Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,135)

Search Parameters:
Keywords = capability of network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4936 KiB  
Article
A Lightweight Pavement Defect Detection Algorithm Integrating Perception Enhancement and Feature Optimization
by Xiang Zhang, Xiaopeng Wang and Zhuorang Yang
Sensors 2025, 25(14), 4443; https://doi.org/10.3390/s25144443 (registering DOI) - 17 Jul 2025
Abstract
To address the current issue of large computations and the difficulty in balancing model complexity and detection accuracy in pavement defect detection models, a lightweight pavement defect detection algorithm, PGS-YOLO, is proposed based on YOLOv8, which integrates perception enhancement and feature optimization. The [...] Read more.
To address the current issue of large computations and the difficulty in balancing model complexity and detection accuracy in pavement defect detection models, a lightweight pavement defect detection algorithm, PGS-YOLO, is proposed based on YOLOv8, which integrates perception enhancement and feature optimization. The algorithm first designs the Receptive-Field Convolutional Block Attention Module Convolution (RFCBAMConv) and the Receptive-Field Convolutional Block Attention Module C2f-RFCBAM, based on which we construct an efficient Perception Enhanced Feature Extraction Network (PEFNet) that enhances multi-scale feature extraction capability by dynamically adjusting the receptive field. Secondly, the dynamic upsampling module DySample is introduced into the efficient feature pyramid, constructing a new feature fusion pyramid (Generalized Dynamic Sampling Feature Pyramid Network, GDSFPN) to optimize the multi-scale feature fusion effect. In addition, a shared detail-enhanced convolution lightweight detection head (SDCLD) was designed, which significantly reduces the model’s parameters and computation while improving localization and classification performance. Finally, Wise-IoU was introduced to optimize the training performance and detection accuracy of the model. Experimental results show that PGS-YOLO increases mAP50 by 2.8% and 2.9% on the complete GRDDC2022 dataset and the Chinese subset, respectively, outperforming the other detection models. The number of parameters and computations are reduced by 10.3% and 9.9%, respectively, compared to the YOLOv8n model, with an average frame rate of 69 frames per second, offering good real-time performance. In addition, on the CRACK500 dataset, PGS-YOLO improved mAP50 by 2.3%, achieving a better balance between model complexity and detection accuracy. Full article
(This article belongs to the Topic Applied Computing and Machine Intelligence (ACMI))
Show Figures

Figure 1

22 pages, 4882 KiB  
Article
Dual-Branch Spatio-Temporal-Frequency Fusion Convolutional Network with Transformer for EEG-Based Motor Imagery Classification
by Hao Hu, Zhiyong Zhou, Zihan Zhang and Wenyu Yuan
Electronics 2025, 14(14), 2853; https://doi.org/10.3390/electronics14142853 (registering DOI) - 17 Jul 2025
Abstract
The decoding of motor imagery (MI) electroencephalogram (EEG) signals is crucial for motor control and rehabilitation. However, as feature extraction is the core component of the decoding process, traditional methods, often limited to single-feature domains or shallow time-frequency fusion, struggle to comprehensively capture [...] Read more.
The decoding of motor imagery (MI) electroencephalogram (EEG) signals is crucial for motor control and rehabilitation. However, as feature extraction is the core component of the decoding process, traditional methods, often limited to single-feature domains or shallow time-frequency fusion, struggle to comprehensively capture the spatio-temporal-frequency characteristics of the signals, thereby limiting decoding accuracy. To address these limitations, this paper proposes a dual-branch neural network architecture with multi-domain feature fusion, the dual-branch spatio-temporal-frequency fusion convolutional network with Transformer (DB-STFFCNet). The DB-STFFCNet model consists of three modules: the spatiotemporal feature extraction module (STFE), the frequency feature extraction module (FFE), and the feature fusion and classification module. The STFE module employs a lightweight multi-dimensional attention network combined with a temporal Transformer encoder, capable of simultaneously modeling local fine-grained features and global spatiotemporal dependencies, effectively integrating spatiotemporal information and enhancing feature representation. The FFE module constructs a hierarchical feature refinement structure by leveraging the fast Fourier transform (FFT) and multi-scale frequency convolutions, while a frequency-domain Transformer encoder captures the global dependencies among frequency domain features, thus improving the model’s ability to represent key frequency information. Finally, the fusion module effectively consolidates the spatiotemporal and frequency features to achieve accurate classification. To evaluate the feasibility of the proposed method, experiments were conducted on the BCI Competition IV-2a and IV-2b public datasets, achieving accuracies of 83.13% and 89.54%, respectively, outperforming existing methods. This study provides a novel solution for joint time-frequency representation learning in EEG analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence Methods for Biomedical Data Processing)
Show Figures

