Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,388)

Search Parameters:
Keywords = cancer molecular biology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3187 KB  
Article
ANXA2P2 and PA2G4P4 Pseudogenes Are Associated with the Response to Ionizing Radiation and Could Be Used as Potential Biomarkers: In Silico Study
by Tomasz Kolenda, Piotr Białas, Kacper Kamiński, Maria Dziuba, Małgorzata Czernecka, Aleksandra Leszczyńska, Kacper Guglas, Joanna Kozłowska-Masłoń, Paulina Potter, Klaudia Dudek, Nina Grzejda, Karina Tylkowska, Anna Zapłata, Marlena Janiczek-Polewska, Paulina Gieremek, Katarzyna Regulska, Patrycja Mantaj, Anna Florczak-Substyk, Anna Przybyła, Urszula Kazimierczak, Ewa Leporowska, Zefiryn Cybulski, Beata Stanisz and Anna Teresiakadd Show full author list remove Hide full author list
Biomedicines 2026, 14(1), 200; https://doi.org/10.3390/biomedicines14010200 (registering DOI) - 16 Jan 2026
Abstract
Background: Head and neck squamous cell carcinoma remains a highly aggressive malignancy with limited predictive biomarkers for prognosis and radiotherapy response. Increasing evidence indicates that pseudogenes are functionally active regulators of cancer biology, yet their clinical relevance in HNSCC is poorly defined. Methods: [...] Read more.
Background: Head and neck squamous cell carcinoma remains a highly aggressive malignancy with limited predictive biomarkers for prognosis and radiotherapy response. Increasing evidence indicates that pseudogenes are functionally active regulators of cancer biology, yet their clinical relevance in HNSCC is poorly defined. Methods: Using transcriptomic and clinical data from The Cancer Genome Atlas, we analyzed the expression and clinical significance of two pseudogenes, ANXA2P2 and PA2G4P4, in HNSCC. Associations with clinicopathological features, HPV status, tumor subtypes, survival, genomic instability, radiotherapy response, and immune landscape were assessed using bioinformatic tools. Results: Both pseudogenes were significantly upregulated in HNSCC compared to normal tissues. Higher expression levels correlated with adverse clinicopathological features, increased tumor proliferation and wound-healing capacity, and unfavorable TCGA molecular subtypes. High ANXA2P2 and PA2G4P4 expression was associated with reduced overall survival, while their combined low-expression signature identified patients with significantly improved overall and disease-free survival. Notably, lower expression of both pseudogenes was observed in patients responding to radiotherapy, whereas higher expression was linked to genomic instability parameters and enrichment of oncogenic pathways, including MYC, PI3K/AKT/mTOR, cell cycle regulation, and DNA repair. ANXA2P2 expression differed significantly by HPV status, showing reduced levels in HPV-positive tumors. Furthermore, pseudogene expression stratified distinct immune profiles, including immune subtypes, stromal and immune scores, and specific immune cell populations. Conclusions:ANXA2P2 and PA2G4P4 are clinically relevant pseudogenes associated with tumor aggressiveness, immune modulation, and radiotherapy response in HNSCC. These findings support their potential utility as prognostic and predictive biomarkers and provide a rationale for further functional validation in experimental models. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine (2nd Edition))
Show Figures

