Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Bacteriophages, and Culture Conditions
2.2. Bioinformatics Analysis and Evolutionary Tree Construction
2.3. Cloning of Putative CPS Depolymerase Genes and Protein Expression
2.4. pH and Thermal Stability Analyses
2.5. Determination of Host Range and Capsule Depolymerase Activity
2.6. Phage Adsorption Inhibition Test
2.7. Extraction of CPS and Alcian Blue Staining
2.8. Activity Assay
2.9. Biofilm Formation Inhibition Assay and Biofilm Degradation Assay
2.10. Serum Killing Assay
2.11. Mouse Infection Model
2.12. Histopathology
2.13. Statistical Analysis
3. Results
3.1. Bioinformatics Analysis of Depolymerase
3.2. Expression of the Putative Capsule Depolymerases
3.3. Depolymerases Inhibit the Adsorption of Phages on Bacterial Cells
3.4. Determination of Capsule-Digesting Activities of Depolymerases
3.5. Depolymerases Are Effective in Inhibiting Biofilm Formation and Degrading Pre-Formed Biofilms of K. pneumoniae
3.6. Depolymerase-Treated Bacteria Become Sensitive to Serum Killing
3.7. Depolymerase Treatment Rescues Mice Infected with K54 Hypervirulent K. pneumoniae
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
CR-hvKp | Carbapenem-resistant hypervirulent Klebsiella pneumoniae |
CPS | Capsular polysaccharide |
SCNJ1-C | vB_KpnA_SCNJ1-C |
SCNJ1-Y | vB_KpnS_SCNJ1-Y |
SCNJ1-Z | vB_KpnM_SCNJ1-Z |
LB | Luria-Bertani |
IPTG | Isopropyl-β-D-thiogalactopyranoside |
12% SDS-PAGE | 12% gradient sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
OD600 nm | Optical density at 600 nm |
SM buffer | Saline–magnesium buffer |
CPC | Cetylpyridinium chloride |
EPSs | Extracellular polysaccharides |
PAMPs | Pathogen-associated molecular patterns |
References
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed]
- Bengoechea, J.A.; Sa Pessoa, J. Klebsiella pneumoniae Infection Biology: Living to Counteract Host Defences. FEMS Microbiol. Rev. 2019, 43, 123–144. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.; Santos, M.L.; Ramalho, J.F.; Duarte, A.; Caneiras, C. Virulence Factors in Carbapenem-Resistant Hy pervirulent Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1325077. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Dong, N.; Zheng, Z.; Lin, D.; Huang, M.; Wang, L.; Chan, E.W.-C.; Shu, L.; Yu, J.; Zhang, R.; et al. A Fatal Outbreak of ST11 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae in a Chinese Hospital: A Molecular Epidemiological Study. Lancet Infect. Dis. 2018, 18, 37–46. [Google Scholar] [CrossRef]
- Li, P.; Liang, Q.; Liu, W.; Zheng, B.; Liu, L.; Wang, W.; Xu, Z.; Huang, M.; Feng, Y. Convergence of Carbapenem Resistance and Hypervirulence in a Highly-Transmissible ST11 Clone of K. pneumoniae: An Epidemiological, Genomic and Functional Study. Virulence 2021, 12, 377–388. [Google Scholar] [CrossRef]
- Ho, J.-Y.; Lin, T.-L.; Li, C.-Y.; Lee, A.; Cheng, A.-N.; Chen, M.-C.; Wu, S.-H.; Wang, J.-T.; Li, T.-L.; Tsai, M.-D. Functions of Some Capsular Polysaccharide Biosynthetic Genes in Klebsiella pneumoniae NTUH K-2044. PLoS ONE 2011, 6, e21664. [Google Scholar] [CrossRef]
- Shon, A.S.; Bajwa, R.P.S.; Russo, T.A. Hypervirulent (Hypermucoviscous) Klebsiella pneumoniae: A New and Dan gerous Breed. Virulence 2013, 4, 107–118. [Google Scholar] [CrossRef]
- Latka, A.; Maciejewska, B.; Majkowska-Skrobek, G.; Briers, Y.; Drulis-Kawa, Z. Bacteriophage-Encoded Virion-Associated Enzymes to Overcome the Carbohydrate Barriers during the Infection Process. Appl. Microbiol. Biotechnol. 2017, 101, 3103–3119. [Google Scholar] [CrossRef]
