Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,204)

Search Parameters:
Keywords = cancer immunotherapies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1707 KiB  
Review
Mimicking Gastric Cancer Collagen Reorganization with Decellularized ECM-Based Scaffolds
by Néstor Corro, Sebastián Alarcón, Ángel Astroza, Roxana González-Stegmaier and Carolina Añazco
Biology 2025, 14(8), 1067; https://doi.org/10.3390/biology14081067 (registering DOI) - 16 Aug 2025
Abstract
The tumor microenvironment (TME) has a substantial impact on the progression of gastric cancer. Collagen, the most abundant protein in the extracellular matrix (ECM), forms a dense physical barrier that regulates anti-tumor immunity in the TME. It is a significant regulator of the [...] Read more.
The tumor microenvironment (TME) has a substantial impact on the progression of gastric cancer. Collagen, the most abundant protein in the extracellular matrix (ECM), forms a dense physical barrier that regulates anti-tumor immunity in the TME. It is a significant regulator of the signaling pathways of cancer cells, which are responsible for migration, proliferation, and metabolism. ECM proteins, particularly remodeling enzymes and collagens, can be modified to increase stiffness and alter the mechanical properties of the stroma. This, in turn, increases the invasive potential of tumor cells and resistance to immunotherapy. Given the dynamic nature of collagen, novel therapeutic strategies have emerged that target both collagen biosynthesis and degradation, processes that are essential for addressing ECM stiffening. This review delineates the upregulation of the expression and deposition of collagen, as well as the biological functions, assembly, and reorganization that contribute to the dissemination of this aggressive malignancy. Furthermore, the review emphasizes the importance of creating 3D in vitro models that incorporate innovative biomaterials that avoid the difficulties of traditional 2D culture in accurately simulating real-world conditions that effectively replicate the distinctive collagen microenvironment. Ultimately, it investigates the use of decellularized ECM-derived biomaterials as tumor models that are designed to precisely replicate the mechanisms associated with the progression of stomach cancer. Full article
(This article belongs to the Special Issue Tumor Biomechanics and Mechanobiology)
Show Figures

