. baumannii KZ-1102 and its Smith degradation product were determined by sugar analysis, 1D and 2D 1H NMR spectroscopy, and 13C NMR spectroscopy. The K102 CPS biosynthesis gene cluster (KL102) contains genes for common sugar synthesis, K unit processing, capsule export, glycosyl transfer, initiating sugar phosphate transfer, and genes that encode d-GlcpNAc/d-GalpNAc dehydrogenase and phosphoglycerol transferase. The CPS is composed of a pentasaccharide repeating unit (K unit) consisting of a tetrasaccharide backbone including one α-d-Galp, three α-d-GlcpNAc residues, and one residue of a β-d-Glcp as a side chain. The tailspike depolymerase of the specific Obolenskvirus phage Cato was found to cleave the α-d-GlcpNAc-(1→6)-α-d-GlcpNAc linkage in the K102 CPS to give the monomer and dimer of the K repeating unit, which were characterized by high-resolution electrospray ionization mass spectrometry as well as 1H and 13C NMR spectroscopy. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

22 pages, 19307 KB  
Article
Therapeutic and Diagnostic Potential of a Novel K1 Capsule Dependent Phage, JSSK01, and Its Depolymerase in Multidrug-Resistant Escherichia coli Infections
by Naveen Gattuboyena, Yu-Chuan Tsai and Ling-Chun Lin
Int. J. Mol. Sci. 2024, 25(23), 12497; https://doi.org/10.3390/ijms252312497 - 21 Nov 2024
Cited by 1 | Viewed by 2283
Abstract
Bacteriophages are viruses that have the potential to combat bacterial infections caused by antimicrobial-resistant bacterial strains. In this study, we investigated a novel lytic bacteriophage, vB_EcoS_JSSK01, isolated from sewage in Hualien, Taiwan, which effectively combats multidrug-resistant (MDR) Escherichia coli of the K1 capsular [...] Read more.
Bacteriophages are viruses that have the potential to combat bacterial infections caused by antimicrobial-resistant bacterial strains. In this study, we investigated a novel lytic bacteriophage, vB_EcoS_JSSK01, isolated from sewage in Hualien, Taiwan, which effectively combats multidrug-resistant (MDR) Escherichia coli of the K1 capsular type. K1 E. coli is a major cause of severe extraintestinal infections, such as neonatal meningitis and urinary tract infections. Phage JSSK01 was found to have a genome size of 44,509 base pairs, producing approximately 123 particles per infected cell in 35 min, and was highly stable across a range of temperatures and pH. JSSK01 infected 59.3% of the MDR strains tested, and its depolymerase (ORF40) specifically degraded the K1 capsule in these bacteria. In a zebrafish model, JSSK01 treatment after infection significantly improved survival, with survival in the treated group reaching 100%, while that in the untreated group dropped to 10% after three days. The functional activity of depolymerase was validated using zone inhibition and agglutination tests. These results indicate that JSSK01 and its substrate-specific depolymerase have promising therapeutic and diagnostic applications against K1-encapsulated MDR E. coli infections. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