Figure 1

17 pages, 2196 KB  
Review
Lipid Droplets in Cancer: New Insights and Therapeutic Potential
by Shriya Joshi, Chakravarthy Garlapati, Amartya Pradhan, Komal Gandhi, Adepeju Balogun and Ritu Aneja
Int. J. Mol. Sci. 2026, 27(2), 918; https://doi.org/10.3390/ijms27020918 - 16 Jan 2026
Abstract
The progression of neoplastic diseases is driven by a complex interplay of biological processes, including uncontrolled proliferation, enhanced invasion, metastasis, and profound metabolic reprogramming. Among the hallmarks of cancer, as revised by Hanahan and Weinberg, the reprogramming of energy metabolism has emerged as [...] Read more.
The progression of neoplastic diseases is driven by a complex interplay of biological processes, including uncontrolled proliferation, enhanced invasion, metastasis, and profound metabolic reprogramming. Among the hallmarks of cancer, as revised by Hanahan and Weinberg, the reprogramming of energy metabolism has emerged as a critical feature that enables cancer cells to meet their heightened bioenergetic and biosynthetic demands. One significant aspect of this metabolic adaptation is the accumulation of lipid droplets (LDs) dynamic, cytoplasmic organelles primarily involved in lipid storage and metabolic regulation. LDs serve as reservoirs of neutral lipids and play a multifaceted role in cancer cell physiology. Their accumulation is increasingly recognized as a marker of tumor aggressiveness and poor prognosis. By storing lipids, LDs provide a readily accessible source of energy and essential building blocks for membrane synthesis, supporting rapid cell division and growth. Moreover, LDs contribute to cellular homeostasis by modulating oxidative stress, maintaining redox balance, and regulating autophagy, particularly under nutrient-deprived or hypoxic conditions commonly found in the tumor microenvironment. Importantly, LDs have been implicated in the development of resistance to cancer therapies. They protect cancer cells from the cytotoxic effects of chemotherapeutic agents by buffering endoplasmic reticulum (ER) stress, inhibiting apoptosis, and facilitating survival pathways. The presence of LDs has been shown to correlate with increased resistance to a variety of chemotherapeutic drugs, although the precise molecular mechanisms underlying this phenomenon remain incompletely understood. Emerging evidence suggests that chemotherapy itself can induce changes in LD accumulation, further complicating treatment outcomes. Given their central role in cancer metabolism and therapy resistance, LDs represent a promising target for therapeutic intervention. Strategies aimed at disrupting lipid metabolism or inhibiting LD biogenesis have shown potential in sensitizing cancer cells to chemotherapy and overcoming drug resistance. In this review, we comprehensively examine the current understanding of LD biology in cancer, highlight studies that elucidate the link between LDs and drug resistance, and discuss emerging approaches to target lipid metabolic pathways to enhance therapeutic efficacy across diverse cancer types. Full article
(This article belongs to the Special Issue Cancer Biomarkers and Metabolic Vulnerabilities)
19 pages, 3649 KB  
Review
TIM-3+ Macrophages: Insights into Their Role in Cancer and Inflammation
by Aleksandra Maksimova, Tamara Tyrinova and Elena Chernykh
Int. J. Mol. Sci. 2026, 27(2), 840; https://doi.org/10.3390/ijms27020840 - 14 Jan 2026
Viewed by 79
Abstract
T-cell immunoglobulin and mucin domain 3 (TIM-3), a well-known immune checkpoint molecule, is increasingly recognized for its regulatory functions beyond T cell exhaustion, particularly in macrophages. Recent advances have revealed the important role of this molecule in various pathological and physiological conditions. The [...] Read more.
T-cell immunoglobulin and mucin domain 3 (TIM-3), a well-known immune checkpoint molecule, is increasingly recognized for its regulatory functions beyond T cell exhaustion, particularly in macrophages. Recent advances have revealed the important role of this molecule in various pathological and physiological conditions. The demand for a comprehensive study of TIM-3 is increasing, particularly as a result of ongoing clinical trials targeting TIM-3 in oncology. This review is devoted to the role of TIM-3 in macrophage biology, focusing on associations between TIM-3 expression and macrophage polarization states and functional activity, as well as its involvement in the pathogenesis of different diseases and reproductive immunology. The review examines known effects and molecular mechanisms by which TIM-3 regulates macrophage functional phenotype and the contribution of TIM-3-expressing macrophages to cancer, pregnancy, inflammation, infectious and autoimmune diseases, and fibrosis. Findings highlight the controversial role of TIM-3 in the regulatory function of macrophages and suggest that TIM-3 functions differently depending on the context. The review also touches on gaps and unexplored parts of the topic. A summary of current data allows us to conclude that TIM-3 is an important modulator of macrophage functions and can be considered a potential therapeutic target in various pathological conditions. Full article
(This article belongs to the Special Issue The Role of Macrophages in Inflammation and Cancer: An Update)
Show Figures