Figure 1

16 pages, 1251 KiB  
Article
Enhanced Detection of Intrusion Detection System in Cloud Networks Using Time-Aware and Deep Learning Techniques
by Nima Terawi, Huthaifa I. Ashqar, Omar Darwish, Anas Alsobeh, Plamen Zahariev and Yahya Tashtoush
Computers 2025, 14(7), 282; https://doi.org/10.3390/computers14070282 (registering DOI) - 17 Jul 2025
Abstract
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat [...] Read more.
This study introduces an enhanced Intrusion Detection System (IDS) framework for Denial-of-Service (DoS) attacks, utilizing network traffic inter-arrival time (IAT) analysis. By examining the timing between packets and other statistical features, we detected patterns of malicious activity, allowing early and effective DoS threat mitigation. We generate real DoS traffic, including normal, Internet Control Message Protocol (ICMP), Smurf attack, and Transmission Control Protocol (TCP) classes, and develop nine predictive algorithms, combining traditional machine learning and advanced deep learning techniques with optimization methods, including the synthetic minority sampling technique (SMOTE) and grid search (GS). Our findings reveal that while traditional machine learning achieved moderate accuracy, it struggled with imbalanced datasets. In contrast, Deep Neural Network (DNN) models showed significant improvements with optimization, with DNN combined with GS (DNN-GS) reaching 89% accuracy. However, we also used Recurrent Neural Networks (RNNs) combined with SMOTE and GS (RNN-SMOTE-GS), which emerged as the best-performing with a precision of 97%, demonstrating the effectiveness of combining SMOTE and GS and highlighting the critical role of advanced optimization techniques in enhancing the detection capabilities of IDS models for the accurate classification of various types of network traffic and attacks. Full article
Show Figures

Figure 1

24 pages, 2667 KiB  
Article
Transformer-Driven Fault Detection in Self-Healing Networks: A Novel Attention-Based Framework for Adaptive Network Recovery
by Parul Dubey, Pushkar Dubey and Pitshou N. Bokoro
Mach. Learn. Knowl. Extr. 2025, 7(3), 67; https://doi.org/10.3390/make7030067 (registering DOI) - 16 Jul 2025
Abstract
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, [...] Read more.
Fault detection and remaining useful life (RUL) prediction are critical tasks in self-healing network (SHN) environments and industrial cyber–physical systems. These domains demand intelligent systems capable of handling dynamic, high-dimensional sensor data. However, existing optimization-based approaches often struggle with imbalanced datasets, noisy signals, and delayed convergence, limiting their effectiveness in real-time applications. This study utilizes two benchmark datasets—EFCD and SFDD—which represent electrical and sensor fault scenarios, respectively. These datasets pose challenges due to class imbalance and complex temporal dependencies. To address this, we propose a novel hybrid framework combining Attention-Augmented Convolutional Neural Networks (AACNN) with transformer encoders, enhanced through Enhanced Ensemble-SMOTE for balancing the minority class. The model captures spatial features and long-range temporal patterns and learns effectively from imbalanced data streams. The novelty lies in the integration of attention mechanisms and adaptive oversampling in a unified fault-prediction architecture. Model evaluation is based on multiple performance metrics, including accuracy, F1-score, MCC, RMSE, and score*. The results show that the proposed model outperforms state-of-the-art approaches, achieving up to 97.14% accuracy and a score* of 0.419, with faster convergence and improved generalization across both datasets. Full article
Show Figures