Graphical abstract

14 pages, 2672 KiB  
Case Report
From Innovation to Complication: A Case Report and Review on Immune-Related Colitis Induced by ICIs
by Huibo Li, Yumiao Pan, Wenzheng Liu, Hejun Zhang, Xueli Tian, Rongsheng Zhao and Yi Zhun Zhu
Pharmaceuticals 2025, 18(8), 1211; https://doi.org/10.3390/ph18081211 - 15 Aug 2025
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by providing durable responses and a favorable safety profile, ushering in a new era of tumor immunotherapy. However, immune-related adverse events (irAEs) remain a significant clinical challenge. Among these, gastrointestinal irAEs, especially immune-related colitis (ir-colitis), [...] Read more.
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy by providing durable responses and a favorable safety profile, ushering in a new era of tumor immunotherapy. However, immune-related adverse events (irAEs) remain a significant clinical challenge. Among these, gastrointestinal irAEs, especially immune-related colitis (ir-colitis), can lead to serious complications if not promptly recognized and managed. Here, we present a case of grade 3 ir-colitis induced by the programmed cell death protein 1 (PD-1) inhibitor sintilimab in a 68-year-old woman with endometrial cancer. The patient developed severe acute diarrhea following ICI administration, which progressed despite initial antidiarrheal and antimicrobial treatments. A multidisciplinary team (MDT) involving gastroenterologists, oncologists, a pathologist, and a clinical pharmacist confirmed the diagnosis and implemented high-dose corticosteroid therapy, yielding significant clinical improvement. Importantly, this report highlights the mechanistic link between PD-1 blockade and ir-colitis pathogenesis, focusing on the dysregulation of the mucosal immune environment and its role in triggering colonic injury. In addition to the case description, we provide a comprehensive review of the literature and clinical guidelines, discussing risk factors, diagnostic approaches, therapeutic strategies, and long-term monitoring. By integrating insights from pharmacology, immunology, and clinical practice, this work emphasizes the importance of early detection, patient education, and MDT collaboration for optimizing therapeutic outcomes and advancing the understanding of ir-colitis in the context of ICI therapy. Full article
(This article belongs to the Special Issue Tumor Immunopharmacology)
25 pages, 15929 KiB  
Article
Discovery of Small-Molecule PD-L1 Inhibitors via Virtual Screening and Their Immune-Mediated Anti-Tumor Effects
by Chunlai Feng, Yingying Ge, Siqi Wang, Mengru Li, Qiying Chen, Hangyu Dong and Mengjie Rui
Pharmaceuticals 2025, 18(8), 1209; https://doi.org/10.3390/ph18081209 - 15 Aug 2025
Abstract
Background/Objectives: Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have achieved clinical success but face drawbacks such as poor oral bioavailability, limited tumor penetration, and immune-related adverse events. Small-molecule inhibitors present a promising alternative that may overcome these challenges. Methods: Here, an [...] Read more.
Background/Objectives: Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have achieved clinical success but face drawbacks such as poor oral bioavailability, limited tumor penetration, and immune-related adverse events. Small-molecule inhibitors present a promising alternative that may overcome these challenges. Methods: Here, an integrated computational framework combining ligand-based pharmacophore modeling and structure-based molecular docking was utilized to screen a comprehensive library consisting of traditional Chinese medicine-derived compounds and clinically approved drugs. The binding affinity between identified candidate compounds and PD-L1 was quantitatively assessed using bio-layer interferometry (BLI). In vitro cytotoxicity assays were conducted on A549 human lung carcinoma and LLC mouse lung carcinoma cell lines. In vivo antitumor efficacy was evaluated in LLC tumor-bearing mice through measurement of tumor growth inhibition, serum cytokine levels (IFN-γ and IL-4) by ELISA, and expression levels of IFN-γ and granzyme B (GZMB) within tumor tissues via immunohistochemistry. Results: In vitro, anidulafungin exhibited anti-tumor effects against both human lung cancer A549 cells and mouse Lewis lung carcinoma (LLC) tumor cells, with IC50 values of 170.6 µg/mL and 160.9 µg/mL, respectively. The BLI analysis revealed a dissociation constant (KD) of 76.9 μM, indicating a high affinity of anidulafungin for PD-L1. In vivo, anidulafungin significantly increased serum levels of IFN-γ and IL-4 in tumor-bearing mice and elevated expression of IFN-γ and granzyme B (GZMB) in tumor tissues, confirming its immune-mediated anti-tumor effects. Conclusions: Anidulafungin represents a promising small-molecule PD-L1 inhibitor, demonstrating significant anti-tumor potential via immune activation and highlighting the feasibility of repurposing approved drugs for cancer immunotherapy. Full article
(This article belongs to the Section Medicinal Chemistry)
27 pages, 496 KiB  
Review
Therapeutic Opportunities in Melanoma Through PRAME Expression
by Mislav Mokos, Ivana Prkačin, Klara Gaćina, Ana Brkić, Nives Pondeljak and Mirna Šitum
Biomedicines 2025, 13(8), 1988; https://doi.org/10.3390/biomedicines13081988 - 15 Aug 2025
Abstract
Background: Melanoma is one of the most aggressive types of skin cancer. Its diagnosis appears to be challenging due to morphological similarities to benign melanocytic lesions. Even though histopathological evaluation is the diagnostic gold standard, immunohistochemistry (IHC) proves to be useful in challenging [...] Read more.
Background: Melanoma is one of the most aggressive types of skin cancer. Its diagnosis appears to be challenging due to morphological similarities to benign melanocytic lesions. Even though histopathological evaluation is the diagnostic gold standard, immunohistochemistry (IHC) proves to be useful in challenging cases. Preferentially Expressed Antigen in Melanoma (PRAME) has emerged as a promising diagnostic, prognostic, and therapeutic marker in melanoma. Methods: This review critically examines the role of PRAME across clinical domains. It presents an evaluation of PRAME’s diagnostic utility in differentiating melanomas from benign nevi, its prognostic significance across melanoma subtypes, and therapeutic applications in emerging immunotherapy strategies. An extensive analysis of the current literature was conducted, with a focus on PRAME expression patterns in melanocytic lesions and various malignancies, along with its integration into IHC protocols and investigational therapies. Results: PRAME demonstrates high specificity and sensitivity in distinguishing melanoma from benign melanocytic proliferations, particularly in challenging subtypes such as acral, mucosal, and spitzoid lesions. Its overexpression correlates with poor prognosis in numerous malignancies. Therapeutically, PRAME’s HLA class I presentation enables T-cell-based targeting. Early-phase trials show promising results using PRAME-directed TCR therapies and bispecific ImmTAC agents. However, immune evasion mechanisms (i.e., heterogeneous antigen expression, immune suppression in the tumor microenvironment, and HLA downregulation) pose significant challenges to therapy. Conclusions: PRAME is a valuable biomarker for melanoma diagnosis and a promising target for immunotherapy. Its selective expression in malignancies supports its clinical utility in diagnostic precision, prognostic assessment, and precision oncology. Ongoing research aimed at overcoming immunological barriers will be essential for optimizing PRAME-directed therapies and establishing their place in the personalized management of melanoma. Full article
(This article belongs to the Special Issue Skin Diseases and Cell Therapy)
24 pages, 4244 KiB  
Article
Introducing CAR-T Therapy in Kazakhstan: Establishing Academic-Scale Lentiviral Vector and CAR-T Cell Production
by Viktoriya Keyer, Aitolkyn Kydyrbayeva, Tolganay Kulatay, Gulzat Zauatbayeva, Dmitrii Bazhenov, Bakytkali Ingirbay, Zhanar Shakhmanova, Maral Zhumabekova, Madina Ospanova and Alexandr V. Shustov
Biomolecules 2025, 15(8), 1166; https://doi.org/10.3390/biom15081166 - 14 Aug 2025
Viewed by 141
Abstract
CAR-T cell therapy represents a breakthrough in cancer treatment, yet its implementation in developing countries remains challenging due to technical and infrastructural barriers. This study aimed to establish clinical-scale CAR-T production in Kazakhstan, a country with no prior experience in advanced cell and [...] Read more.
CAR-T cell therapy represents a breakthrough in cancer treatment, yet its implementation in developing countries remains challenging due to technical and infrastructural barriers. This study aimed to establish clinical-scale CAR-T production in Kazakhstan, a country with no prior experience in advanced cell and gene therapies. We implemented a complete CAR-T manufacturing pipeline, including in-house lentiviral vector (LV) production and automated CAR-T cell processing using the CliniMACS Prodigy system. Two anti-CD19 CAR LVs were used, one modeled after FDA-approved Kymriah (4-1BB costimulation) and another replicating Yescarta (CD28 costimulation). The vector produced locally achieved functional titers of 1.5 × 1010 TU/mL after concentration. Twelve clinical-scale CAR-T products were manufactured, exhibiting a memory-skewed T-cell phenotype. Functional assessments revealed that CD28-based CAR-T cells produced significantly higher Th1 cytokines (IFN-γ, TNF-α, IL-2; p < 0.05) than 4-1BB-based cells, though both demonstrated comparable cytotoxicity against CD19+ targets. These findings demonstrate the feasibility of establishing CAR-T production in resource-limited settings using a decentralized manufacturing framework. This work provides a scalable model of CAR-T therapy production in developing regions, suitable for clinical implementation using the hospital exemption framework. Critical gaps in access to advanced immunotherapies, including CAR-T, in the Central Eurasia region are addressed. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