Graphical abstract

20 pages, 2435 KB  
Review
Towards Precision Oncology: How Advances in Cancer Genomics, Immunobiology and Artificial Intelligence Will Change Molecular Diagnostics
by Iyare Izevbaye
Biomedicines 2026, 14(1), 175; https://doi.org/10.3390/biomedicines14010175 - 14 Jan 2026
Viewed by 91
Abstract
Over the last decades, a significant improvement in cancer patient outcomes has occurred due to advances in cancer cell biology, systemic immunity, tumor-immune microenvironment (TIME) and precision cancer therapy. Despite this explosion of knowledge, its usefulness in clinical practice has been limited by [...] Read more.
Over the last decades, a significant improvement in cancer patient outcomes has occurred due to advances in cancer cell biology, systemic immunity, tumor-immune microenvironment (TIME) and precision cancer therapy. Despite this explosion of knowledge, its usefulness in clinical practice has been limited by the ability to translate multidimensional data into clinical care. Progress in artificial intelligence (AI) opens up a new frontier, with the promise of achieving synergistic and comprehensive integration. The classification of cancer biology and immunobiology into hallmarks of cancer by Hanahan and Weinberg provides a framework for organizing this information. This systematic classification has enabled the understanding of the interplay and cross-talk between its parts. Targeted cancer therapies and immunotherapies have achieved considerable success, yet their combinatorial potential is still being uncovered. Molecular diagnostics has worked hand-in-hand with precision oncology in deploying new therapies in a cancer-informed and patient-specific way. Harnessing the full power of the advances in these three fields with the aid of AI promises a transformation of molecular diagnostics. This review conceptualizes molecular diagnostics in the context of cancer hallmarks using nonsmall cell lung cancer (NSCLC) as a template, highlighting the potential of a new diagnostic science through the integrative power of AI. Full article
Show Figures

Graphical abstract

12 pages, 233 KB  
Article
Alignment of Molecular Classification Between Diagnosis and Recurrence in Endometrial Cancer: Lessons from a Single-Institution Experience to Inform Future Pathways
by Stefano Restaino, Giulia Pellecchia, Martina Arcieri, Laura Mariuzzi, Maria Orsaria, Angelica Tulisso, Daniela Cesselli, Michela Bulfoni, Alice Poli, Federico Paparcura, Giorgio Bogani, Andrea Mariani, Gianfranco Zannoni, Giovanni Scambia and Giuseppe Vizzielli
Cancers 2026, 18(2), 247; https://doi.org/10.3390/cancers18020247 - 13 Jan 2026
Viewed by 137
Abstract
Introduction: Endometrial carcinoma (EC) is the most prevalent gynecological cancer. It is characterized by a clinical, pathological, and prognostic trajectory that has become inextricably linked to the disease’s molecular profile. Therefore, it is imperative to examine its relevance across all facets associated [...] Read more.
Introduction: Endometrial carcinoma (EC) is the most prevalent gynecological cancer. It is characterized by a clinical, pathological, and prognostic trajectory that has become inextricably linked to the disease’s molecular profile. Therefore, it is imperative to examine its relevance across all facets associated with the disease. Methods: This is a single-center retrospective study to assess tumor molecular profile concordance between EC diagnosis and recurrence. All patients who underwent hysterectomy for EC between 2016 and 2020 were included. Results: In total, 221 cases of EC were collected. In total, 18 recurrences were found. In two cases, there was a molecular classification (MC) change: an MMR-deficient endometrioid EC shifted to a “multiple classifier” subtype. The second, an NSMP subtype, at second recurrence revealed a switched MC to an aberrant mutated p53 profile. This discordance rate was non-significant in our cohort. However, considering the lack of evidence, it opens new insights to be revealed. Conclusions: This is the first study focusing on the discordance rate of MCs in EC relapses compared to the initial diagnosis. Future large-scale retrospective and prospective multicenter studies are essential for exploring this aspect. Full article
(This article belongs to the Section Molecular Cancer Biology)
29 pages, 941 KB  
Review
State of the Art on Thyroid Cancer Biology and Oncology
by Federica Vaio, Camilla Moliterni, Stefania Mardente, Roberta Misasi and Emanuela Mari
Biomedicines 2026, 14(1), 168; https://doi.org/10.3390/biomedicines14010168 - 13 Jan 2026
Viewed by 140
Abstract
Thyroid cancer (TC) incidence is rising, necessitating a refined understanding of its complex biology, particularly for advanced forms. This review synthesizes the state-of-the-art knowledge, guided by the WHO 5th Classification (2022), which incorporates molecular findings and introduces categories like Differentiated High-Grade Thyroid Carcinoma [...] Read more.
Thyroid cancer (TC) incidence is rising, necessitating a refined understanding of its complex biology, particularly for advanced forms. This review synthesizes the state-of-the-art knowledge, guided by the WHO 5th Classification (2022), which incorporates molecular findings and introduces categories like Differentiated High-Grade Thyroid Carcinoma (DHGTC) to better stratify prognosis. The review summarizes the molecular changes in thyroid cancer (TC) by establishing a clear link between specific oncogenic alterations and the resulting tumor phenotype, prognosis, risk stratification and therapeutic vulnerabilities. The central importance of the review lies in its comprehensive integration of these molecular changes with the resulting immunological microenvironment and the rationale for novel, personalized therapies. Moreover, high-level genomic instability within aggressive thyroid malignancies promotes an immunosuppressive tumor microenvironment via the selection and recruitment of suppressive immune components, contributing to immune evasion and poor prognosis. This characteristic immunosuppression identifies the aggressive tumors as prime candidates for targeted immunotherapies. The review implicitly argues that understanding the molecular drivers of this immunosuppression is essential for designing effective clinical trials using these novel agents. Diagnostic advancements, including molecular testing for high-risk mutations (BRAF, TERT) and the integration of Artificial Intelligence (AI) for refined risk stratification, are enabling personalized treatment. The evolving molecular and clinical understanding allows for a paradigm shift toward individualized therapies that balance optimal disease control with minimizing morbidity, especially in the context of high-risk disease. Full article
(This article belongs to the Special Issue State-of-the-Art Endocrine Cancer Biology and Oncology)
Show Figures