Figure 1

24 pages, 20337 KiB  
Article
MEAC: A Multi-Scale Edge-Aware Convolution Module for Robust Infrared Small-Target Detection
by Jinlong Hu, Tian Zhang and Ming Zhao
Sensors 2025, 25(14), 4442; https://doi.org/10.3390/s25144442 - 16 Jul 2025
Abstract
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, [...] Read more.
Infrared small-target detection remains a critical challenge in military reconnaissance, environmental monitoring, forest-fire prevention, and search-and-rescue operations, owing to the targets’ extremely small size, sparse texture, low signal-to-noise ratio, and complex background interference. Traditional convolutional neural networks (CNNs) struggle to detect such weak, low-contrast objects due to their limited receptive fields and insufficient feature extraction capabilities. To overcome these limitations, we propose a Multi-Scale Edge-Aware Convolution (MEAC) module that enhances feature representation for small infrared targets without increasing parameter count or computational cost. Specifically, MEAC fuses (1) original local features, (2) multi-scale context captured via dilated convolutions, and (3) high-contrast edge cues derived from differential Gaussian filters. After fusing these branches, channel and spatial attention mechanisms are applied to adaptively emphasize critical regions, further improving feature discrimination. The MEAC module is fully compatible with standard convolutional layers and can be seamlessly embedded into various network architectures. Extensive experiments on three public infrared small-target datasets (SIRSTD-UAVB, IRSTDv1, and IRSTD-1K) demonstrate that networks augmented with MEAC significantly outperform baseline models using standard convolutions. When compared to eleven mainstream convolution modules (ACmix, AKConv, DRConv, DSConv, LSKConv, MixConv, PConv, ODConv, GConv, and Involution), our method consistently achieves the highest detection accuracy and robustness. Experiments conducted across multiple versions, including YOLOv10, YOLOv11, and YOLOv12, as well as various network levels, demonstrate that the MEAC module achieves stable improvements in performance metrics while slightly increasing computational and parameter complexity. These results validate the MEAC module’s significant advantages in enhancing the detection of small and weak objects and suppressing interference from complex backgrounds. These results validate MEAC’s effectiveness in enhancing weak small-target detection and suppressing complex background noise, highlighting its strong generalization ability and practical application potential. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 4668 KiB  
Article
An Asynchronous Federated Learning Aggregation Method Based on Adaptive Differential Privacy
by Jiawen Wu, Geming Xia, Hongwei Huang, Chaodong Yu, Yuze Zhang and Hongfeng Li
Electronics 2025, 14(14), 2847; https://doi.org/10.3390/electronics14142847 - 16 Jul 2025
Abstract
Federated learning is a distributed machine learning technique that allows multiple devices to collaborate on learning a shared model without exchanging data. It can be used to improve model accuracy while protecting user privacy. However, traditional federated learning is vulnerable to attacks from [...] Read more.
Federated learning is a distributed machine learning technique that allows multiple devices to collaborate on learning a shared model without exchanging data. It can be used to improve model accuracy while protecting user privacy. However, traditional federated learning is vulnerable to attacks from generative adversarial networks (GANs). As a new privacy protection method, differential privacy enhances privacy protection capabilities by sacrificing some data accuracy. To optimize the privacy budget allocation scheme in traditional differential privacy, we propose a differential privacy method called ADP-FL, which dynamically adjusts the privacy budget based on Newton’s Law of Cooling. While maintaining the overall privacy budget, it dynamically tunes adaptive parameters to improve training accuracy. Additionally, we propose an asynchronous federated learning aggregation scheme that combines privacy budget with data freshness, thereby reducing the impact of differential privacy on accuracy. We conducted extensive experiments on differential privacy algorithms based on Gaussian mechanisms and Laplace mechanisms. The experimental results show that, under the same privacy budget, our algorithm achieves higher accuracy and lower communication overhead compared to the baseline algorithm. Full article
(This article belongs to the Special Issue Emerging Trends in Federated Learning and Network Security)
Show Figures