- Pires, D.P.; Oliveira, H.; Melo, L.D.R.; Sillankorva, S.; Azeredo, J. Bacteriophage-Encoded Depolymerases: Their Diversity and Biotechnological Applications. Appl. Microbiol. Biotechnol. 2016, 100, 2141–2151. [Google Scholar] [CrossRef]
- Lin, H.; Paff, M.L.; Molineux, I.J.; Bull, J.J. Therapeutic Application of Phage Capsule Depolymerases against K1, K5, and K30 Capsulated E. Coli in Mice. Front. Microbiol. 2017, 8, 2257. [Google Scholar] [CrossRef]
- Oliveira, H.; Costa, A.R.; Ferreira, A.; Konstantinides, N.; Santos, S.B.; Boon, M.; Noben, J.-P.; Lavigne, R.; Azeredo, J. Functional Analysis and Antivirulence Properties of a New Depolymerase from a Myovirus That Infects Acinetobacter baumannii Capsule K45. J. Virol. 2019, 93, e01163-18. [Google Scholar] [CrossRef]
- Tu, I.-F.; Lin, T.-L.; Yang, F.-L.; Lee, I.-M.; Tu, W.-L.; Liao, J.-H.; Ko, T.-P.; Wu, W.-J.; Jan, J.-T.; Ho, M.-R.; et al. Structural and Biological Insights into Klebsiella pneumoniae Surface Polysaccharide Degradation by a Bacteriophage K1 Lyase: Implications for Clinical Use. J. Biomed. Sci. 2022, 29, 9. [Google Scholar] [CrossRef] [PubMed]
- Volozhantsev, N.V.; Shpirt, A.M.; Borzilov, A.I.; Komisarova, E.V.; Krasilnikova, V.M.; Shashkov, A.S.; Verevkin, V.V.; Knirel, Y.A. Characterization and Therapeutic Potential of Bacteriophage-Encoded Polysaccharide Depolymerases with β-Galactosidase Activity against Klebsiella pneumoniae K57 Capsular Type. Antibiotics 2020, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-W.; Wang, J.-T.; Lin, T.-L.; Liu, Y.-Z.; Wu, L.-T.; Pan, Y.-J. Identification of Three Capsule Depolymerases in a Bacteriophage Infecting Klebsiella pneumoniae Capsular Types K7, K20, and K27 and Therapeutic Application. J. Biomed. Sci. 2023, 30, 31. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Dai, X.; Xiang, L.; Qiu, Y.; Yin, M.; Fu, Y.; Li, Y.; Zhang, L. Isolation and Characterization of Three Novel Lytic Phages against K54 Serotype Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2023, 13, 1265011. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Wang, G.; Li, C.; Chang, Y.-F.; Chen, W.; Nian, S.; Mao, Y.; Zhang, J.; Zhong, F.; et al. blaNDM-5 Carried by a Hypervirulent Klebsiella pneumoniae with Sequence Type 29. Antimicrob. Resist. Infect. Control. 2019, 8, 140. [Google Scholar] [CrossRef]
- Wu, K.-M.; Li, L.-H.; Yan, J.-J.; Tsao, N.; Liao, T.-L.; Tsai, H.-C.; Fung, C.-P.; Chen, H.-J.; Liu, Y.-M.; Wang, J.-T.; et al. Genome Sequencing and Comparative Analysis of Klebsiella pneumoniae NTUH-K2044, a Strain Causing Liver Abscess and Meningitis. J. Bacteriol. 2009, 191, 4492–4501. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X Version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering Key Features in Protein Structures with the New ENDscript Server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Andreeva, A.; Florentino, L.C.; Chuguransky, S.R.; Grego, T.; Hobbs, E.; Pinto, B.L.; Orr, A.; Paysan-Lafosse, T.; Ponamareva, I.; et al. InterPro: The Protein Sequence Classification Resource in 2025. Nucleic Acids Res. 2025, 53, D444–D456. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Zhang, Z.; Tao, X.; Shi, X.; Lin, P.; Liao, D.; Ma, C.; Cai, X.; Lin, W.; Jiang, X.; et al. Structural and Functional Basis of Bacteriophage K64-ORF41 Depolymerase for Capsular Polysaccharide Degradation of Klebsiella pneumoniae K64. Int. J. Biol. Macromol. 2024, 265, 130917. [Google Scholar] [CrossRef]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford Assay for Determining Protein Concentration. Cold Spring Harb. Protoc. 2020, 2020, Pdb.prot102269. [Google Scholar] [CrossRef]