Figure 1

26 pages, 385 KB  
Review
Mapping the Kinase Inhibitor Landscape in Canine Mammary Carcinoma: Current Status and Future Opportunities
by Małgorzata Chmielewska-Krzesińska
Animals 2026, 16(2), 232; https://doi.org/10.3390/ani16020232 - 13 Jan 2026
Viewed by 120
Abstract
Background: Canine mammary carcinoma (CMC) is the most common malignant tumour in female dogs and, due to its similarities, is a valuable comparative model for human breast cancer. Kinase inhibitors have revolutionised the treatment of human breast cancer; their use in veterinary [...] Read more.
Background: Canine mammary carcinoma (CMC) is the most common malignant tumour in female dogs and, due to its similarities, is a valuable comparative model for human breast cancer. Kinase inhibitors have revolutionised the treatment of human breast cancer; their use in veterinary oncology remains marginal. Aim: This review summarises the current knowledge of kinase signalling pathways in CMC and assesses which kinase inhibitors approved for human use have potential in veterinary medicine. Methods: A systematic search of the PubMed database from 1985 to 2025 was performed, focusing on kinase-targeted therapies in both human and canine mammary carcinomas. Data were categorised according to molecular target, clinical approval status, and available preclinical or clinical veterinary evidence. Results: Key molecular pathways targeted by kinase inhibitors are conserved across species, supporting translational opportunities. In vitro studies demonstrate that palbociclib, alpelisib, everolimus, and lapatinib inhibit growth and signalling in CMC cell lines. Clinical trials have not been conducted. Conclusions: Approved kinase inhibitors for human use have untapped therapeutic potential in veterinary oncology. Translational research, including xenograft and organoid models, followed by clinical trials in dogs, is required. Gaining this knowledge could lead to targeted treatment for dogs while advancing comparative understanding of mammary cancer biology across species. Full article
Show Figures

Graphical abstract

25 pages, 1264 KB  
Review
In Vivo Prostate Cancer Modelling: From the Pre-Clinical to the Clinical Setting
by Elisabete Nascimento-Gonçalves, Tiago Azevedo, Catarina Medeiros and Ana I. Faustino-Rocha
Life 2026, 16(1), 111; https://doi.org/10.3390/life16010111 - 13 Jan 2026
Viewed by 134
Abstract
Prostate cancer (PCa) remains one of the most prevalent malignancies in men and a leading cause of cancer-related mortality worldwide. Over the last century, PCa modelling has evolved from basic cell-based to more complex systems. Despite this, the clinical translation of research findings [...] Read more.
Prostate cancer (PCa) remains one of the most prevalent malignancies in men and a leading cause of cancer-related mortality worldwide. Over the last century, PCa modelling has evolved from basic cell-based to more complex systems. Despite this, the clinical translation of research findings is limited by the constraints of current preclinical models. In this review, rat and zebrafish models are highlighted due to their long-standing and emerging translational relevance, respectively. Rat models have played a pivotal role in understanding carcinogenesis and supporting the preclinical evaluation of drugs currently approved for clinical use, such as antiandrogens and androgen-deprivation agents. In parallel, zebrafish models are increasingly recognized as powerful complementary tools for studying tumor biology, metastasis, and drug response, offering unique advantages for high-throughput and personalized medicine approaches. We summarize historical milestones, current advances, and translational perspectives, emphasizing how combining multiple model systems can bridge the gap between molecular research and clinical application. Collectively, the development and refinement of these models represent essential steps toward more predictive and ethically responsible PCa research. Full article
(This article belongs to the Special Issue Prostate Cancer: 4th Edition)
Show Figures