Figure 1

23 pages, 6565 KiB  
Article
Hybrid NARX Neural Network with Model-Based Feedback for Predictive Torsional Torque Estimation in Electric Drive with Elastic Connection
by Amanuel Haftu Kahsay, Piotr Derugo, Piotr Majdański and Rafał Zawiślak
Energies 2025, 18(14), 3770; https://doi.org/10.3390/en18143770 - 16 Jul 2025
Abstract
This paper proposes a hybrid methodology for one-step-ahead torsional torque estimation in an electric drive with an elastic connection. The approach integrates Nonlinear Autoregressive Neural Networks with Exogenous Inputs (NARX NNs) and model-based feedback. The NARX model uses real-time and historical motor speed [...] Read more.
This paper proposes a hybrid methodology for one-step-ahead torsional torque estimation in an electric drive with an elastic connection. The approach integrates Nonlinear Autoregressive Neural Networks with Exogenous Inputs (NARX NNs) and model-based feedback. The NARX model uses real-time and historical motor speed and torque signals as inputs while leveraging physics-derived torsional torque as a feedback input to refine estimation accuracy and robustness. While model-based methods provide insight into system dynamics, they lack predictive capability—an essential feature for proactive control. Conversely, standalone NARX NNs often suffer from error accumulation and overfitting. The proposed hybrid architecture synergises the adaptive learning of NARX NNs with the fidelity of physics-based feedback, enabling proactive vibration damping. The method was implemented and evaluated on a two-mass drive system using an IP controller and additional torsional torque feedback. Results demonstrate high accuracy and reliability in one-step-ahead torsional torque estimation, enabling effective proactive vibration damping. MATLAB 2024a/Simulink and dSPACE 1103 were used for simulation and hardware-in-the-loop testing. Full article
(This article belongs to the Special Issue Drive System and Control Strategy of Electric Vehicle)
Show Figures

Figure 1

36 pages, 8048 KiB  
Article
Characterization and Automated Classification of Underwater Acoustic Environments in the Western Black Sea Using Machine Learning Techniques
by Maria Emanuela Mihailov
J. Mar. Sci. Eng. 2025, 13(7), 1352; https://doi.org/10.3390/jmse13071352 - 16 Jul 2025
Abstract
Growing concern over anthropogenic underwater noise, highlighted by initiatives like the Marine Strategy Framework Directive (MSFD) and its Technical Group on Underwater Noise (TG Noise), emphasizes regions like the Western Black Sea, where increasing activities threaten marine habitats. This region is experiencing rapid [...] Read more.
Growing concern over anthropogenic underwater noise, highlighted by initiatives like the Marine Strategy Framework Directive (MSFD) and its Technical Group on Underwater Noise (TG Noise), emphasizes regions like the Western Black Sea, where increasing activities threaten marine habitats. This region is experiencing rapid growth in maritime traffic and resource exploitation, which is intensifying concerns over the noise impacts on its unique marine habitats. While machine learning offers promising solutions, a research gap persists in comprehensively evaluating diverse ML models within an integrated framework for complex underwater acoustic data, particularly concerning real-world data limitations like class imbalance. This paper addresses this by presenting a multi-faceted framework using passive acoustic monitoring (PAM) data from fixed locations (50–100 m depth). Acoustic data are processed using advanced signal processing (broadband Sound Pressure Level (SPL), Power Spectral Density (PSD)) for feature extraction (Mel-spectrograms for deep learning; PSD statistical moments for classical/unsupervised ML). The framework evaluates Convolutional Neural Networks (CNNs), Random Forest, and Support Vector Machines (SVMs) for noise event classification, alongside Gaussian Mixture Models (GMMs) for anomaly detection. Our results demonstrate that the CNN achieved the highest classification accuracy of 0.9359, significantly outperforming Random Forest (0.8494) and SVM (0.8397) on the test dataset. These findings emphasize the capability of deep learning in automatically extracting discriminative features, highlighting its potential for enhanced automated underwater acoustic monitoring. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 2769 KiB  
Article
Service-Based Architecture for 6G RAN: A Cloud Native Platform That Provides Everything as a Service
by Guangyi Liu, Na Li, Chunjing Yuan, Siqi Chen and Xuan Liu
Sensors 2025, 25(14), 4428; https://doi.org/10.3390/s25144428 - 16 Jul 2025
Abstract
The 5G network’s commercialization has revealed challenges in providing customized and personalized deployment and services for diverse vertical industrial use cases, leading to high cost, low resource efficiency and management efficiency, and long time to market. Although the 5G core network (CN) has [...] Read more.
The 5G network’s commercialization has revealed challenges in providing customized and personalized deployment and services for diverse vertical industrial use cases, leading to high cost, low resource efficiency and management efficiency, and long time to market. Although the 5G core network (CN) has adopted a service-based architecture (SBA) to enhance agility and elasticity, the radio access network (RAN) keeps the traditional integrated and rigid architecture and suffers the difficulties of customizing and personalizing the functions and capabilities. Open RAN attempted to introduce cloudification, openness, and intelligence to RAN but faced limitations due to 5G RAN specifications. To address this, this paper analyzes the experience and insights from 5G SBA and conducts a systematic study on the service-based RAN, including service definition, interface protocol stacks, impact analysis on the air interface, radio capability exposure, and joint optimization with CN. Performance verification shows significant improvements of service-based user plane design in resource utilization and scalability. Full article
(This article belongs to the Special Issue Future Horizons in Networking: Exploring the Potential of 6G)
Show Figures