19 pages, 428 KiB  
Review
A Narrative Review of the Roles of Nursing in Addressing Sexual Dysfunction in Oncology Patients
by Omar Alqaisi, Suhair Al-Ghabeesh, Patricia Tai, Kelvin Wong, Kurian Joseph and Edward Yu
Curr. Oncol. 2025, 32(8), 457; https://doi.org/10.3390/curroncol32080457 - 14 Aug 2025
Viewed by 128
Abstract
Sexual dysfunction affects an estimated 50–70% of cancer survivors but remains underrecognized and undertreated, impacting quality of life and emotional well-being. This narrative review involves a comprehensive search of PubMed/MEDLINE, CINAHL, Scopus, Web of Science, and ScienceDirect for English-language publications (January 2010–May 2025), [...] Read more.
Sexual dysfunction affects an estimated 50–70% of cancer survivors but remains underrecognized and undertreated, impacting quality of life and emotional well-being. This narrative review involves a comprehensive search of PubMed/MEDLINE, CINAHL, Scopus, Web of Science, and ScienceDirect for English-language publications (January 2010–May 2025), using combined MeSH and free-text terms for ‘sexual health’, ‘cancer’, ‘nursing’, ‘roles of nurses’, ‘immunotherapy’, ‘targeted therapy’, ‘sexual health’, ‘sexual dysfunction’, ‘vaginal dryness’, ‘genitourinary syndrome of menopause’, ‘sexual desire’, ‘body image’, ‘erectile dysfunction’, ‘climacturia’, ‘ejaculatory disorders’, ‘dyspareunia’, and ‘oncology’. We used the IMRAD (Introduction, Methods, Results, and Discussion) approach to identify 1245 records and screen titles and abstracts. Fifty studies ultimately met the inclusion criteria (original research, reviews, and clinical guidelines on oncology nursing and sexual health). Results: All the treatments contributed to reduced libido, erectile dysfunction, dyspareunia, and body image concerns, with a prevalence of 57.5% across genders. Oncology nurses can provide sex education and counseling. Barriers (limited training, cultural stigma, and the absence of protocols) hinder effective intervention. Addressing these issues through sexual health curricula, formal referral systems, and policy reforms can enhance nursing care. Future research should assess the impact of targeted nurse education and the institutional integration of sexual health into cancer care. Full article
(This article belongs to the Special Issue Feature Reviews in Section "Oncology Nursing")
Show Figures