Figure 1

23 pages, 1304 KB  
Review
Inorganic Polyphosphate in Mammals: Mechanisms, Maladies, and Moving Forward
by Heala Mendelsohn Aviv, Zhiyun Yang and Zongchao Jia
Biomolecules 2026, 16(1), 127; https://doi.org/10.3390/biom16010127 - 12 Jan 2026
Viewed by 119
Abstract
Inorganic polyphosphate is highly conserved, critical, yet poorly understood polymer that regulates diverse cellular functions in mammals. Its importance is well established in coagulation, inflammation, mitochondrial function, and stress responses, though the molecular mechanisms for these effects remain only partly understood. Fundamental questions [...] Read more.
Inorganic polyphosphate is highly conserved, critical, yet poorly understood polymer that regulates diverse cellular functions in mammals. Its importance is well established in coagulation, inflammation, mitochondrial function, and stress responses, though the molecular mechanisms for these effects remain only partly understood. Fundamental questions also persist regarding its physiological concentration, chain-length distributions, and the mechanisms that regulate its behavior in specific cellular compartments. Progress is limited by the absence of a known mammalian polyphosphate-synthesizing enzyme. Despite this, recent studies have broadened the scope of polyphosphate biology, suggesting roles in protein phase separation, ATP-independent chaperone activity, metabolic regulation, and intracellular signaling. Polyphosphate modulates the mitochondrial permeability transition pore through calcium-dependent regulation and activates factor XII in coagulation. Findings have also introduced potential connections between polyphosphate and processes such as neurodegeneration, cancer, and tissue regeneration. Despite this expanding landscape, many biological effects remain difficult to interpret due to incomplete mapping of protein targets and longstanding technical limitations in detecting and quantifying polyP. This review integrates molecular protein-interaction mechanisms with compartment-specific functions and disease physiology, providing a clearer mechanistic framework while identifying key conceptual and methodological gaps and outlining priorities for advancing polyphosphate research in mammalian systems. Full article
(This article belongs to the Special Issue Polyphosphate (PolyP) in Health and Disease)
Show Figures

Figure 1

15 pages, 1915 KB  
Article
Establishment of Patient-Derived Organoids from Hepatocellular Carcinoma: Preliminary Data on Yield, Histopathological Concordance, and Methodological Challenges
by Oriana Lo Re, Christian Corti, Lucia Cerrito, Eleonora Cesari, Elisabetta Creta, Flavio De Maio, Alessia Di Prima, Vincenzo Facciuto, Clelia Ferraro, Eleonora Huqi, Rosa Liotta, Margot Lo Pinto, Duilio Pagano, Riccardo Perriera, Valentina Petito, Giulia Santarelli, Francesco Santopaolo, Leonardo Stella, Floriana Tortomasi, Claudio Sette, Salvatore Gruttadauria, Felice Giuliante, Giovanni Zito and Francesca Romana Ponzianiadd Show full author list remove Hide full author list
Cells 2026, 15(2), 125; https://doi.org/10.3390/cells15020125 - 10 Jan 2026
Viewed by 250
Abstract
Patient-derived organoids (PDOs) have emerged as promising preclinical models for studying tumor biology and testing therapeutic strategies in oncology. These three-dimensional culture systems retain key histological, genetic, and functional characteristics of the original tumors, offering a unique opportunity to advance personalized medicine approaches [...] Read more.
Patient-derived organoids (PDOs) have emerged as promising preclinical models for studying tumor biology and testing therapeutic strategies in oncology. These three-dimensional culture systems retain key histological, genetic, and functional characteristics of the original tumors, offering a unique opportunity to advance personalized medicine approaches in liver cancer. In this study, we present the methodological framework and preliminary findings of a prospective study aimed at generating and characterizing PDOs from patients with hepatocellular carcinoma (HCC) undergoing surgical resection. Tumor specimens were processed using an optimized protocol for organoid derivation, expansion, and cryopreservation. We evaluated the success rate of organoid establishment and the histo-molecular fidelity to the parental tumor. These early results demonstrate promising engraftment efficiency and maintenance of tumor-specific markers across passages. Our work highlights the potential of PDOs as a reliable and scalable platform for translational research in HCC, setting the stage for future applications in drug screening and biomarker discovery. Full article
(This article belongs to the Section Tissues and Organs)
Show Figures