Figure 1

23 pages, 10912 KiB  
Article
ET: A Metaheuristic Optimization Algorithm for Task Mapping in Network-on-Chip
by Ke Li, Jingbo Shao and Yan Song
Electronics 2025, 14(14), 2846; https://doi.org/10.3390/electronics14142846 - 16 Jul 2025
Abstract
In Network-on-Chip (NoC) research, the task mapping problem has attracted considerable attention as a core issue influencing system performance. As an NP-hard problem, it remains challenging, and existing algorithms exhibit limitations in both mapping quality and computational efficiency. To address this, a method [...] Read more.
In Network-on-Chip (NoC) research, the task mapping problem has attracted considerable attention as a core issue influencing system performance. As an NP-hard problem, it remains challenging, and existing algorithms exhibit limitations in both mapping quality and computational efficiency. To address this, a method named ET (Enhanced Coati Optimization Algorithm) is proposed, which leverages the nature-inspired Coati Optimization Algorithm (COA) for task mapping. An incremental hill-climbing strategy is integrated to improve local search capabilities, and a dynamic mechanism for adjusting the exploration–exploitation ratio is designed to better balance global and local searches. Additionally, an initial mapping strategy based on spectral clustering is introduced, which utilizes inter-task communication strength to cluster tasks, thereby improving the quality of the initial population. To evaluate the effectiveness of the proposed algorithm, the performance of the ET algorithm is compared and analyzed against various existing algorithms in terms of communication cost, energy consumption, and latency, using both real benchmark task maps and randomly generated task maps. Experimental results demonstrate that the ET algorithm consistently outperforms the compared algorithms across all performance metrics, thereby confirming its superiority in addressing the NoC task mapping problem. Full article
Show Figures