Figure 1

25 pages, 3910 KiB  
Review
Novel Therapeutic Strategies for Squamous Cell Carcinoma of the Head and Neck: Beyond EGFR and Checkpoint Blockade
by Rachel Hui Zhen Sim, Pei Jye Voon, Seng Wee Cheo and Darren Wan-Teck Lim
Biomedicines 2025, 13(8), 1972; https://doi.org/10.3390/biomedicines13081972 - 14 Aug 2025
Viewed by 225
Abstract
Despite advances in immunotherapy with checkpoint inhibitors, a significant proportion of patients with head and neck squamous cell carcinoma (HNSCC) do not respond to treatment or eventually develop resistance. This review focuses on novel therapeutic strategies currently under investigation for HNSCC, moving beyond [...] Read more.
Despite advances in immunotherapy with checkpoint inhibitors, a significant proportion of patients with head and neck squamous cell carcinoma (HNSCC) do not respond to treatment or eventually develop resistance. This review focuses on novel therapeutic strategies currently under investigation for HNSCC, moving beyond the established paradigms of EGFR inhibition and PD-1/PD-L1 blockade. We explore emerging targets and drug classes, including next-generation immunotherapies, targeted therapies directed at specific molecular alterations, epigenetic modifiers, agents targeting the tumor microenvironment, and innovative approaches like cell-based therapies and oncolytic viruses. We discuss the preclinical rationale and clinical data (where available) for these novel approaches, highlighting the challenges and opportunities in translating these discoveries into improved outcomes for patients with HNSCC. Full article
(This article belongs to the Special Issue Head and Neck Tumors, 4th Edition)
Show Figures