Figure 1

24 pages, 2061 KB  
Review
The Impact of Chronic Stress on Treatment Outcomes of Cancer Patients with Divergent Survival Rates: A Systematic Review
by Katarzyna Herbetko, Justyna Kaczor, Adam Sołtyk, Monika Kisielewska, Marcel Opęchowski, Aleksandra Sztuder and Julita Kulbacka
Int. J. Mol. Sci. 2026, 27(2), 686; https://doi.org/10.3390/ijms27020686 - 9 Jan 2026
Viewed by 157
Abstract
This systematic review investigates the impact of chronic stress on treatment outcomes among cancer patients with divergent survival rates, focusing on breast, prostate, pancreatic, and ovarian cancers. The analysis explores how chronic stress influences molecular pathways and tumor progression while comparing cancers with [...] Read more.
This systematic review investigates the impact of chronic stress on treatment outcomes among cancer patients with divergent survival rates, focusing on breast, prostate, pancreatic, and ovarian cancers. The analysis explores how chronic stress influences molecular pathways and tumor progression while comparing cancers with five-year survival rates above and below 50%. A comprehensive literature search was conducted in PubMed and Scopus for studies published between 2014 and 2025 using combinations of keywords related to “chronic stress,” “psychological stress,” “psychotherapy,” and selected cancer types. All studies met the inclusion criteria according to the PRISMA 2020 guidelines. Evidence suggests that chronic stress is associated with the activation of neuroendocrine and immune mechanisms, including β-adrenergic and glucocorticoid signaling. These multifactorial processes are associated with disease progression and survival, particularly in pancreatic and ovarian cancers; however, these links remain primarily associative rather than causative. Conversely, psychotherapeutic interventions alleviate stress-related biological responses, improve quality of life, and may indirectly enhance therapeutic efficacy. By structuring the evidence around cancers with higher versus lower five-year survival, our review provides a survival informed synthesis of cancer type specific stress biology and stress-mitigating interventions, highlighting potentially targetable pathways and clear evidence gaps for future trials. The findings underscore the need to integrate psychological care into oncological practice to improve overall outcomes. Full article
Show Figures

Figure 1

22 pages, 1518 KB  
Review
Adipokine Metabolic Drivers, Gut Dysbiosis, and the Prostate Microbiome: Novel Pathway Enrichment Analysis of the Adiposity-Based Chronic Disease—Prostate Cancer Network
by Zachary Dovey, Elena Tomas Bort and Jeffrey I. Mechanick
Cancers 2026, 18(2), 206; https://doi.org/10.3390/cancers18020206 - 8 Jan 2026
Viewed by 228
Abstract
Adiposity-Based Chronic Disease (ABCD) is known to increase the risk of aggressive prostate cancer (PCa), recurrent disease after treatment for localized PCa, and PCa mortality. A key mechanistic link contributing to this enhanced risk is chronic inflammation originating from excess white visceral adipose [...] Read more.
Adiposity-Based Chronic Disease (ABCD) is known to increase the risk of aggressive prostate cancer (PCa), recurrent disease after treatment for localized PCa, and PCa mortality. A key mechanistic link contributing to this enhanced risk is chronic inflammation originating from excess white visceral adipose tissue (WAT; VAT) and periprostatic adipose tissue (ppWAT). Contributing to systemic inflammation is gut dysbiosis, which itself may be caused by ABCD as well as background local inflammation (prostatitis), which is common in aging men and may be exacerbated by the urinary microbiome. Investigating the molecular biology driving inflammation and its association with increased PCa risk, a recent paper applied a network and gene set enrichment to adipokine drivers in the ABCD-PCa network. It found prominent roles for MCP-1, IL-1β, and CXCL-1 in addition to confirming the importance of exposure to lipopolysaccharides and bacterial components, corroborating the role of gut dysbiosis. To further unravel the mechanistic links between ABCD and PCa risk, this critical review will discuss the current literature on prominent inflammatory signaling pathways activated in ABCD; the influence of gut dysbiosis, the urinary microbiome, and chronic prostatitis; and current hypotheses on how these domains may result in the development of aggressive PCa over a man’s life. Moreover, we performed a novel pathway enrichment analysis to further evaluate the associations between ABCD, PCa risk, gut dysbiosis, and the prostate microbiome, the results of which were partitioned into extracellular and intracellular signaling pathways. In the extracellular space, novel mechanistic links between gut dysbiosis and MCP-1, IL-1β, CXCL1, and leptin via bacterial pathogen signaling and the intestinal immune network (for IgA production), crucial for gut immune homeostasis, were found. Within the intracellular space, there were downstream signals activating chemokine and type 2 interferon pathways, focal adhesion PI3K/Akt/mTOR pathways, as well as the JAK/STAT, NF-κB, and PI3K/Akt pathways. Overall, these findings point to an emerging molecular pathway for PCa oncogenesis influenced by ABCD, gut dysbiosis, and inflammation, and further research, possibly with lifestyle program-based clinical trials, may discover novel biomarker panels and molecular targeted therapies for the prevention and treatment of PCa. Full article
Show Figures