12 pages, 6955 KB  
Communication
Recombinant TP-84 Bacteriophage Glycosylase–Depolymerase Confers Activity against Thermostable Geobacillus stearothermophilus via Capsule Degradation
by Beata Łubkowska, Ireneusz Sobolewski, Katarzyna Adamowicz, Agnieszka Zylicz-Stachula and Piotr M. Skowron
Int. J. Mol. Sci. 2024, 25(2), 722; https://doi.org/10.3390/ijms25020722 - 5 Jan 2024
Cited by 1 | Viewed by 2115
Abstract
The TP-84 bacteriophage, which infects Geobacillus stearothermophilus strain 10 (G. stearothermophilus), has a genome size of 47.7 kilobase pairs (kbps) and contains 81 predicted protein-coding ORFs. One of these, TP84_26 encodes a putative tail fiber protein possessing capsule depolymerase activity. In [...] Read more.
The TP-84 bacteriophage, which infects Geobacillus stearothermophilus strain 10 (G. stearothermophilus), has a genome size of 47.7 kilobase pairs (kbps) and contains 81 predicted protein-coding ORFs. One of these, TP84_26 encodes a putative tail fiber protein possessing capsule depolymerase activity. In this study, we cloned the TP84_26 gene into a high-expression Escherichia coli (E. coli) system, modified its N-terminus with His-tag, expressed both the wild type gene and His-tagged variant, purified the recombinant depolymerase variants, and further evaluated their properties. We developed a direct enzymatic assay for the depolymerase activity toward G. stearothermophilus capsules. The recombinant TP84_26 protein variants effectively degraded the existing bacterial capsules and inhibited the formation of new ones. Our results provide insights into the novel TP84_26 depolymerase with specific activity against thermostable G. stearothermophilus and its role in the TP-84 life cycle. The identification and characterization of novel depolymerases, such as TP84_26, hold promise for innovative strategies to combat bacterial infections and improve various industrial processes. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 5.0)
Show Figures

Figure 1

22 pages, 11446 KB  
Article
Insights into the Alcyoneusvirus Adsorption Complex
by Algirdas Noreika, Rasa Rutkiene, Irena Dumalakienė, Rita Vilienė, Audrius Laurynėnas, Simona Povilonienė, Martynas Skapas, Rolandas Meškys and Laura Kaliniene
Int. J. Mol. Sci. 2023, 24(11), 9320; https://doi.org/10.3390/ijms24119320 - 26 May 2023
Cited by 3 | Viewed by 2816
Abstract
The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella [...] Read more.
The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526–gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 5.0)
Show Figures

Figure 1

20 pages, 4594 KB  
Article
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection
by Ping Li, Wenjie Ma, Jiayin Shen and Xin Zhou
Pharmaceutics 2022, 14(9), 1916; https://doi.org/10.3390/pharmaceutics14091916 - 10 Sep 2022
Cited by 29 | Viewed by 3910
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae [...] Read more.
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases. Full article
Show Figures

Figure 1

20 pages, 5511 KB  
Article
The Specific Capsule Depolymerase of Phage PMK34 Sensitizes Acinetobacter baumannii to Serum Killing
by Karim Abdelkader, Diana Gutiérrez, Agnieszka Latka, Dimitri Boeckaerts, Zuzanna Drulis-Kawa, Bjorn Criel, Hans Gerstmans, Amal Safaan, Ahmed S. Khairalla, Yasser Gaber, Tarek Dishisha and Yves Briers
Antibiotics 2022, 11(5), 677; https://doi.org/10.3390/antibiotics11050677 - 17 May 2022
Cited by 30 | Viewed by 5014
Abstract
The rising antimicrobial resistance is particularly alarming for Acinetobacter baumannii, calling for the discovery and evaluation of alternatives to treat A. baumannii infections. Some bacteriophages produce a structural protein that depolymerizes capsular exopolysaccharide. Such purified depolymerases are considered as novel antivirulence compounds. [...] Read more.
The rising antimicrobial resistance is particularly alarming for Acinetobacter baumannii, calling for the discovery and evaluation of alternatives to treat A. baumannii infections. Some bacteriophages produce a structural protein that depolymerizes capsular exopolysaccharide. Such purified depolymerases are considered as novel antivirulence compounds. We identified and characterized a depolymerase (DpoMK34) from Acinetobacter phage vB_AbaP_PMK34 active against the clinical isolate A. baumannii MK34. In silico analysis reveals a modular protein displaying a conserved N-terminal domain for anchoring to the phage tail, and variable central and C-terminal domains for enzymatic activity and specificity. AlphaFold-Multimer predicts a trimeric protein adopting an elongated structure due to a long α-helix, an enzymatic β-helix domain and a hypervariable 4 amino acid hotspot in the most ultimate loop of the C-terminal domain. In contrast to the tail fiber of phage T3, this hypervariable hotspot appears unrelated with the primary receptor. The functional characterization of DpoMK34 revealed a mesophilic enzyme active up to 50 °C across a wide pH range (4 to 11) and specific for the capsule of A. baumannii MK34. Enzymatic degradation of the A. baumannii MK34 capsule causes a significant drop in phage adsorption from 95% to 9% after 5 min. Although lacking intrinsic antibacterial activity, DpoMK34 renders A. baumannii MK34 fully susceptible to serum killing in a serum concentration dependent manner. Unlike phage PMK34, DpoMK34 does not easily select for resistant mutants either against PMK34 or itself. In sum, DpoMK34 is a potential antivirulence compound that can be included in a depolymerase cocktail to control difficult to treat A. baumannii infections. Full article
Show Figures