Figure 1

16 pages, 381 KiB  
Review
Prognostic Role of B7-H3 (CD276) Expression in Initial Biopsies of Metastatic Prostate Cancer
by Adam Yusuf and Paramahansa Pramanik
Onco 2025, 5(3), 38; https://doi.org/10.3390/onco5030038 - 14 Aug 2025
Viewed by 88
Abstract
Prostate cancer exhibits highly variable behavior, from slow-growing localized tumors to aggressive metastatic disease, yet early prognostic indicators remain limited. In this study, we examined B7-H3 (CD276) expression, a molecule linked to immune suppression and cancer progression in diagnostic biopsy specimens from 248 [...] Read more.
Prostate cancer exhibits highly variable behavior, from slow-growing localized tumors to aggressive metastatic disease, yet early prognostic indicators remain limited. In this study, we examined B7-H3 (CD276) expression, a molecule linked to immune suppression and cancer progression in diagnostic biopsy specimens from 248 patients with localized or metastatic prostate cancer. We found that elevated B7-H3 levels were significantly more common in metastatic cases and independently associated with reduced overall and disease-specific survival. Moreover, high B7-H3 expression correlated with increased PSA values and higher Gleason grades. These findings endorse B7-H3 as a robust prognostic marker and potential therapeutic target in advanced prostate cancer management. Full article
Show Figures

Figure 1

19 pages, 3330 KiB  
Review
Endocrine Adverse Events Induced by Cancer Treatments: The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography
by Luca Giovanella, Murat Tuncel, Alfredo Campennì, Rosaria Maddalena Ruggeri, Martin Huellner and Petra Petranović Ovčariček
Cancers 2025, 17(16), 2651; https://doi.org/10.3390/cancers17162651 - 14 Aug 2025
Viewed by 211
Abstract
Immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) have revolutionized cancer therapy, substantially improving survival across a broad range of malignancies. However, these agents are associated with a unique profile of endocrine immune-related adverse events (irAEs), including thyroiditis, hypophysitis, adrenalitis, and pancreatitis, [...] Read more.
Immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) have revolutionized cancer therapy, substantially improving survival across a broad range of malignancies. However, these agents are associated with a unique profile of endocrine immune-related adverse events (irAEs), including thyroiditis, hypophysitis, adrenalitis, and pancreatitis, which differ significantly from the toxicities seen with conventional chemotherapy. These complications often arise unpredictably during treatment and may result in irreversible hormone deficiencies requiring lifelong replacement, underscoring the importance of early detection. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has emerged as a valuable tool not only for oncologic staging and response assessment but also for detecting metabolic changes in endocrine organs. PET/CT can identify irAEs before the appearance of clinical symptoms or biochemical abnormalities. Emerging evidence suggests that the presence of endocrine irAEs identified by 18F-FDG PET/CT may correlate with improved treatment response and survival, possibly reflecting enhanced immune activation. This comprehensive review discusses the role of 18F-FDG PET/CT in the early recognition of therapy-induced endocrine toxicities, facilitating timely intervention through hormone replacement or immunosuppressive therapy while minimizing unnecessary treatment interruptions. Effective integration of metabolic imaging with clinical and laboratory evaluation requires coordinated multidisciplinary collaboration among oncologists, endocrinologists, and nuclear medicine physicians to optimize outcomes and reduce endocrine-related morbidity in the era of precision oncology. Full article
(This article belongs to the Special Issue Hormones and Tumors)
Show Figures

Figure 1

41 pages, 974 KiB  
Review
Confronting Melanoma Radioresistance: Mechanisms and Therapeutic Strategies
by Ielizaveta Gorodetska, Alexander Schulz, Gerhard Behre and Anna Dubrovska
Cancers 2025, 17(16), 2648; https://doi.org/10.3390/cancers17162648 - 14 Aug 2025
Viewed by 333
Abstract
Melanoma is a highly aggressive skin cancer with survival rates varying significantly based on stage and genomic characteristics. While localized melanoma has favorable outcomes, metastatic melanoma is associated with poor prognosis and limited treatment options. Radiotherapy (RT), one of the most commonly used [...] Read more.
Melanoma is a highly aggressive skin cancer with survival rates varying significantly based on stage and genomic characteristics. While localized melanoma has favorable outcomes, metastatic melanoma is associated with poor prognosis and limited treatment options. Radiotherapy (RT), one of the most commonly used cancer treatments, is less effective in melanoma due to its intrinsic radioresistance. This review discusses the current knowledge about the biological mechanisms contributing to melanoma radioresistance, including the role of cancer stem cells (CSCs), DNA repair mechanisms, hypoxia, altered metabolism, and melanin production. It also examines preclinical and clinical studies on novel therapeutic approaches, such as targeting CSC pathways, inhibiting DNA repair, modulating hypoxia-induced metabolic shifts, and combining RT with immunotherapies or targeted therapies. Promising strategies, such as RT-induced immune responses and advanced RT techniques, show the potential to overcome resistance. However, melanoma’s heterogeneity and the limited clinical validation of these approaches remain significant challenges. Integrated therapeutic strategies targeting the multifaceted mechanisms of melanoma radioresistance are essential to improve treatment outcomes. Further clinical validation and personalized approaches are needed to address the heterogeneity of melanoma and enhance the efficacy of novel interventions. Full article
(This article belongs to the Special Issue Emerging Paradigms for Cancer Therapy: Promises and Challenges)
Show Figures