Figure 1

18 pages, 940 KB  
Review
From Phytochemistry to Oncology: The Role of Bakuchiol in the Treatment of Breast Cancer
by Magdalena Czarnecka-Czapczyńska, David Aebisher, Alina Pietryszyn-Bilińska, Magdalena Moś, Sara Czech, Jakub Szpara, Dorota Bartusik-Aebisher and Aleksandra Kawczyk-Krupka
Biomolecules 2026, 16(1), 94; https://doi.org/10.3390/biom16010094 - 6 Jan 2026
Viewed by 318
Abstract
Bakuchiol (BAK), a natural meroterpenoid with antioxidant, anti-inflammatory and anticancer properties, has recently gained attention as a potential adjunct in breast cancer therapy. This review contextualizes breast cancer as a major global health challenge and highlights BAK as a bioactive compound capable of [...] Read more.
Bakuchiol (BAK), a natural meroterpenoid with antioxidant, anti-inflammatory and anticancer properties, has recently gained attention as a potential adjunct in breast cancer therapy. This review contextualizes breast cancer as a major global health challenge and highlights BAK as a bioactive compound capable of modulating pathways relevant to tumor development and progression. A structured literature search identified studies examining its molecular activity, pharmacological profile, and effects on breast cancer cells and stem cells. Results show that BAK influences oxidative stress regulation, mitochondrial function, apoptosis and estrogen receptor signaling while also affecting PI3K/AKT, MAPK, NF-κB, and EMT-related pathways. In breast cancer models, BAK acts as a selective phytoestrogen, induces S-phase arrest, activates the ATM/ATR–Chk1/Chk2 axis, and triggers mitochondrial apoptosis, particularly in ERα-positive cells. It also suppresses breast cancer stem-cell renewal, promotes BNIP3- and DAPK2-mediated apoptosis, reduces metabolic and transcriptional drivers of metastasis, and shows enhanced anticancer activity in derivative forms. These findings suggest that BAK may provide therapeutic benefit across several mechanisms central to breast cancer biology. In this review, the inclusion criteria encompassed publications describing the action of bakuchiol, its chemical and pharmacological properties, as well as its role in the treatment of various conditions, including cancers. Exclusion criteria included works not related to BAK or its therapeutic use in breast cancer, as well as publications that did not meet basic scientific standards, such as lacking methodological rigor or presenting a low level of scientific evidence. However, current evidence is predominantly in vitro, and limitations such as poor bioavailability and lack of clinical validation underscore the need for further in vivo and translational studies before therapeutic application can be established. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

27 pages, 6116 KB  
Review
Natural Product Driven Activation of UCP1 and Tumor Metabolic Suppression: Integrating Thermogenic Nutrient Competition with Cancer Metabolic Reprogramming
by Dong Oh Moon
Biomolecules 2026, 16(1), 90; https://doi.org/10.3390/biom16010090 - 6 Jan 2026
Viewed by 363
Abstract
Metabolic reprogramming allows cancer cells to proliferate rapidly, survive nutrient limitation, and resist stress, making tumor metabolism an important therapeutic target. However, pharmacological inhibition of metabolic enzymes often causes systemic toxicity and compensatory pathway activation. To overcome these limitations, recent studies have highlighted [...] Read more.
Metabolic reprogramming allows cancer cells to proliferate rapidly, survive nutrient limitation, and resist stress, making tumor metabolism an important therapeutic target. However, pharmacological inhibition of metabolic enzymes often causes systemic toxicity and compensatory pathway activation. To overcome these limitations, recent studies have highlighted an alternative host-centered strategy based on increasing systemic energy expenditure. Recent studies highlight an alternative strategy in which the host increases energy expenditure through uncoupling protein 1 (UCP1) dependent thermogenesis, thereby lowering systemic glucose, fatty acid, and nucleotide availability for tumors. Engineered beige adipocytes overexpressing UCP1, PR domain-containing protein 16 (PRDM16), or peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PPARGC1A/PGC1A) suppress tumor growth through nutrient competition, suggesting that activating endogenous UCP1 may provide a non-genetic and physiologically aligned anticancer approach. Building on this concept, natural products such as polyphenols, terpenoids, alkaloids, and carotenoids have emerged as promising UCP1 activators that stimulate beige and brown adipocyte thermogenesis through pathways involving AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), PGC1A, PRDM16, and mitochondrial biogenesis. In parallel, computational studies further indicate that several plant-derived compounds bind directly to the central cavity of UCP1 with high affinity, offering structural support for their thermogenic action. Importantly, many of these compounds also inhibit cancer cell intrinsic metabolism by reducing glycolysis, oxidative phosphorylation, lipid synthesis, and amino acid dependent anaplerosis. This review integrates UCP1 biology, natural product mediated thermogenesis, molecular docking evidence, and tumor metabolic suppression, proposing a unified framework in which natural compounds impose coordinated metabolic pressure on cancer through both adipocyte-driven nutrient competition and direct inhibition of tumor metabolism. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