- Zhao, R.; Jiang, S.; Ren, S.; Yang, L.; Han, W.; Guo, Z.; Gu, J. A Novel Phage Putative Depolymerase, Depo16, Has Specific Activity against K1 Capsular-Type Klebsiella pneumoniae. Appl. Environ. Microbiol. 2024, 90, e01197-23. [Google Scholar] [CrossRef]
- Dunstan, R.A.; Bamert, R.S.; Belousoff, M.J.; Short, F.L.; Barlow, C.K.; Pickard, D.J.; Wilksch, J.J.; Schittenhelm, R.B.; Strugnell, R.A.; Dougan, G.; et al. Mechanistic Insights into the Capsule-Targeting Depolymerase from a Klebsiella pneumoniae Bacteriophage. Microbiol. Spectr. 2021, 9, e01023-21. [Google Scholar] [CrossRef]
- Majkowska-Skrobek, G.; Łątka, A.; Berisio, R.; Maciejewska, B.; Squeglia, F.; Romano, M.; Lavigne, R.; Struve, C.; Drulis-Kawa, Z. Capsule-Targeting Depolymerase, Derived from Klebsiella KP36 Phage, as a Tool for the Development of Anti-Virulent Strategy. Viruses 2016, 8, 324. [Google Scholar] [CrossRef]
- Coffey, B.M.; Anderson, G.G. Biofilm Formation in the 96-Well Microtiter Plate. In Pseudomonas Methods and Protocols; Methods in Molecular Biology; Filloux, A., Ramos, J.-L., Eds.; Springer: New York, NY, USA, 2014; Volume 1149, pp. 631–641. ISBN 9781493904723. [Google Scholar]
- Cui, X.; Du, B.; Feng, J.; Feng, Y.; Fan, Z.; Chen, J.; Cui, J.; Gan, L.; Fu, T.; Tian, Z.; et al. A Novel Phage Carrying Capsule Depolymerase Effectively Relieves Pneumonia Caused by Multidrug-Resistant Klebsiella Aerogenes. J. Biomed. Sci. 2023, 30, 75. [Google Scholar] [CrossRef]
- Pan, Y.; Lin, T.; Chen, Y.; Lai, P.; Tsai, Y.; Hsu, C.; Hsieh, P.; Lin, Y.; Wang, J. Identification of Three Podoviruses Infecting Klebsiella Encoding Capsule Depolymerases That Digest Specific Capsular Types. Microb. Biotechnol. 2019, 12, 472–486. [Google Scholar] [CrossRef]
- Fu, Y.; Yin, M.; Cao, L.; Lu, Y.; Li, Y.; Zhang, L. Capsule Mutations Serve as a Key Strategy of Phage Resistance Evolution of K54 Hypervirulent Klebsiella pneumoniae. Commun. Biol. 2025, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Noreika, A.; Stankevičiūtė, J.; Rutkienė, R.; Meškys, R.; Kalinienė, L. Exploring the Enzymatic Activity of Depol ymerase gp531 from Klebsiella pneumoniae Jumbo Phage RaK2. Virus Res. 2023, 336, 199225. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Feng, Y.; McNally, A.; Zong, Z. Characterization of Phage Resistance and Phages Capable of Intestinal Decolonization of Carbapenem-Resistant Klebsiella pneumoniae in Mice. Commun. Biol. 2022, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, M.; Zhang, D. Potential of Phage Depolymerase for the Treatment of Bacterial Biofilms. Virulence 2023, 14, 2273567. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The Biofilm Matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Mike, L.A.; Stark, A.J.; Forsyth, V.S.; Vornhagen, J.; Smith, S.N.; Bachman, M.A.; Mobley, H.L.T. A Systematic Analysis of Hypermucoviscosity and Capsule Reveals Distinct and Overlapping Genes That Impact Klebsiella pneumoniae Fitness. PLoS Pathog. 2021, 17, e1009376. [Google Scholar] [CrossRef]
- Tang, M.; Huang, Z.; Zhang, X.; Kong, J.; Zhou, B.; Han, Y.; Zhang, Y.; Chen, L.; Zhou, T. Phage Resistance Formation and Fitness Costs of Hypervirulent Klebsiella pneumoniae Mediated by K2 Capsule-Specific Phage and the Corresponding Mechanisms. Front. Microbiol. 2023, 14, 1156292. [Google Scholar] [CrossRef]