Figure 1

25 pages, 4622 KiB  
Review
Immunological Landscape and Molecular Therapeutic Targets of the Tumor Microenvironment in Hepatocellular Carcinoma
by Yusra Zarlashat, Abdul Ghaffar, Flora Guerra and Anna Picca
Int. J. Mol. Sci. 2025, 26(16), 7836; https://doi.org/10.3390/ijms26167836 - 13 Aug 2025
Viewed by 331
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer, with poor survival rates in advanced stages due to late diagnosis, tumor heterogeneity, and therapy resistance. The tumor microenvironment (TME) in HCC has a crucial role in tumor progression, characterized by a complex interaction [...] Read more.
Hepatocellular carcinoma (HCC) is the most common liver cancer, with poor survival rates in advanced stages due to late diagnosis, tumor heterogeneity, and therapy resistance. The tumor microenvironment (TME) in HCC has a crucial role in tumor progression, characterized by a complex interaction of immune cells, stromal components, and immunosuppressive signaling pathways. Chronic inflammation driven by viral infections, metabolic dysfunction, and alcohol consumption triggers an immunosuppressive TME, promoting immune evasion and tumor growth. Immune cell populations, such as myeloid-derived suppressor cells, regulatory T cells, and tumor-associated macrophages, contribute to immunosuppression, while cytotoxic T lymphocytes and natural killer cells exert anti-tumor effects. Recent advances in immunotherapy, mainly immune checkpoint inhibitors (ICIs) targeting programmed death-ligand 1 and programmed cell death protein 1 and cytotoxic T-lymphocyte-associated protein 4, have revolutionized HCC treatment, though response rates remain limited. Combined therapies using tyrosine kinase inhibitors, anti-angiogenic agents, and ICIs improve patient outcomes. This review discusses the immunological mechanisms contributing to HCC progression, the role of immune cell subsets in tumor evasion, and therapeutic interventions, from conventional treatments to advanced immunotherapies. Ongoing clinical trials, barriers to effective treatment, and future directions to enhance HCC management and patient survival will also be overviewed. Full article
Show Figures