23 pages, 3032 KB  
Article
Contrast-Enhanced Mammography and Deep Learning-Derived Malignancy Scoring in Breast Cancer Molecular Subtype Assessment
by Antonia O. Ferenčaba, Dora Galić, Gordana Ivanac, Kristina Kralik, Martina Smolić, Justinija Steiner, Ivo Pedišić and Kristina Bojanic
Medicina 2026, 62(1), 115; https://doi.org/10.3390/medicina62010115 - 5 Jan 2026
Viewed by 299
Abstract
Background and Objectives: Contrast-enhanced mammography (CEM) provides both morphological and functional information and may reflect breast cancer biology similarly to Magnetic Resonance Imaging (MRI). Materials and Methods: This single-center retrospective study included 399 women with Breast Imaging Reporting and Data System (BI-RADS) category [...] Read more.
Background and Objectives: Contrast-enhanced mammography (CEM) provides both morphological and functional information and may reflect breast cancer biology similarly to Magnetic Resonance Imaging (MRI). Materials and Methods: This single-center retrospective study included 399 women with Breast Imaging Reporting and Data System (BI-RADS) category 0 screening mammograms who subsequently underwent CEM. A total of 76 malignant lesions (68 invasive cancers, 8 ductal carcinoma in situ (DCIS)) with complete imaging and pathology data were analyzed. Invasive cancers were classified into luminal A, luminal B, luminal B/Human Epidermal Growth Factor Receptor 2 (HER2)-positive, HER2-enriched, and triple-negative, and grouped as luminal (Group 1) versus HER2-positive/triple-negative (Group 2). Results: Luminal subtypes predominated (47 of 68, 69%), while 21 of 68 (31%) were HER2-positive or triple-negative. Most cancers appeared as masses with spiculated margins and heterogeneous enhancement. Significant differences were observed in mass shape (p = 0.03) and internal enhancement (p = 0.01). Luminal tumors were more often irregular and spiculated with heterogeneous enhancement, whereas the HER2-positive/triple-negative tumors more frequently appeared round with rim or homogeneous enhancement. Deep learning-derived malignancy scores (iCAD ProFound AI®) demonstrated good diagnostic performance (area under the curve (AUC) = 0.744, 95% confidence interval (CI) 0.654–0.821, p < 0.001). The median AI score was significantly higher in malignant compared with benign lesions (70% [interquartile range (IQR) 47–93] vs. 38% [IQR 25–61]; Mann–Whitney U test, p < 0.001). Among malignant lesions, iCAD scores varied across molecular subtypes, with higher median values observed in Group 1 versus Group 2 (87% vs. 55%), although the difference was not statistically significant (Mann–Whitney U test, p = 0.35). Conclusions: CEM features mirrored subtype-specific phenotypes previously described with MRI, supporting its role as a practical tool for enhanced tumor characterization. Although certain imaging and AI-derived parameters differed descriptively across subtypes, no statistically significant differences were observed. As deep-learning models continue to evolve, the integration of AI-enhanced CEM into clinical workflows holds strong potential to improve lesion characterization and risk stratification in personalized breast cancer diagnostics. Full article
(This article belongs to the Special Issue AI in Imaging—New Perspectives, 2nd Edition)
Show Figures

Figure 1

Back to TopTop