Graphical abstract

36 pages, 3978 KB  
Review
Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application
by Katarzyna M. Danis-Wlodarczyk, Daniel J. Wozniak and Stephen T. Abedon
Antibiotics 2021, 10(12), 1497; https://doi.org/10.3390/antibiotics10121497 - 6 Dec 2021
Cited by 111 | Viewed by 17166
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes [...] Read more.
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes. Full article
Show Figures

Figure 1

15 pages, 10517 KB  
Article
The Mutation in wbaP cps Gene Cluster Selected by Phage-Borne Depolymerase Abolishes Capsule Production and Diminishes the Virulence of Klebsiella pneumoniae
by Marta Kaszowska, Grazyna Majkowska-Skrobek, Pawel Markwitz, Cédric Lood, Wojciech Jachymek, Anna Maciejewska, Jolanta Lukasiewicz and Zuzanna Drulis-Kawa
Int. J. Mol. Sci. 2021, 22(21), 11562; https://doi.org/10.3390/ijms222111562 - 26 Oct 2021
Cited by 36 | Viewed by 5487
Abstract
Klebsiella pneumoniae is considered one of the most critical multidrug-resistant pathogens and urgently requires new therapeutic strategies. Capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) are the major virulence factors protecting K. pneumoniae against the immune response and thus may be targeted by [...] Read more.
Klebsiella pneumoniae is considered one of the most critical multidrug-resistant pathogens and urgently requires new therapeutic strategies. Capsular polysaccharides (CPS), lipopolysaccharides (LPS), and exopolysaccharides (EPS) are the major virulence factors protecting K. pneumoniae against the immune response and thus may be targeted by phage-based therapeutics such as polysaccharides-degrading enzymes. Since the emergence of resistance to antibacterials is generally considered undesirable, in this study, the genetic and phenotypic characteristics of resistance to the phage-borne CPS-degrading depolymerase and its effect on K. pneumoniae virulence were investigated. The K63 serotype targeting depolymerase (KP36gp50) derived from Klebsiella siphovirus KP36 was used as the selective agent during the treatment of K. pneumoniae 486 biofilm. Genome-driven examination combined with the surface polysaccharide structural analysis of resistant mutant showed the point mutation and frameshift in the wbaP gene located within the cps gene cluster, resulting in the loss of the capsule. The sharp decline in the yield of CPS was accompanied by the production of a larger amount of smooth LPS. The modification of the surface polysaccharide layers did not affect bacterial fitness nor the insensitivity to serum complement; however, it made bacteria more prone to phagocytosis combined with the higher adherence and internalization to human lung epithelial cells. In that context, it was showed that the emerging resistance to the antivirulence agent (phage-borne capsule depolymerase) results in beneficial consequences, i.e., the sensitization to the innate immune response. Full article
(This article belongs to the Special Issue New Antibacterial Agents)
Show Figures