Figure 1

27 pages, 1370 KiB  
Review
Immune Organoids: A Review of Their Applications in Cancer and Autoimmune Disease Immunotherapy
by David B. Olawade, Emmanuel O. Oisakede, Eghosasere Egbon, Saak V. Ovsepian and Stergios Boussios
Curr. Issues Mol. Biol. 2025, 47(8), 653; https://doi.org/10.3390/cimb47080653 - 13 Aug 2025
Viewed by 448
Abstract
Immune organoids have emerged as a ground-breaking platform in immunology, offering a physiologically relevant and controllable environment to model human immune responses and evaluate immunotherapeutic strategies. Derived from stem cells or primary tissues, these three-dimensional constructs recapitulate key aspects of lymphoid tissue architecture, [...] Read more.
Immune organoids have emerged as a ground-breaking platform in immunology, offering a physiologically relevant and controllable environment to model human immune responses and evaluate immunotherapeutic strategies. Derived from stem cells or primary tissues, these three-dimensional constructs recapitulate key aspects of lymphoid tissue architecture, cellular diversity, and functional dynamics, providing a more accurate alternative to traditional two-dimensional cultures and animal models. Their ability to mimic complex immune microenvironments has positioned immune organoids at the forefront of cancer immunotherapy development, autoimmune disease modeling, and personalized medicine. This narrative review highlights the advances in immune organoid technology, with a focus on their applications in testing immunotherapies, such as checkpoint inhibitors, CAR-T cells, and cancer vaccines. It also explores how immune organoids facilitate the study of autoimmune disease pathogenesis with insights into their molecular basis and support in high-throughput drug screening. Despite their transformative potential, immune organoids face significant challenges, including the replication of systemic immune interactions, standardization of fabrication protocols, scalability limitations, biological heterogeneity, and the absence of vascularization, which restricts organoid size and maturation. Future directions emphasize the integration of immune organoids with multi-organ systems to better replicate systemic physiology, the development of advanced biomaterials that closely mimic lymphoid extracellular matrices, the incorporation of artificial intelligence (AI) to optimize organoid production and data analysis, and the rigorous clinical validation of organoid-derived findings. Continued innovation and interdisciplinary collaboration will be essential to overcome existing barriers, enabling the widespread adoption of immune organoids as indispensable tools for advancing immunotherapy, vaccine development, and precision medicine. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 1516 KiB  
Review
Ferroptosis and Nrf2 Signaling in Head and Neck Cancer: Resistance Mechanisms and Therapeutic Prospects
by Jaewang Lee, Youngin Seo and Jong-Lyel Roh
Antioxidants 2025, 14(8), 993; https://doi.org/10.3390/antiox14080993 - 13 Aug 2025
Viewed by 167
Abstract
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells [...] Read more.
Ferroptosis is an iron-dependent form of regulated cell death marked by lipid peroxidation in polyunsaturated phospholipids. In head and neck cancer (HNC), where resistance to chemotherapy and immunotherapy is common, ferroptosis offers a mechanistically distinct strategy to overcome therapeutic failure. However, cancer cells often evade ferroptosis via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant and iron-regulatory genes. HNC remains therapeutically challenging due to therapy resistance driven by redox adaptation. This review highlights the ferroptosis pathway—a form of regulated necrosis driven by iron and lipid peroxidation—and its regulation by Nrf2, a master antioxidant transcription factor. We detail how Nrf2 contributes to ferroptosis evasion in HNC and summarize emerging preclinical studies targeting this axis. The review aims to synthesize molecular insights and propose therapeutic perspectives for overcoming resistance in HNC by modulating Nrf2–ferroptosis signaling. We conducted a structured narrative review of the literature using PubMed databases. Relevant studies from 2015 to 2025 focusing on ferroptosis, Nrf2 signaling, and head and neck cancer were selected based on their experimental design, novelty, and relevance to clinical resistance mechanisms. In HNC, Nrf2 mediates resistance through transcriptional upregulation of GPX4 and SLC7A11, epigenetic stabilization by PRMT4 and ALKBH5, and activation by FGF5 and platelet-derived extracellular vesicles. Epstein–Barr virus (EBV) infection also enhances Nrf2 signaling in nasopharyngeal carcinoma. More recently, loss-of-function KEAP1 mutations have been linked to persistent Nrf2 activation and upregulation of NQO1, which confer resistance to both ferroptosis and immune checkpoint therapy. Targeting NQO1 in KEAP1-deficient models restores ferroptosis and reactivates antitumor immunity. Additionally, the natural alkaloid trigonelline has shown promise in reversing Nrf2-mediated ferroptosis resistance in cisplatin-refractory tumors. Pharmacologic agents such as auranofin, fucoxanthin, carnosic acid, and disulfiram/copper complexes have demonstrated efficacy in sensitizing HNC to ferroptosis by disrupting the Nrf2 axis. This review summarizes emerging mechanisms of ferroptosis evasion and highlights therapeutic strategies targeting the Nrf2–ferroptosis network. Integrating ferroptosis inducers with immune and chemotherapeutic approaches may provide new opportunities for overcoming resistance in head and neck malignancies. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease—2nd Edition)
Show Figures