- Pu, D.; Zhao, J.; Chang, K.; Zhuo, X.; Cao, B. “Superbugs” with Hypervirulence and Carbapenem Resistance in Klebsiella pneumoniae: The Rise of Such Emerging Nosocomial Pathogens in China. Sci. Bull. 2023, 68, 2658–2670. [Google Scholar] [CrossRef]
- Kaszowska, M.; Majkowska-Skrobek, G.; Markwitz, P.; Lood, C.; Jachymek, W.; Maciejewska, A.; Lukasiewicz, J.; Drulis-Kawa, Z. The Mutation in wbaP Cps Gene Cluster Selected by Phage-Borne Depolymerase Abolishes Capsule Production and Diminishes the Virulence of Klebsiella pneumoniae. Int. J. Mol. Sci. 2021, 22, 11562. [Google Scholar] [CrossRef]
- Abdelrahman, F.; Easwaran, M.; Daramola, O.I.; Ragab, S.; Lynch, S.; Oduselu, T.J.; Khan, F.M.; Ayobami, A.; Adnan, F.; Torrents, E.; et al. Phage-Encoded Endolysins. Antibiotics 2021, 10, 124. [Google Scholar] [CrossRef]
- Cheetham, M.J.; Huo, Y.; Stroyakovski, M.; Cheng, L.; Wan, D.; Dell, A.; Santini, J.M. Specificity and Diversity of Klebsiella pneumoniae Phage-Encoded Capsule Depolymerases. Essays Biochem. 2024, 68, 661–677. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, B.; Squeglia, F.; Latka, A.; Privitera, M.; Olejniczak, S.; Switala, P.; Ruggiero, A.; Marasco, D.; Marska, E.K.; Drulis-Kawa, Z.; et al. Klebsiella Phage KP34gp57 Capsular Depolymerase Structure and Function: From a Serendipitous Finding to the Design of Active Mini-Enzymes against K. pneumoniae. Mbio 2023, 14, e01329-23. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.L.; Gaudreault, F.; Chen, W. Functional Domains of Acinetobacter Bacteriophage Tail Fibers. Front. Microbiol. 2024, 15, 1230997. [Google Scholar] [CrossRef] [PubMed]
- Squeglia, F.; Maciejewska, B.; Łątka, A.; Ruggiero, A.; Briers, Y.; Drulis-Kawa, Z.; Berisio, R. Structural and Func tional Studies of a Klebsiella Phage Capsule Depolymerase Tailspike: Mechanistic Insights into Capsular Degradation. Structure 2020, 28, 613–624. [Google Scholar] [CrossRef]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, 1110–1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, T.-L.; Hsieh, P.-F.; Huang, Y.-T.; Lee, W.-C.; Tsai, Y.-T.; Su, P.-A.; Pan, Y.-J.; Hsu, C.-R.; Wu, M.-C.; Wang, J.-T. Isolation of a Bacteriophage and Its Depolymerase Specific for K1 Capsule of Klebsiella pneumoniae: Implication in Typing and Treatment. J. Infect. Dis. 2014, 210, 1734–1744. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, R.; Xu, M.; Liu, Y.; Zhu, X.; Qiu, J.; Liu, Q.; He, P.; Li, Q. A Novel Polysaccharide Depolymerase Encoded by the Phage SH-KP152226 Confers Specific Activity Against Multidrug-Resistant Klebsiella pneumoniae via Biofilm Degradation. Front. Microbiol. 2019, 10, 2768. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Interna Tional J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Wang, C.; Li, P.; Niu, W.; Yuan, X.; Liu, H.; Huang, Y.; An, X.; Fan, H.; Zhangxiang, L.; Mi, L.; et al. Protective and Therapeutic Application of the Depolymerase Derived from a Novel KN1 Genotype of Klebsiella pneumoniae Bacteriophage in Mice. Res. Microbiol. 2019, 170, 156–164. [Google Scholar] [CrossRef]