Figure 1

12 pages, 1781 KB  
Article
Unpuzzling Friunavirus-Host Interactions One Piece at a Time: Phage Recognizes Acinetobacter pittii via a New K38 Capsule Depolymerase
by Rita Domingues, Ana Barbosa, Sílvio B. Santos, Diana Priscila Pires, Jonathan Save, Grégory Resch, Joana Azeredo and Hugo Oliveira
Antibiotics 2021, 10(11), 1304; https://doi.org/10.3390/antibiotics10111304 - 26 Oct 2021
Cited by 12 | Viewed by 3373
Abstract
Acinetobacter pittii is a species that belong to the Acinetobacter calcoaceticus-baumannii complex, increasingly recognized as major nosocomial bacterial pathogens, often associated with multiple drug-resistances. The capsule surrounding the bacteria represents a main virulence factor, helping cells avoid phage predation and host immunity. Accordingly, [...] Read more.
Acinetobacter pittii is a species that belong to the Acinetobacter calcoaceticus-baumannii complex, increasingly recognized as major nosocomial bacterial pathogens, often associated with multiple drug-resistances. The capsule surrounding the bacteria represents a main virulence factor, helping cells avoid phage predation and host immunity. Accordingly, a better understanding of the phage infection mechanisms is required to efficiently develop phage therapy against Acinetobacter of different capsular types. Here, we report the isolation of the novel A. pittii-infecting Fri1-like phage vB_Api_3043-K38 (3043-K38) of the Podoviridae morphotype, from sewage samples. Its 41,580 bp linear double-stranded DNA genome harbours 53 open reading frames and 302 bp of terminal repeats. We show that all studied Acinetobacter Fri1-like viruses have highly similar genomes, which differentiate only at the genes coding for tailspike, likely to adapt to different host receptors. The isolated phage 3043-K38 specifically recognizes an untapped Acinetobacter K38 capsule type via a novel tailspike with K38 depolymerase activity. The recombinant K38 depolymerase region of the tailspike (center-end region) forms a thermostable trimer, and quickly degrades capsules. When the K38 depolymerase is applied to the cells, it makes them resistant to phage predation. Interestingly, while K38 depolymerase treatments do not synergize with antibiotics, it makes bacterial cells highly susceptible to the host serum complement. In summary, we characterized a novel phage-encoded K38 depolymerase, which not only advances our understanding of phage-host interactions, but could also be further explored as a new antibacterial agent against drug-resistant Acinetobacter. Full article
Show Figures

Figure 1

20 pages, 4202 KB  
Article
Isolation and Characterization of a Novel Lytic Bacteriophage against the K2 Capsule-Expressing Hypervirulent Klebsiella pneumoniae Strain 52145, and Identification of Its Functional Depolymerase
by Botond Zsombor Pertics, Alysia Cox, Adrienn Nyúl, Nóra Szamek, Tamás Kovács and György Schneider
Microorganisms 2021, 9(3), 650; https://doi.org/10.3390/microorganisms9030650 - 21 Mar 2021
Cited by 45 | Viewed by 6484
Abstract
Klebsiella pneumoniae is among the leading bacteria that cause nosocomial infections. The capsule of this Gram-negative bacterium is a dominant virulence factor, with a prominent role in defense and biofilm formation. Bacteriophages, which are specific for one bacterial strain and its capsule type, [...] Read more.
Klebsiella pneumoniae is among the leading bacteria that cause nosocomial infections. The capsule of this Gram-negative bacterium is a dominant virulence factor, with a prominent role in defense and biofilm formation. Bacteriophages, which are specific for one bacterial strain and its capsule type, can evoke the lysis of bacterial cells, aided by polysaccharide depolymerase enzymes. In this study, we isolated and characterized a bacteriophage against the nosocomial K. pneumoniae 52145 strain with K2 capsular serotype. The phage showed a narrow host range and stable lytic activity, even when exposed to different temperatures or detergents. Preventive effect of the phage in a nasal colonization model was investigated in vivo. Phlyogenetic analysis showed that the newly isolated Klebsiella phage B1 belongs to the Webervirus genus in Drexlerviridae family. We identified the location of the capsule depolymerase gene of the new phage, which was amplified, cloned, expressed, and purified. The efficacy of the recombinant B1dep depolymerase was tested by spotting on K. pneumoniae strains and it was confirmed that the extract lowers the thickness of the bacterium lawn as it degrades the protective capsule on bacterial cells. As K. pneumoniae strains possessing the K2 serotype have epidemiological importance, the B1 phage and its depolymerase are promising candidates for use as possible antimicrobial agents. Full article
Show Figures