Figure 1

16 pages, 2354 KiB  
Proceeding Paper
Design and Implementation of a Passive Optical Network for a Small Town
by Fatima Sapundzhi, Boyko Zarev, Slavi Georgiev, Snezhinka Zaharieva, Metodi Popstoilov and Meglena Lazarova
Eng. Proc. 2025, 100(1), 40; https://doi.org/10.3390/engproc2025100040 - 15 Jul 2025
Viewed by 56
Abstract
The increasing demand for high-speed internet and advanced digital services necessitates the deployment of robust and scalable broadband infrastructure, particularly in smaller urban and rural areas. This paper presents the design and implementation of a passive optical network (PON) based on a gigabit-capable [...] Read more.
The increasing demand for high-speed internet and advanced digital services necessitates the deployment of robust and scalable broadband infrastructure, particularly in smaller urban and rural areas. This paper presents the design and implementation of a passive optical network (PON) based on a gigabit-capable passive optical network (GPON) standard to deliver fiber-to-the-home (FTTH) services in a small-town setting. The proposed solution prioritizes cost-effectiveness, scalability, and minimal energy consumption by leveraging passive splitters and unpowered network elements. We detail the topology planning, splitter architecture, installation practices, and technical specifications that ensure efficient signal distribution and future network expansion. The results demonstrate the successful implementation of an optical access infrastructure that supports high-speed internet, Internet Protocol television (IPTV), and voice services while maintaining flexibility for diverse urban layouts and housing types. Full article
Show Figures

Figure 1

21 pages, 3937 KiB  
Article
Wind Turbine Blade Defect Recognition Method Based on Large-Vision-Model Transfer Learning
by Xin Li, Jinghe Tian, Xinfu Pang, Li Shen, Haibo Li and Zedong Zheng
Sensors 2025, 25(14), 4414; https://doi.org/10.3390/s25144414 - 15 Jul 2025
Viewed by 55
Abstract
Timely and accurate detection of wind turbine blade surface defects is crucial for ensuring operational safety and improving maintenance efficiency with respect to large-scale wind farms. However, existing methods often suffer from poor generalization, background interference, and inadequate real-time performance. To overcome these [...] Read more.
Timely and accurate detection of wind turbine blade surface defects is crucial for ensuring operational safety and improving maintenance efficiency with respect to large-scale wind farms. However, existing methods often suffer from poor generalization, background interference, and inadequate real-time performance. To overcome these limitations, we developed an end-to-end defect recognition framework, structured as a three-stage process: blade localization using YOLOv5, robust feature extraction via the large vision model DINOv2, and defect classification using a Stochastic Configuration Network (SCN). Unlike conventional CNN-based approaches, the use of DINOv2 significantly improves the capability for representation under complex textures. The experimental results reveal that the proposed method achieved a classification accuracy of 97.8% and an average inference time of 19.65 ms per image, satisfying real-time requirements. Compared to traditional methods, this framework provides a more scalable, accurate, and efficient solution for the intelligent inspection and maintenance of wind turbine blades. Full article
(This article belongs to the Special Issue Deep Learning for Perception and Recognition: Method and Applications)
Show Figures

Figure 1

27 pages, 6169 KiB  
Article
Application of Semi-Supervised Clustering with Membership Information and Deep Learning in Landslide Susceptibility Assessment
by Hua Xia, Zili Qin, Yuanxin Tong, Yintian Li, Rui Zhang and Hongxia Luo
Land 2025, 14(7), 1472; https://doi.org/10.3390/land14071472 - 15 Jul 2025
Viewed by 63
Abstract
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address [...] Read more.
Landslide susceptibility assessment (LSA) plays a crucial role in disaster prevention and mitigation. Traditional random selection of non-landslide samples (labeled as 0) suffers from poor representativeness and high randomness, which may include potential landslide areas and affect the accuracy of LSA. To address this issue, this study proposes a novel Landslide Susceptibility Index–based Semi-supervised Fuzzy C-Means (LSI-SFCM) sampling strategy combining membership degrees. It utilizes landslide and unlabeled samples to map landslide membership degree via Semi-supervised Fuzzy C-Means (SFCM). Non-landslide samples are selected from low-membership regions and assigned membership values as labels. This study developed three models for LSA—Convolutional Neural Network (CNN), U-Net, and Support Vector Machine (SVM), and compared three negative sample sampling strategies: Random Sampling (RS), SFCM (samples labeled 0), and LSI-SFCM. The results demonstrate that the LSI-SFCM effectively enhances the representativeness and diversity of negative samples, improving the predictive performance and classification reliability. Deep learning models using LSI-SFCM performed with superior predictive capability. The CNN model achieved an area under the receiver operating characteristic curve (AUC) of 95.52% and a prediction rate curve value of 0.859. Furthermore, compared with the traditional unsupervised fuzzy C-means (FCM) clustering, SFCM produced a more reasonable distribution of landslide membership degrees, better reflecting the distinction between landslides and non-landslides. This approach enhances the reliability of LSA and provides a scientific basis for disaster prevention and mitigation authorities. Full article
Show Figures