- Liu, Y.; Leung, S.S.Y.; Guo, Y.; Zhao, L.; Jiang, N.; Mi, L.; Li, P.; Wang, C.; Qin, Y.; Mi, Z.; et al. The Capsule Depolymerase Dpo48 Rescues Galleria mellonella and Mice From Acinetobacter baumannii Systemic Infections. Front. Microbiol. 2019, 10, 545. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Zhang, Y.; Yu, S.; Zhuo, H.; Huang, Y.; Lyu, J.; Lin, Y.; Zhang, X.; Mi, Z.; et al. Identification and Characterization of the Capsule Depolymerase Dpo27 from Phage IME-Ap7 Specific to Acinetobacter pittii. Front. Cell. Infect. Microbiol. 2024, 14, 1373052. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Ren, Z.; Zhao, R.; Lu, Y.; Wang, X.; Guo, Z.; Song, J.; Xiang, W.; Du, R.; Zhang, X.; et al. Structural Biology and Functional Features of Phage-Derived Depolymerase Depo32 on Klebsiella pneumoniae with K2 Serotype Capsular Polysaccharides. Microbiol. Spectr. 2023, 11, e05304-22. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, H.; Chen, L.; Guo, G.; Li, P.; Ma, J.; Chen, R.; Du, H.; Liu, Y.; Zhang, W. Identification of a Phage-Derived Depolymerase Specific for KL47 Capsule of Klebsiella pneumoniae and Its Therapeutic Potential in Mice. Virol. Sin. 2022, 37, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Pu, B.; Qin, J.; Xiang, J. Effect of a Depolymerase Encoded by Phage168 on a Carbapenem-Resistant Klebsiella pneumoniae and Its Biofilm. Pathogens 2023, 12, 1396. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage Resistance Mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef]
- Alseth, E.O.; Pursey, E.; Luján, A.M.; McLeod, I.; Rollie, C.; Westra, E.R. Bacterial Biodiversity Drives the Evolution of CRISPR-Based Phage Resistance. Nature 2019, 574, 549–552. [Google Scholar] [CrossRef]
Strains, Plasmids, or Phages | Descriptions | References or Sources |
---|---|---|
Strains | ||
DH5α | E. coli, cloning host | Laboratory stock |
BL21(DE3) | E. coli, expression cell | Laboratory stock |
SCNJ1 | K. pneumoniae, K54 serotype | [16] |
NTUH-K2044 | K. pneumoniae, clinical isolate of K1 serotype | [17] |
Plasmid | ||
pET22b(+) | Vector for depolymerase expression, AmpR | Laboratory stock |
Phages | ||
vB_KpnA_SCNJ1-C | Siphovirus, targeting K. pneumoniae strain SCNJ1 | [15] |
vB_KpnA_SCNJ1-Y | Myovirus, targeting K. pneumoniae strain SCNJ1 | [15] |
vB_KpnA_SCNJ1-Z | Podovirus, targeting K. pneumoniae strain SCNJ1 | [15] |
Genus/Species | Bacterial Strain | Capsule Type | Spot Assay | ||
---|---|---|---|---|---|
Dep_C | Dep_Y | Dep_Z | |||
Acinetobacter | |||||
Acinetobacter baumannii | ATCC19606 | - | - | - | |
Enterobacter | |||||
Enterobacter cloacae | SCNJ7 | - | - | - | |
Escherichia | |||||
Escherichia coli | SCNJ6 | - | - | - | |
Klebsiella | |||||
K. pneumoniae | SCNJ9 | K54 | + | + | + |
K. pneumoniae | SCNJ24 | K25 | - | - | - |
K. pneumoniae | SCNJ29 | K18 | - | - | - |
K. pneumoniae | SCNJ41 | K102 | - | - | - |
K. pneumoniae | SCNJ48 | K57 | - | - | - |
K. pneumoniae | SCNJ2 | K47 | - | - | - |
K. pneumoniae | SCNJ10 | K64 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Fang, C.; Xiang, L.; Yin, M.; Qian, L.; Yan, Y.; Zhang, L.; Li, Y. Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae. Microorganisms 2025, 13, 1544. https://doi.org/10.3390/microorganisms13071544
Lu Y, Fang C, Xiang L, Yin M, Qian L, Yan Y, Zhang L, Li Y. Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae. Microorganisms. 2025; 13(7):1544. https://doi.org/10.3390/microorganisms13071544
Chicago/Turabian StyleLu, Yanjun, Chengju Fang, Li Xiang, Ming Yin, Lvxin Qian, Yi Yan, Luhua Zhang, and Ying Li. 2025. "Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae" Microorganisms 13, no. 7: 1544. https://doi.org/10.3390/microorganisms13071544
APA StyleLu, Y., Fang, C., Xiang, L., Yin, M., Qian, L., Yan, Y., Zhang, L., & Li, Y. (2025). Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae. Microorganisms, 13(7), 1544. https://doi.org/10.3390/microorganisms13071544