Figure 1

18 pages, 18599 KB  
Article
Identification of a Depolymerase Specific for K64-Serotype Klebsiella pneumoniae: Potential Applications in Capsular Typing and Treatment
by Jiayin Li, Yueying Sheng, Ruijing Ma, Mengsha Xu, Fuli Liu, Rong Qin, Mingxi Zhu, Xianchao Zhu and Ping He
Antibiotics 2021, 10(2), 144; https://doi.org/10.3390/antibiotics10020144 - 1 Feb 2021
Cited by 28 | Viewed by 5245
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), one of the major nosocomial pathogens, is increasingly becoming a serious threat to global public health. There is an urgent need to develop effective therapeutic and preventive approaches to combat the pathogen. Here, we identified and characterized a novel [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CRKP), one of the major nosocomial pathogens, is increasingly becoming a serious threat to global public health. There is an urgent need to develop effective therapeutic and preventive approaches to combat the pathogen. Here, we identified and characterized a novel capsule depolymerase (K64-ORF41) derived from Klebsiella phage SH-KP152410, which showed specific activities for K. pneumoniae K64-serotype. We showed that this depolymerase could be used in the identification of K64 serotypes based on the capsular typing, and the results agreed well with those from the conventional serotyping method using antisera. From this study, we also identified K64 mutant strains, which showed typing discrepancy between wzi-sequencing based genotyping and depolymerase-based or antiserum-based typing methods. Further investigation indicated that the mutant strain has an insertion sequence (IS) in wcaJ, which led to the alteration of the capsular serotype structure. We further demonstrated that K64-ORF41 depolymerase could sensitize the bacteria to serum or neutrophil killing by degrading the capsular polysaccharide. In summary, the identified K64 depolymerase proves to be an accurate and reliable tool for capsular typing, which will facilitate the preventive intervention such as vaccine development. In addition, the polymerase may represent a potential and promising therapeutic biologics against CRKP-K64 infections. Full article
Show Figures

Figure 1

17 pages, 1702 KB  
Article
Antibiotic Therapy Using Phage Depolymerases: Robustness Across a Range of Conditions
by Han Lin, Matthew L. Paff, Ian J. Molineux and James J. Bull
Viruses 2018, 10(11), 622; https://doi.org/10.3390/v10110622 - 12 Nov 2018
Cited by 30 | Viewed by 5300
Abstract
Phage-derived depolymerases directed against bacterial capsules are showing therapeutic promise in various animal models of infection. However, individual animal model studies are often constrained by use of highly specific protocols, such that results may not generalize to even slight modifications. Here we explore [...] Read more.
Phage-derived depolymerases directed against bacterial capsules are showing therapeutic promise in various animal models of infection. However, individual animal model studies are often constrained by use of highly specific protocols, such that results may not generalize to even slight modifications. Here we explore the robustness of depolymerase therapies shown to succeed in a previous study of mice. Treatment success rates were reduced by treatment delay, more so for some enzymes than others: K1- and K5 capsule-degrading enzymes retained partial efficacy on delay, while K30 depolymerase did not. Phage were superior to enzymes under delayed treatment only for K1. Route of administration (intramuscular versus intraperitoneal) mattered for success of K1E, possibly for K1F, not for K1H depolymerase. Significantly, K1 capsule-degrading enzymes proved highly successful when using immune-suppressed, leukopenic mice, even with delayed treatment. Evolution of bacteria resistant to K1-degrading enzymes did not thwart therapeutic success in leukopenic mice, likely because resistant bacteria were avirulent. In combination with previous studies these results continue to support the efficacy of depolymerases as antibacterial agents in vivo, but system-specific details are becoming evident. Full article
(This article belongs to the Special Issue Hurdles for Phage Therapy (PT) to Become a Reality)
Show Figures

Figure 1

Back to TopTop