Figure 1

23 pages, 13424 KiB  
Article
Measurement of Fracture Networks in Rock Sample by X-Ray Tomography, Convolutional Filtering and Deep Learning
by Alessia Caputo, Maria Teresa Calcagni, Giovanni Salerno, Elisa Mammoliti and Paolo Castellini
Sensors 2025, 25(14), 4409; https://doi.org/10.3390/s25144409 - 15 Jul 2025
Viewed by 62
Abstract
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. [...] Read more.
This study presents a comprehensive methodology for the detection and characterization of fractures in geological samples using X-ray computed tomography (CT). By combining convolution-based image processing techniques with advanced neural network-based segmentation, the proposed approach achieves high precision in identifying complex fracture networks. The method was applied to a marly limestone sample from the Maiolica Formation, part of the Umbria–Marche stratigraphic succession (Northern Apennines, Italy), a geological context where fractures often vary in size and contrast and are frequently filled with minerals such as calcite or clays, making their detection challenging. A critical part of the work involved addressing multiple sources of uncertainty that can impact fracture identification and measurement. These included the inherent spatial resolution limit of the CT system (voxel size of 70.69 μm), low contrast between fractures and the surrounding matrix, artifacts introduced by the tomographic reconstruction process (specifically the Radon transform), and noise from both the imaging system and environmental factors. To mitigate these challenges, we employed a series of preprocessing steps such as Gaussian and median filtering to enhance image quality and reduce noise, scanning from multiple angles to improve data redundancy, and intensity normalization to compensate for shading artifacts. The neural network segmentation demonstrated superior capability in distinguishing fractures filled with various materials from the host rock, overcoming the limitations observed in traditional convolution-based methods. Overall, this integrated workflow significantly improves the reliability and accuracy of fracture quantification in CT data, providing a robust and reproducible framework for the analysis of discontinuities in heterogeneous and complex geological materials. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

19 pages, 5795 KiB  
Article
Analysis and Design of a Multiple-Driver Power Supply Based on a High-Frequency AC Bus
by Qingqing He, Zhaoyang Tang, Wenzhe Zhao and Keliang Zhou
Energies 2025, 18(14), 3748; https://doi.org/10.3390/en18143748 - 15 Jul 2025
Viewed by 54
Abstract
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high [...] Read more.
Multi-channel LED drivers are crucial for high-power lighting applications. Maintaining a constant average forward current is essential for stable LED luminous intensity, necessitating drivers capable of consistent current delivery across wide operating ranges. Meanwhile, achieving precise current sharing among channels without incurring high costs and system complexity is a significant challenge. Leveraging the constant-current characteristics of the LCL-T network, this paper presents a multi-channel DC/DC LED driver comprising a full-bridge inverter, a transformer, and a passive resonant rectifier. The driver generates a high-frequency AC bus with series-connected diode rectifiers, a structure that guarantees excellent current sharing among all output channels using only a single control loop. Fully considering the impact of higher harmonics, this paper derives an exact solution for the output current. A step-by-step parameter design methodology ensures soft switching and enhanced switch utilization. Finally, experimental verification was conducted using a prototype with five channels and 200 W, confirming the correctness and accuracy of the theoretical analysis. The experimental results showed that within a wide input voltage range of 380 V to 420 V, the driver was able to provide a stable current of 700 mA to each channel, and the system could achieve a peak efficiency of up to 94.4%. Full article
(This article belongs to the Special Issue Reliability of Power Electronics Devices and Converter Systems)
Show Figures

Figure 1

Back to TopTop