Graphical abstract

24 pages, 11598 KiB  
Article
Integrating Primary and Metastatic scRNA–Seq and Bulk Data to Develop an Immune–Based Prognosis Signature for Colorectal Cancer
by Kaiyuan Xing, Liangshuang Li, Yingnan Ma and Jiang Zhu
Curr. Issues Mol. Biol. 2025, 47(8), 652; https://doi.org/10.3390/cimb47080652 - 13 Aug 2025
Viewed by 197
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer, with its treatment and prognosis particularly challenging due to metastasis. The immune response is involved in the whole process of CRC development, and immunotherapy has increasingly become a part of CRC patients’ treatment. However, comprehensive [...] Read more.
Colorectal cancer (CRC) is a highly aggressive cancer, with its treatment and prognosis particularly challenging due to metastasis. The immune response is involved in the whole process of CRC development, and immunotherapy has increasingly become a part of CRC patients’ treatment. However, comprehensive research on the immune microenvironment driving CRC metastasis remains limited. Given this limitation, we proposed a bioinformatics method to construct a metastasis–based immune prognostic model (MIPM) by integrating CRC single–cell RNA sequencing (scRNA–seq) and bulk data. Our study identified several MIPM genes significantly associated with CRC metastasis and progression. MIPM reliably predicted overall survival (OS) and tumor recurrence in CRC across eleven bulk validation datasets. Notably, MIPM could independently predict outcomes beyond traditional clinical factors such as age, sex, and stage. It showed high predictive accuracy in CRC patients treated with chemotherapy. Drug sensitivity and multifaceted immune analyses further underscored the importance of MIPM in therapeutic and immunotherapy response modulation. In conclusion, our findings have profound implications for the illustration of MIPM, which could serve as a new plausible prognostic marker for CRC patients and provide new insights for treatment strategies. The further evaluation and investigation of MIPM will enhance the prognosis and precision therapy of CRC patients. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

16 pages, 472 KiB  
Review
Beyond the Tissue: Unlocking NSCLC Treatment Potential Through Liquid Biopsy
by Milica Kontic, Mihailo Stjepanovic and Filip Markovic
Genes 2025, 16(8), 954; https://doi.org/10.3390/genes16080954 - 13 Aug 2025
Viewed by 243
Abstract
Lung cancer (LC), with non-small-cell lung cancer (NSCLC) as its predominant subtype, remains the leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors (ICIs) have redefined the therapeutic paradigm in advanced NSCLC, durable responses are confined to a limited subset of patients. [...] Read more.
Lung cancer (LC), with non-small-cell lung cancer (NSCLC) as its predominant subtype, remains the leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors (ICIs) have redefined the therapeutic paradigm in advanced NSCLC, durable responses are confined to a limited subset of patients. A major clinical challenge persists: the inability to accurately predict which patients will derive meaningful benefit, which will exhibit primary resistance, and which are at risk for severe immune-related toxicities. The imperative to individualize ICI therapy necessitates robust, dynamic, and accessible biomarkers. Liquid biopsy has emerged as a transformative, minimally invasive tool that enables real-time molecular and immunologic profiling. Through analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, and peripheral blood immune components, liquid biopsy offers a window into both tumor intrinsic and host-related determinants of ICI response. These biomarkers not only hold promise for identifying predictive signatures—such as tumor mutational burden, neoantigen landscape, or immune activation states—but also for uncovering mechanisms of acquired resistance and guiding treatment adaptation. Beyond immunotherapy, liquid biopsy plays an increasingly central role in the landscape of targeted therapies, allowing early detection of actionable driver mutations and resistance mechanisms (e.g., EGFR T790M, MET amplification, and ALK fusion variants). Importantly, serial sampling via liquid biopsy facilitates longitudinal disease monitoring and timely therapeutic intervention without the need for repeated tissue biopsies. By guiding therapy selection, monitoring response, and detecting resistance early, liquid biopsy has the potential to significantly improve outcomes in NSCLC. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

Back to TopTop